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Abstract— The integration of drone technology with 5G 

networks presents novel opportunities for enhancing wireless 

communication systems. This paper explores the application of 

beamforming optimization techniques in dynamic 

environments, specifically focusing on moving drones in a 

simulated environment based on the DeepMIMO O1 scenario. 

By leveraging the unique properties of the O1 drone setup of 

DeepMIMO simulation environment, which simulates realistic 

urban mobility patterns at millimeter-wave (mmWave) 

frequencies, we propose a novel beamforming algorithm 

designed to optimize the signal quality and stability in highly 

mobile aerial networks. Key performance metrics used in this 

study include Signal-to-Noise Ratio (SNR), battery 

consumption, and power consumption of both the drones and 

the base station. Our findings indicate that the adaptive 

beamforming algorithm not only enhances the SNR and reduces 

power consumption but also optimizes battery usage compared 

to conventional beamforming methods. This study enhances the 

understanding of mmWave beamforming dynamics in aerial 

scenarios but also lays the groundwork for future advancements 

in drone-based communication networks.  

Keywords— Adaptive Beamforming, 5G Drone Communication, 
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I. INTRODUCTION 

As Unmanned Aerial Vehicles (UAVs), commonly known 
as drones, become increasingly prevalent in commercial, 
recreational, and governmental applications, the need for 
robust and efficient communication systems to support them 
has become apparent. Particularly, the implementation of 5G 
technologies offers the potential to dramatically improve the 
operational capabilities of drones through enhanced data 
transmission rates, reduced latency, and increased 
connectivity. 

However, the dynamic nature of drones, characterized by 
high mobility and varying altitudes, poses significant 
challenges to stable and reliable communication. One 
promising solution to these challenges is the optimization of 
beamforming techniques, which can direct the transmission 
and reception of radio waves to focus on a specific moving 
target, thereby maximizing the signal quality and efficiency. 

Recent research in drone technology and 5G networks 
have spurred a substantial body of research focused on 

optimizing communication systems for aerial vehicles. 
Beamforming, a critical technique for enhancing signal 
quality and efficiency, has been extensively studied in static 
and low-mobility scenarios. For instance, traditional 
beamforming methods often rely on pre-established 
parameters that do not adapt dynamically to the rapid 
movements and changing trajectories of drones. Studies have 
explored fixed beamforming techniques and their application 
in relatively predictable environments [1][2]. These 
approaches, while effective in maintaining communication 
stability in low-mobility contexts, often fall short in dynamic 
and high-mobility scenarios typical of urban drone operations. 

Furthermore, recent advancements have also begun to 
address the unique challenges posed by highly mobile drones 
in urban settings. An adaptive beamforming method that 
leverages machine learning to predict drone movements and 
adjust beam directions accordingly and a beam alignment 
algorithm for drone swarms were introduced, emphasizing 
collaborative signal optimization [3][4][5].  

In this paper, we focus on the beamforming challenges and 
opportunities presented by the DeepMIMO O1 drone scenario 
[6], a well-regarded dataset that models realistic urban 
mobility in millimeter-wave (mmWave) frequencies. This 
scenario provides a perfect testbed to study the effects of 
beamforming on moving drones, as it includes various user 
mobility patterns and detailed environmental features. Our 
main contribution is the development of an adaptive 
beamforming algorithm that optimizes the directionality and 
power of beams in real-time as drones move through a 
simulated urban landscape. We compare our approach to a 
simpler one (fixed angle beamforming) evaluating metrics 
such as Signal-to-Noise Ratio (SNR), power consumption of 
the base station and the drones to demonstrate its effectiveness 
in maintaining high-quality communication links, thereby 
ensuring continuous and reliable drone operation as well as 
better consumption. 

