
Enhancing simulation environments with TRAFIL

Christos Bouras
1,2

, Savvas Charalambides
2
, Michalis Drakoulelis

2
, Georgios

Kioumourtzis
3
 and Kostas Stamos

1,2

1
Computer Technology Institute and Press, N. Kazantzaki Str, University Campus 26504 Rio Greece

2
Computer Engineering and Informatics Department, University of Patras

3
Center for Security Studies, P.Kanellopoulou 4, T.K 10177, Athens, Greece

{bouras, stamos}@cti.gr, {charalampi, drakouleli}@ceid.upatras.gr, g.kioumourtzis@kemea-research.gr

ABSTRACT

This chapter presents TRAFIL, a comprehensive tool for enhancing execution of simulations. It

provides an overview of the tool, its architecture and its functionalities. It explains how TRAFIL en-

hances the entire simulation procedure including graphical setup of simulation scenarios, automated

execution of simulations, flexible handling and storage of simulation trace files and presentation of

plots based on processing of simulation results. It presents the concept of metafiles that provides

TRAFIL with the flexibility to handle heterogeneous simulation environments. The chapter also

compares TRAFIL performance with other similar tools and finds that it offers significantly im-

proved performance. It therefore concludes that TRAFIL offers both a rich set of simulation en-

hancement functionalities and top performance.

1. INTRODUCTION

This chapter presents TRAFIL (TRAce FILe [1]), a comprehensive tool for enhancing execution

of simulations. It wraps the entire simulation procedure from scenario setup to results analysis, in-

cluding graphical setup of simulation scenarios, automated execution of simulations, flexible han-

dling and storage of simulation trace files and presentation of plots based on processing of simulation

results. TRAFIL is based on the NS-2 (Network Simulator), but is built on an extensible architecture

that allows any NS-2 additional plug-in to be configured and supported, and can even be extended to

process trace files from other simulators.

The chapter focuses on TRAFIL architecture and features and intends to serve both as an intro-

duction and presentation of the tool, and also as a general discussion of processing techniques for

simulation results, by detailing the reasoning for the choices made in the tool architecture. It also in-

troduces the design considerations that enable the tool to be extensible, which may be useful for

building flexible and usable tools around existing environments.

TRAFIL aims to make the execution of a great number of network simulations quicker, and the

extraction of results from a large amount of data more flexible and productive. It offers the possibil-

ity to design, create, execute and review NS-2 simulation scenarios, and also offers post-simulation

trace analysis functionalities. It is therefore a complete wrapper around the NS-2 simulator, allowing

the user to perform all steps from pre-simulation design to actual simulation execution in an automat-

ed way and fast and convenient post-simulation analysis of potentially large amount of data.

In order to accomplish the post-simulation tasks, TRAFIL presents a novel way of interpreting,

parsing, reading and eventually using NS-2 trace files. It introduces the notion of “metafiles” and

“sub metafiles” throughout the procedures of trace file recognition and parsing, making the overall

analysis operation substantially efficient and faster than alternative approaches. Metafiles and sub

metafiles are used to encode NS-2 trace file structures enabling a more abstract approach to the trace

file processing operation. Furthermore, TRAFIL facilitates the overall trace file analysis task by of-

fering the opportunity to store each trace file as well as every Quality of Service (QoS) measurement

produced for each trace file. Following the trace file recognition and processing operations, the in-

formation contained in a trace file is presented through a Graphical User Interface (GUI) offered by

TRAFIL along with a variety of data, metrics and statistics related to simulation results. Finally, the

tool offers the opportunity to execute custom Structured Query Language (SQL) queries to the local

database and to completely automate the simulation procedure by enabling the user to execute NS-2

scripts as well as perform a simulation of a video transmission using the Evalvid-RA framework.

The rest of this chapter is structured as follows: Section 2 presents related work for other similar

network simulation enhancement tools. Section 3 gives an overview of TRAFIL and section 4 focus-

es on the metafiles concept. Section 5 presents in detail the graphical simulation setup capabilities of

the tool, section 6 its trace file analysis functionalities, section 7 its simulation execution wrapper and

section 8 the way that TRAFIL can present simulation plots and results, as well as its performance

compared to other similar tools. Section 9 summarizes our conclusions and section 10 closes the

chapter with our future work plans.