Through this study, we aim to push the boundaries of 
drone communication technology, paving the way for more 
sophisticated and efficient aerial communication networks in 
the 5G era and beyond. The paper introduces a beamforming 
optimization algorithm that stands out from existing research 
by specifically addressing the rapid mobility and 
unpredictable trajectory changes of drones in urban 
environments at mmWave frequencies. Unlike previous 
studies, which primarily focus on static or predictably moving 



targets, our algorithm dynamically adapts to the real-time 
movement of drones, leveraging predictive analytics to 
anticipate future positions and optimize beam directions 
preemptively, optimizing SNR, the power consumption of the 
base station while it enhances the drones’ signal and the 
battery consumption of the drones. This proactive approach 
not only enhances the communication reliability between 
drones and ground stations but also significantly reduces the 
latency and overhead associated with re-establishing lost 
connections due to beam misalignment. Furthermore, the 
utilization of the DeepMIMO O1 scenario dataset allows for a 
highly realistic simulation environment that incorporates both 
the physical and the electromagnetic characteristics of urban 
landscapes, providing validation for our algorithm that is 
robust and reflective of real-world operational conditions. 

The rest of the paper is organized as follows. Section II 
discusses the DeepMIMO O1 drone scenario, detailing the 
environment and its characteristics which provide a realistic 
testbed for our beamforming optimization algorithm. In 
Section III, the proposed adaptive beamforming algorithm is 
introduced, and its implementation is explained. The 
evaluation metrics are outlined in Section IV, followed by the 
presentation of the simulation results. Finally, Section V 
concludes the paper with a summary of the findings and 
suggestions for future research. 

II. DESCRIPTION OF THE ENVIRONMENT 

The urban environment of the DeepMIMO O1 drone 
scenario is characterized by dense building structures, which 
introduce significant multipath effects. These multipath 
components are vital in understanding the signal propagation 
and the resultant beamforming challenges. The scenario 
includes not only the Line-of-Sight (LoS) paths but also Non-
Line-of-Sight (NLoS) conditions, making it a comprehensive 
testbed for advanced beamforming algorithms. The diverse 
building heights and materials contribute to varying reflection, 
diffraction, and scattering effects, which are crucial for 
realistic simulation outcomes. 

The testbed configuration for the DeepMIMO O1 Drone 
scenario is meticulously designed to emulate a realistic urban 
environment, providing a challenging setting for evaluating 
beamforming algorithms. Operating at a frequency of 200 
GHz with a transmission power of 45 dBm, the testbed models 
realistic urban mobility patterns at mmWave frequencies, 
crucial for high-speed data transmission and low latency.  

Across four distinct drone User Grids (UG)—UG1, UG2, 
UG3, and UG4—a staggering total of nearly 270,000 drones 
span the skies. These grids, meticulously arranged and 
vertically aligned, present a mosaic of wireless connectivity 
challenges. Each grid boasts 124 rows of drones meticulously 
spaced at 81 centimeters apart and ranging in height from 40 
meters to 42.4 meters with each row having 544 drones. At an 
operating frequency of 200 GHz, the propagation model 
intricately accounts for reflections, allowing for a nuanced 
exploration of communication dynamics amidst the urban 
cacophony. 

The drones present in the grids also have velocities from -
8m/s to 8m/s and accelerations from �4�/�� to 4�/��  with 
the negative values representing the opposite direction from 
the positive one, chosen at random for each drone so that the 
predictive beamforming algorithm is able to showcase its 
superiority over the fixed angles one. 

 

 

Fig. 1. The top view of the ‘O1 Drone’ scenario 

 

Fig. 2. Bird-eye View of the ‘O1 Drone’ scenario 

As seen in Figure 1 which represents the top view of the 
environment and in Figure 2 which represents the bird-eye 
view, two bustling streets intersect, flanked by towering 
buildings whose heights vary and are prominently displayed. 
Along the 600-meter-long main street and the 440-meter-long 
cross street, structures of uniform and varying dimensions 
define the skyline. Among them, a Base Station (BS1) stands 
at a modest 6-meter height while a Flying Reconfigurable 
Intelligent Surface (FRIS) hovers at an elevated 80-meter 
altitude, strategically positioned approximately 101.86 meters 
away. The drone grid, illustrated in red, forms a dynamic and 
flexible infrastructure capable of adjusting its position and 
orientation to optimize signal transmission and reception. 
These configurations were chosen to provide a realistic and 
highly dense drone network, allowing for a nuanced 
exploration of communication dynamics and the effectiveness 
of beamforming algorithms. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Main Street Length 600 meters 

Cross Street Length 440 meters 

Base Station Height (BS1) 6 meters 

Drone Grids UG1, UG2, UG3, UG4 

Rows Per Grid 124 

Drones Per Row 544 

Total Number of Drones ~270,000 

Drone Altitude Range 40 - 42.4 meters 

Drone Spacing 81 centimeters 

Operating Frequency 200 GHz 

Transmission Power 45 dBm 

Drone Velocity Randi(-8,8) 

Drone Acceleration Randi(-4,4) 



 

The street setting and the lengths provide a realistic setting 
that includes both a main and a cross street, simulating typical 
urban layouts and the base station height represents a typical 
installation height for urban cellular base stations. As for the 
drones, the grids represent a dense and structured aerial 
network. The altitude range and spacing mimic real-world 
deployment of drone swarms in a controlled formation. These 
configurations were chosen to model a highly dense and 
organized drone network. Finally, the transmission power 
chosen is one that mimics the real-world power of a macro cell 
base station, and the operating frequency was selected because 
it falls within the mmWave band, known for its high 
bandwidth and low latency, which are crucial for high-speed 
data transmission. 

III. ALLOCATION ALGORITHMS 

The allocation algorithms in this study are designed to 
show how the beamforming process can be optimized for 
moving drones. The DeepMIMO O1 drone scenario will be 
used only with the BS and without the FRIS. The predictive 
algorithm that is proposed dynamically adjusts beamforming 
parameters (azimuth and elevation angles of the beams) to 
ensure robust and efficient communication links between 
drones and base stations, considering the high mobility and 
complex urban environment. The metrics that will be 
measured include the SNR of the drones, the battery 
consumption of the drones and the power consumption of both 
the drones and the base station. A higher SNR value indicates 
better signal quality, while efficient power usage is critical for 
base stations and drones when the resources (like the battery 
life of the drones) are limited. The findings are then compared 
to the ones that are achieved through having fixed parameters 
when using the beamforming technique. 

The beamforming algorithms employed in this scenario 
integrate both fixed and predictive beamforming strategies. 
The fixed beamforming approach maintains a constant beam 
direction based on the initial positions of the drones. In 
contrast, the predictive beamforming algorithm dynamically 
adjusts the beam directions in real-time, leveraging the 
predicted positions of the drones based on their current 
velocities and accelerations. 

Fixed beamforming is implemented by calculating the 
initial beam angles (azimuth and elevation) based on the 
positions of the drones relative to the base station. These 
angles remain constant throughout the simulation, resulting in 
a simplified but less adaptive beamforming strategy. The fixed 
beam angles are determined as follows: 

��	�
�ℎ_�	��� = ������2((�_����� � �_��)/(�_����� �
�_��))    (1) 

 

� �!��	���	��� = ������2(���, �#����((������ � ���)^2 +
(������ � ���)^2))  (2) 

Equations 1 and 2 calculate the azimuth angle by 
determining the horizontal angle between the BS and the 
initial position of the drone and the elevation angle by 
calculating the vertical angle between the base station and the 
initial position of the drone for the fixed beamforming 
strategy. The azimuth angle is the horizontal angle measured 
from the north direction to the line connecting the base station 

and the drone. The elevation angle accounts for the difference 
in height between the base station and the drone, as well as the 
horizontal distance between them. Both angles remains 
constant throughout the simulation, making it a simplified 
approach that does not adapt to the drone's movement [7][8]. 