2. RELATED WORK

Similar work [2] and tools have been developed that produce statistics of a simulated network’s

behaviour. Some of these projects ([3], [4]) have integrated NS-2 unlike TRAFIL which uses NS-2

trace files to produce the requested statistics. Also there are tools like JTrana, Trace Graph and NS-2

Trace Analyzer which offer the opportunity to analyze NS-2 trace files by producing numerous statis-

tics, measurements and charts.

Trace Graph ([5], [6]) is an NS-2 trace file analysis tool. This tool provides many options for

analysis, including a variety of charts and statistical reports. It is implemented in MATLAB 6.0 [7]

and can be compiled to run without MATLAB. This tool also gives the user the ability to extract

from a given NS-2 trace file useful statistics through a graphical user interface. The kind of statistics

that can be obtained include node statistics, network statistics and QoS metrics. It also produces 2D

and 3D graphs for measurements like cumulative sums, throughput, throughput vs. delay, jitter,

packet ID’s and other common statistics. Finally, this tool supports the following NS-2 trace file

formats: old wireless, new wireless, wired.

JTrana [8] is a Java based NS-2 wireless trace analyzer. It can be used to analyse the NS-2 wire-

less simulation trace files through a GUI. Features of JTrana include production of overall network

information and plotting of numerous charts regarding that information. JTrana supports both wired

and wireless trace files and uses a MySQL database to store the trace file that is subject to analysis at

a given time.

NS-2 Trace Analyzer ([9], [10]) is a command line tool written in C/C++ and is designed for use

in all OS platforms and Cygwin. As the previous analysis tools, NS-2 Trace Analyzer can be used to

obtain common network statistics using the trace file from a simulation. This tool does not offer the

opportunity to create charts regarding the statistics that the user retrieves about a simulation.

The aforementioned tools provide useful information regarding only a specific simulation sce-

nario and therefore all the metrics and results refer to only one trace file. Furthermore, these tools do

not provide the user with the opportunity to store each trace file he has analyzed locally, for instance

in a database, so that he can reuse it without having to reopen it. In order to extract information re-

garding another simulation the user has to load another trace file. This is a rather slow task and it can

be acceptable for small sized trace files but when it comes to simulations that produce large trace

files this process can be considerably time consuming. Also, in order to alter the contents of a trace

file and compare the results with a previous analysis a user has to reload the trace file every time.

Adding to this is the fact that the results of the analysis that a trace file is subjected are only saved to

text files. It is up to the user to keep them organized and safe so that he can be able to reuse them.

In terms of performance when it comes to loading a trace file the earlier mentioned tools behave

well for small sized trace files. Although, when it comes to serious simulations that produce trace

files in the orders of MB's the performance deteriorates significantly.

Finally, there is J-Sim ([11], [12]) a Java based open source, component-based simulation envi-

ronment based on the idea of the Autonomous Component Architecture (ACA). As a result, compo-

nents are one of the basic entities of J-Sim and they can be individually designed, implemented and

tested. Also the way components interact and act in regard to the data transfers is specified at system

design time. J-Sim as is the case with TRAFIL is platform independent due to the programming lan-

guage it is implemented in. In addition, J-Sim can be used in conjunction with scripting languages

like Tcl or Python. The scripting languages are used to combine and hold together in one sense the

different Java classes as it is done with NS-2 C++ classes and OTcl. In order for a simulation to be

created the basic package is the drcl.inet which contains the base classes defined in the abstract net-

work model, as well as a set of utility functions and classes that facilitate creation of simulation sce-

narios.

Furthermore, except of the TCL/Java scripting that a user can incorporate to create and orches-

trate a simulation, J-Sim can be used in combination with gEditor. gEditor is a graphical user inter-

face that serves as a front for J-Sim enabling the user to create the simulation plane without using

TCL/Java, gEditor takes up the responsibility to interpret the parameters and objects that have been

requested and create the corresponding objects. It passes the appropriate components to J-Sim via its

console and runs the whole simulation on behalf of the user. This is a very useful feature that gives

the ability to rapidly and conveniently create and execute a simulation.

As it will be shown in the following sections TRAFIL aims to offer a similar feature but is tar-

geted though towards NS-2. TRAFIL enables the user to input a script that describes the simulation

plane through a graphical user interface. The description and parameters are used to produce trace

files which are eventually subjected to analysis akin to the procedures of the aforementioned post

simulation analysis tools. In a few words, the final objective is to succeed in offering a tool that can

be used to perform a complete simulation and its analysis in a flexible, effortless and robust manner.