Predictive beamforming enhances the communication link 
by dynamically adjusting the beam directions based on real-
time predictions of drone positions. This approach accounts 
for the drones' velocities and accelerations, ensuring the 
beams are always aligned with the moving targets. The 
predictive beam angles are calculated using the predicted 
positions of the drones: 

&��	�	��_'���(�) = &��	�	��_�
����� + (� ��	�� ⋅ � + 0.5 ⋅
���� ����	�� ⋅ �^2  (3) 
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� �!��	��_'��� = ������2(�_�� � �_'���, �#����((�_'��� �
�_��)^2 + (�_'��� � �_��)^2)  (5) 

Equation 3 predicts the future position of the drone at time 
based on its current position, velocity, and acceleration. By 
incorporating both the linear and quadratic terms of time, it 
accurately predicts the drone's trajectory, allowing the 
beamforming algorithm to preemptively adjust the beam 
direction. While equations 4 and 5 show the calculation of the 
predictive azimuth and elevation angles. They both use the 
predicted x and y coordinates of the drones so this dynamic 
adjustment can ensure that the beam is accurately aligned with 
the moving drone and that it accounts fast for changes in 
horizontal and vertical distance. This method reduces the 
latency and overhead associated with re-establishing lost 
connections due to beam misalignment, significantly 
improving the SNR and power efficiency. 

Linear regression played a critical role in our study for 
modeling the path loss experienced by drones as they moved 
through the urban environment. By analyzing the data from 
the DeepMIMO O1 drone scenario, we employed linear 
regression to establish a relationship between the distance of 
the drones from the base station and the corresponding path 
loss. The regression model provided a predictive framework 
that allowed us to calculate the expected path loss based on 
the drones' current positions. This approach enabled our 
beamforming algorithm to dynamically adjust the 
transmission power and beam direction, thereby optimizing 
the SNR and ensuring efficient communication. By 
continuously updating the path loss model with real-time data, 
the algorithm maintained high signal quality and minimized 
power consumption, demonstrating the effectiveness of linear 
regression in enhancing the reliability and performance of 
drone communication networks [9]. 

In the simulation code, linear regression is employed to 
derive the path loss model, which is then used to calculate the 
path loss for drones at new positions based on their previous 
positions.  

The linear regression model for path loss can be expressed 
as: 



&��ℎ -��� (&-) = &-0 + 10/ �010(�)                                         (6)  

Where PL0, γ are constants used and log(d) is a function 
of the distance between the base station and the drone. The 
constants PL0 and γ are derived from the linear regression 
model using the old position data of the drones and then 
applied so that the new pathloss values are found [10]. 

The proposed algorithm for beamforming optimization in 
moving drones leverages predictive analytics to dynamically 
adjust beamforming angles based on real-time drone 
movements. Initially, the algorithm loads the DeepMIMO 
dataset and initializes key parameters such as transmission 
power and antenna gains. It calculates the Euclidean distance 
between base stations and drones, derives the path loss model 
through linear regression and determines fixed beam angles 
based on initial drone positions. During the simulation, drone 
positions are updated in each time step considering their 
velocities and accelerations. Predictive beam angles are then 
calculated to optimize the SNR and reduce power 
consumption [11]. 

Algorithm – Dynamic Beamforming Angles Optimization 

Function initialize_pathloss_and_snr(dataset, distance_matrix, numUsers): 

    initialize pathloss and SNR structures 

    for each user (u): 

        if pathloss data is available for user: 
            store user number, bs index, distance, pathloss, SNR, and user 

position in structure 

    return pathloss and SNR structure 

 

function calculate_fixed_beam_angles(dronePositions, 

baseStationPosition): 

    calculate fixed azimuth and elevation angles for each drone based on initial 
positions 

    return fixedAzimuth, fixedElevation 

function simulate_beamforming(numPoints, dt, params, pathloss_and_snr): 

    initialize arrays for SNR, power consumption, and battery levels 

    calculate fixed beam angles based on initial positions 

    for each time step (t): 

        update drone positions based on velocities and accelerations 

        for each drone (i): 
            calculate predictive beam angles 

            calculate path loss using log-distance model 

            compute SNR for predictive and fixed beamforming 

            estimate power consumption based on SNR 

            update battery levels 

    return results (SNR, power consumption, battery levels) 