3. TRAFIL OVERVIEW

TRAFIL is a tool that can be used to automate the complete network simulation procedure.

Namely, it offers the ability to graphically design and execute a network simulation as well as ana-

lyze its results.

TRAFIL supports network simulations by utilizing NS-2 and it comes with out-of-the-box sup-

port for designing NS-2 simulation scenarios, execution of these scenarios by invoking NS-2 and

analysis of the produced trace files.

One of TRAFIL’s most important features is that it disengages the user of the effort to learn NS-

2’s specifics in order to design a simulation. Although it offers the ability to execute an NS-2 OTcl

simulation script (OTcl is the scripting language used for writing NS-2 simulations scripts), TRAFIL

enables users to design the simulation plane using a graphical user interface (GUI). Via this GUI, us-

ers can select all network components that make up a simulation and place them inside the simulation

plane.

Moreover, in terms of post-simulation analysis, TRAFIL is not strictly bound to NS-2 trace files.

Although TRAFIL supports every different trace file produced by NS-2 it can also be extended to

support a variety of trace files. This is accomplished by creating custom metafiles (presented in detail

in the next chapter) that describe a new trace file’s structure. Metafiles were introduced in the post-

simulation analysis domain by TRAFIL in order to offer a more abstract approach to processing

simulations’ results. They describe a trace file’s structure and are used by TRAFIL to mine specific

information required for producing charts and measurements.

Finally, TRAFIL executes the simulation scenario by invoking NS-2. However, TRAFIL also of-

fers the ability to simulate video transmission scenarios by utilizing the Evalvid-RA framework [13]

[14]. Evalvid-RA is an added module to NS-2 which is based on the generation of a trace file (re-

garding a video file) and can support its rate-adaptive multimedia transfer. In order to use Evalvid-

RA along with NS-2, specific pre-processing and post-processing steps are required before and after

the NS-2 simulation respectively, that involve the usage of certain tools for video processing.

TRAFIL automates the video transmission simulation procedure by incorporating Evalvid-RA’s util-

ity tools. Therefore, the user is able to define all the parameters as he would have done when execut-

ing a normal Evalvid-RA simulation procedure, and specify the simulation script he wants to test.

TRAFIL carries out the simulation procedure returning its results in a user friendly manner.

This section gave a brief introduction to TRAFIL’s main operations. The next section presents

TRAFIL’s actual architecture and discusses each component’s role in performing TRAFIL’s main

operations.

3.1 TRAFIL Architecture

Figure 1 TRAFIL Architecture

TRAFIL’s architecture follows a three tier model as can be seen in Figure 1 and the three basic

tiers are: Presentation layer, Business layer and Database Access layer.

The presentation layer introduces the user to TRAFIL’s functionality and is depicted in Figure 2.

Via the presentation layer the user can invoke any utility offered by TRAFIL given that there is a

trace file loaded. A trace file can be loaded either by opening a new trace file from the file system or

by loading a pre-existing one from TRAFIL’s database. As shown in Figure 2 no trace file is cur-

rently selected and thus no data are shown.

Figure 2 TRAFIL Presentation Layer

Every user request is carried out in the business layer and the results are returned and depicted at

the presentation layer. As shown in Figure 2 TRAFIL can produce Metrics and Charts (at the appro-

priate tabs) based on the trace file information as well as general simulation information that summa-

rizes the events that took place in the specific simulation scenario. The most important part of the

general simulation information is also depicted in TRAFIL’s Trace File Info tab along with the se-

lected trace file’s first 50,000 lines. Moreover, via the SQL Queries tab users can issue queries di-

rectly to TRAFIL’s database if they require more specific measurements that are not currently sup-

ported by TRAFIL. Finally, TRAFIL supports the novel feature of graphically designing simulation

scenarios via the TCL tab and their execution via the Execute NS-2 Simulation menu item. Finally,

another unique feature is the ability to execute video transmission simulations using Evalvid-RA in

conjunction with NS-2 via the Evalvid-RA Simulation tab.