IV. PERFORMANCE EVALUATION 

To evaluate the effectiveness of the beamforming 
algorithms, several performance metrics are considered, 
including SNR, power consumption of the base station and the 
battery level/power consumption of the drones. The results 
from the simulation for 10 randomly selected drones are 
summarized in Tables II,III, while in Figure 3 and 4 the SNR 
values of two random drones (with the IDs of 47 and 167) are 
observed as these drones move through the grid. The blue line 
represents the SNR that is achieved when the drone is ‘hit’ 
with the predictive beamforming angle while the red one 
represents the SNR values with the fixed angle. In Figure 
number 3 its power consumption is also observed as it moves 
closer and then further from the base station it communicates 
with. 

 

 

 

 

TABLE II. SNR (DB) COMPARISON FOR SELECTED DRONES 

Drone ID SNR Fixed (dB) SNR Predictive (dB) 

253 20 45 

167 18 40 

184 25 50 

286 10 20 

217 30 50 

47 22 35 

359 15 30 

399 12 20 

82 20 30 

65 25 40 

 

TABLE III. BASE STATION AND DRONES POWER CONSUMPTIONS IN 

WATTS 

Drone 

ID 
Power 

Consumption 

BS Fixed (W) 

Power 

Consumption 

BS Predictive 

(W) 

Power 

Consumption 

Drone Fixed 

(W) 

Power 

Consumption 

Drone 

Predictive 

(W) 

253 350 300 15 10 

167 320 310 11 10 

184 302 300 10 8 

286 350 320 12 11 

217 300 290 10 8 

47 306 305 10 9 

359 320 300 10 8 

399 500 490 15 12 

82 310 300 10 8 

65 305 295 10 8 

 

Table II shows the SNR achieved by these 10 randomly 
chosen drones when the beamforming was at fixed angles 
(azimuth and elevation) and the peak SNR achieved by them 
when the algorithm used position prediction to optimize the 
angles. 

Table III shows the power consumption of the base station 
when using beamforming on each one of the drones, again 
with a fixed angle at first and then with the dynamic 
optimization of the angle. 

 

 

Fig. 3. SNR Result Comparison Of The Two Algorithms For Drone 47 



 

Fig. 4. SNR Result Comparison Of The Two Algorithms For Drone 167 

 

Fig. 5. Power Consumption Of The Base Station During Communication 
With The Drone 47 

 

Fig. 6. Power Consumption Of The Base Station During Communication 

With Drone 167 

Figure 3 illustrates how the predictive beamforming 
algorithm dynamically adjusts the beam direction based on 
real-time predictions of the drone's position, leading to a 
significantly higher and more stable SNR. This improvement 

demonstrates the effectiveness of predictive beamforming in 
maintaining optimal signal quality by continually aligning the 
beam with the moving drone, thus reducing signal degradation 
and improving communication. 

The graph in Figure 4 compares the SNR over the 100-
second timeframe for drone number 167 which represents a 
different case than the one of drone 47. The SNR shows a 
gradual improvement over time, peaking around 50 dB. 
However, there is a sharp dip around the 90-second mark, 
where the SNR drops significantly, indicating a moment of 
poor signal quality. This dip corresponds to the period of LOS 
loss. Despite the dip, the SNR starts to recover quickly, 
demonstrating the effectiveness of the predictive algorithm in 
mitigating the impact of LOS loss. The overall trend in SNR 
shows the system's resilience and its ability to adapt and 
recover from signal disruptions, maintaining communication 
quality as much as possible. 