The aforementioned TRAFIL features are handled by distinct business layer modules as shown in

Figure 1. The core module is the Main Processing Module and is responsible for the identification of

the selected trace file’s type. Namely, it determines whether it is a Normal, Old Wireless, New Wire-

less or a user specified trace file. Moreover, it is responsible for parsing, processing and storing the

trace file’s data to TRAFIL’s database if it is a new trace file or load its data from the database if it is

a pre-existing one. The Metafile and Sub-Metafile modules, as their name suggests, are responsible

for providing an interface to other modules that need to access metafile data for their operations i.e.

during the trace file parsing and identification procedures as we mentioned before. The Metrics mod-

ule is responsible for calculating the following QoS measurements: Packet Delivery Rate, Through-

put, Minimum End to End Delay, Maximum End to End Delay, Average End to End Delay, Delay

Jitter, Average Delay Jitter, Minimum Delay Jitter, Maximum Delay Jitter, Packet Loss Ratio. The

Charts Module plots specific charts that refer to either specific simulation Nodes or the communica-

tion between two Nodes. The SQL Query module is responsible for validating and executing the user

issued SQL queries. Finally, the Simulation and Simulation Plane Design Modules support

TRAFIL’s two novel features. The latter is responsible for the operations required for producing a

valid NS-2 simulation script based on the graphical design of the simulation plane. The former is re-

sponsible for handling either the execution of a simple NS-2 script that is specified by the user or a

video transmission simulation. In the video simulation case it is responsible for coordinating the exe-

cution of a series of steps that involve using external programs that process the input video based on

user specified parameters.

The Database access layer interacts solely with the Business layer and is responsible for storing

data to the local database or returning the data requested by the Business Layer.

Finally, as Figure 1 depicts TRAFIL uses a MySQL database to store each trace file’s data. The

database holds each trace file’s data in a distinct table and its design is optimized for faster data trans-

fer and retrieval. As shown in [15] TRAFIL manages to outperform similar tools in terms of trace file

processing and storage speeds. Moreover, TRAFIL has a metafile and sub metafile repository that

contains the actual metafiles and their sub metafiles. Each metafile's sub metafiles are stored in a

unique folder named after the metafile they belong to. This way the loading of the sub metafiles for a

specific metafile becomes simpler. Thus, in the case that a user wants to introduce his own metafile

this convention should be followed in order for TRAFIL to support it. Namely, the metafile should be

added to the repository and its sub metafiles (if any), to unique folder named after the metafile.

4. METAFILES

Metafiles have been used in various applications to describe the structure or the content of another

file. The most useful aspect of metafiles is the fact that they render the applications that use them

more generic or abstract as they become independent of the content or the format of the input. It is

evident that the use of metafiles is indeed popular and causes applications to be more robust and

adaptable, but all trace file analysis tools until now haven't made any use of them. On the contrary

they encode the structure of a trace file internally. TRAFIL on the other hand makes use of metafiles

during the trace file parsing, processing, analysis and storage procedures.

In order to identify and analyze a trace file there must be a way to know its structure and to expect

in some degree the input. That is why TRAFIL uses metafiles. Metafiles encode the structure of each

different trace format produced by NS-2, they contain information about the number of fields, num-

ber of columns, the names of each column and what data type each column is. In other words they

contain all the necessary information to describe the data of a trace file.

Using each metafile TRAFIL is no longer dependant of the structure or the data types of an input.

If there is a metafile that is constructed correctly so that it can describe a specific trace file format the

tool will be able to process it. TRAFIL is not even dependant on the number of metafiles, if there is

not a metafile present which can be matched to an input TRAFIL will acknowledge it and report the

issue so that the user will construct the appropriate metafile.

The structure of a metafile is depicted in Figure 3. As Figure 3 shows there are a number of dif-

ferent fields contained in a specific metafile. The metafile in the figure below is the one that encodes

the structure of a Normal trace file and it is utilized when TRAFIL needs to process a trace file of

that format. The first three fields are mandatory for every metafile and are extremely important in the

trace file recognition phase. The NumberOfColumns element is used to demonstrate the actual num-

ber of elements that are present in each line read from a trace file of Normal trace format and are

separated by white spaces.

NumberOfFields 14

NumberOfColumns 12
UniqueCounter 1

-name event -type char(1) -index 0 -unique +

-name time -type double -index 1
-name SourceNode -type int -index 2

-name DestinationNode -type int -index 3

-name PacketName -type varchar(20) -index 4
-name PacketSize -type int -index 5

-name Flags -type varchar(7) -index 6

-name DestinationAddress -type int -index 9 -delimiter .
-name FlowID -type int -index 7

-name SourceAddress -type int -index 8 -delimiter .
-name SourcePort -type int -index 8

-name DestinationPort -type int -index 9

-name SequenceNumber -type int -index 10
-name UniquePacketID -type int -index 11

-TimeRelated -column time

-NodeRelated -column SourceNode -column DestinationNode
-PacketSize -column PacketSize

-SendingNodes -column SourceNode -column SourceAddress

-GeneratedPackets -column SourceNode -column SourceAddress -column UniquePacketID
-ReceivedPackets -column DestinationNode -column DestinationAddress -column UniquePacketID

-ForwardedPackets -column SourceNode -column SourceAddress -column DestinationAddress -column UniquePacketID

-SentPackets -column SourceNode -column SourceAddress -column UniquePacketID
-DroppedPackets -column UniquePacketID

Figure 3 Metafile Structure

The NumberOfFields parameter refers to the number of fields that must be extracted from the data

that are read from each line based on the NS-2 manual. In order to extract these data fields some

modifications must take place on some of the elements contained in each line. These modifications

are described by the metafile using special flags as will be explained. Furthermore, the NumberOf-

Fields is used to ensure that the metafile's structure is correct. The value defined by the NumberOf-

Fields parameter must be the same as the number of lines in the metafile that start with the -name

flag since these lines are the ones who describe the trace file's structure. These lines contain informa-

tion about the actual elements of a trace file of a specific format as described by the NS-2 manual and

if their number is not equal to the NumberOfFields the structure of the metafile is considered corrupt

and the metafile cannot be used.

The last element of the first three is the UniqueCounter flag, this flag is used to define the number

of unique characters that must be matched in each line read from the trace file during the trace file

recognition process. If a trace file's lines contain the number of unique characters that a metafile de-

fines, then the trace file is matched with it and TRAFIL can start the actual trace file processing. The

UniqueCounter though only defines the number of unique characters that must be matched; the actual

unique characters are marked by the -unique flag as it shown in Figure 3.

Following the first three parameters are the fields which describe the columns of the trace file. For

a normal trace file these lines are shown in the figure above. There are 14 different columns and the -

name flag is used to define the name of the column, the -type flag is used to define the data type of

this column and the -index flag is used to show its index inside the actual trace file. These three fields

are mandatory for every line of the metafile that describes a trace file's column because these fields

are also used by TRAFIL to create the table that will contain the trace file's data in the database. For

this reason the data types that will be defined using the -type flag must conform to MySQL's sup-

ported data type syntax.

Besides these three flags there are also some other flags that serve specific purposes like declaring

a unique sequence of characters that must be present in this column. For this purpose the -unique flag

is used, this flag defines a character sequence that must be matched for all elements of a column for

which it is set. Also there must be as many -unique flags as are defined using the UniqueCounter pa-

rameter. This way if all the unique character sequences are found they can be verified using the

UniqueCounter parameter and the match can be established.

Another utility flag is the -delimiter flag, it is employed to signal a sequence of characters that

will be used to divide a complex element into two other components. This is the case that was men-

tioned earlier in which the number of columns is different than the number of fields that must be ex-

tracted from the line. In these cases some elements are connected by a character sequence which is

signalled by the -delimiter flag and that way TRAFIL can separate them.

Finally there are two other flags the -startsWith and -endsWith. These two as their name suggests

are used to define some character sequences that elements of any column for which they are set either

start or end with. These character sequences are not useful and must be removed in order to retrieve

the useful information, using these flags TRAFIL can remove these characters.

The remaining lines are the “metric fields”. These fields are used to denote the standard metrics

the tool produces for each trace file. Each flag states the metric itself and is followed by the columns

that will be used to produce that specific metric. The column names are recognized by the –column

flag that precedes them. In each metafile all these metric flags must always be present, if they are not,

the metafile is considered to be corrupt and the metric production phase cannot be completed. It is

obvious that for different kinds of trace files the number and type of columns used to extract each

metric might be different.

4.2 Sub-Metafiles

As mentioned in the previous sub section in order to process each trace file TRAFIL introduces

the idea of using metafiles to describe the format of the input. It is often though necessary for a meta-

file to have some other utility files that can be used in situations where a metafile alone is not ade-

quate. In the trace file processing procedure these situations occur when a trace file may include an

arbitrary number of different header fields in each line and therefore have a lot of alternative forms.