Figure 5 also shows how predictive beamforming results 
in lower power consumption compared to fixed beamforming, 
particularly as the drone moves. This reduction is due to the 
algorithm's ability to preemptively adjust the beam direction, 
ensuring efficient signal transmission and reducing the need 
for excessive power to maintain the link and this efficiency is 
crucial for optimizing the energy usage of both the base station 
and the drone. 

In Figure 6 similar to the drone in Figure 4, the base 
station's power consumption is relatively stable at around 300 
watts for most of the period. However, a dramatic spike occurs 
near the 90-second mark, with power consumption surging to 
approximately 325 watts. This spike indicates the base 
station's response to the drone's loss of LOS, likely ramping 
up its power output to re-establish a stable connection with the 
drone. The increased power consumption at the base station 
highlights the collaborative effort between the drone and the 
base station to maintain communication despite the disruption. 

The simulation results demonstrate that predictive 
beamforming significantly outperforms fixed beamforming in 
terms of maintaining higher SNR levels and reducing power 
consumption. This improvement is attributed to the 
algorithm's ability to anticipate the movements of drones and 
adjust beam directions preemptively. The dynamic nature of 
predictive beamforming ensures that the communication links 
are consistently optimized, reducing the likelihood of signal 
degradation due to misaligned beams. 

 

Fig. 7. Power Consumption Of Drone 47 While Communicating With The 
Base Station 



 

Fig. 8. Power Consumption Of Drone 167 While Communicating With The 
Base Station 

The battery level/power consumption analysis in Figure 7, 
indicates that while the differences between fixed and 
predictive beamforming are minimal, the slight improvements 
in power efficiency can contribute to longer operational times 
for the drones. This is particularly critical in scenarios where 
drones are required to operate for extended periods without 
frequent recharging. And again, in Figure 8 or the majority of 
the duration, the power consumption remains steady at 
approximately 10.1 watts and there is a notable spike in power 
consumption around the 90-second mark, again because of the 
LOS loss. 

V. CONCLUSION AND FUTURE WORK 

The integration of advanced beamforming techniques with 
5G networks represents a pivotal step towards enhancing the 
operational capabilities of drones, particularly in urban 
environments. Our study introduces a beamforming 
optimization algorithm designed to address the rapid mobility 
and unpredictable trajectory changes characteristic of drones. 
By leveraging the DeepMIMO O1 drone scenario, we have 
developed an adaptive beamforming algorithm that optimizes 
signal quality and stability while reducing latency and power 
consumption. 

The results of our extensive simulations demonstrate the 
superiority of our predictive beamforming algorithm over 
traditional fixed approaches. The ability to dynamically adjust 
beam directions based on real-time predictions of drone 
positions ensures high-quality communication links and 
minimizes the likelihood of signal degradation. This 
advancement is critical for the reliable and efficient operation 
of drones in urban settings, where maintaining continuous and 
robust communication is paramount. 

Moreover, the slight improvements in power efficiency 
observed in our simulations can significantly contribute to 
longer operational times for drones, which is particularly 
critical in scenarios requiring extended operations without 
frequent recharging. The ability to maintain high-quality 
communication with lower power consumption also 
underscores the practical benefits of our predictive 
beamforming algorithm in real-world applications. 

Our research lays the groundwork for future advancements 
in drone-based communication networks, highlighting the 
potential for further exploration into predictive analytics to 
enhance beamforming techniques. Additionally, expanding 
the scope of our simulations to include diverse environmental 
conditions and more complex mobility patterns will provide 
deeper insights into the practical applications of our algorithm. 

In conclusion, our study not only advances the 
understanding of mmWave beamforming dynamics in aerial 
scenarios but also establishes a robust framework for the 
development of future drone-based communication networks. 
The innovative approach and significant improvements over 
traditional methods demonstrated by our algorithm pave the 
way for more reliable, efficient, and resilient drone 
communication systems in the era of 5G and beyond. 
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