The structure of a trace file depends greatly on the simulation scenario. Even in its own content a

trace file may contain lines that are different with each other in the number of elements they contain.

This is usually the case when the scenario involves traffic with different packet types travelling along

the simulated network and using different routing protocols.

That is why TRAFIL uses a number of sub metafiles to complement the use of metafiles. Each

trace file can log a number of different header fields, so a very straightforward way to handle all the

different patterns is also to enable each metafile to have a number of different sub metafiles.

Actually for every one of the three different trace file formats that NS-2 produces TRAFIL has a

different metafile and for each metafile there is a number of sub metafiles that is the same as the

number of different header fields a trace file of a specific format can contain.

The structure of the sub metafiles which are used along with the metafile that encodes the struc-

ture of a Normal trace file is shown below:

NumberOfFields 4
NumberOfColumns 4

UniqueCounter 4

-name SourceLatitude -type double -index 1 -unique .
-name SourceLongitude -type double -index 2 -unique .

-name DestinationLatitude -type double -index 3 -unique .
-name DestinationLongtitude -type double -index 4 -unique .

Figure 4 Satellite Sub Metafile

NumberOfFields 4

NumberOfColumns 4
UniqueCounter 1

-name AckNumber -type int -index 1

-name FlagsTCP -type varchar(7) -index 2 -unique 0x
-name HeaderLength -type int -index 3

-name SocketAddressLength -type int -index 4

Figure 5 TCP Sub Metafile

Figure 4 depicts the structure of the sub metafile used to represent a satellite packet's header in-

formation which is logged in a Normal trace file. Figure 5 shows the structure of a sub metafile that

represents a TCP packet's header information. The structure follows exactly the same conventions as

were described earlier for a metafile. The same flags are used as in a metafile and the same first 3

mandatory fields must always be present as in a metafile. The sub metafiles shown above are only

used after the trace file is matched with the Normal metafile. They are not used in the trace file rec-

ognition process; they are used after this process to enable the correct transfer of the trace file to the

local database. They are also used when a user wishes to load a trace file from the database that was

matched with the normal metafile.

5. GRAPHICAL SIMULATION SCENARIO SETUP

TRAFIL has taken successive steps towards automating the NS-2 simulation experience. An ad-

vanced step of that process was simplifying and automating most of the scenario creation process.

All simulations in NS-2 are presented in an OTcl script that describes the topology and the simu-

lation parameters. This has to be prepared beforehand and requires knowledge of OTcl language (or

even C++) from the user, while also being familiar to typical and advanced NS-2 objects and their

parameters. Therefore, we introduced a new functionality to TRAFIL that enables the user to design

the simulation using a graphical interface.

This interface is designed in such way that it is easy to learn and allows for quick scenario setup.

Through the GUI users can pick network components and place them inside the simulation topology

panel. These components can be typical network objects such as wired or wireless nodes and links

that are formed between them. Each of them can be selected from a palette of components next to the

simulation topology panel, and after its placement it can be customized via a pop-up menu that con-

tains any available parameters for that object. All these network components are identical to the ob-

jects supported by NS-2, therefore after the user has finished designing the topology, it is translated

to an OTcl script which can be executed by NS-2.

This new module is not separate from the rest of TRAFIL functions. Rather, it is integrated in a

way that it synergizes with the rest functionalities. After describing the topology, users can generate

the OTcl script and, if NS-2 is available in the current environment, proceed to the simulation execu-

tion and post-simulation analysis using TRAFIL tools only. This gives the whole process better

transparency, since it omits the underlying procedures, jumping from scenario design to execution,

and ultimately to results analysis. Given TRAFIL’s performance in fast trace file analysis, this inte-

gration also allows for quick changes in the scenario, which in a sense make it easier for users to fol-

low a trial-and-error method until they reach the desired scenario results.

5.1 Simulation Design Plane

The simulation design feature enables the user to describe a network in a way that is closer to de-

signing rather than programming. Figure 6 describes its architecture which is organized in 4 layers.

Figure 6 Simulation plane architecture

The first (and most important) layer is the design layer. A key part of this is the simulation topol-

ogy panel or simulation design plane; a design environment similar in terms of layout to most mod-

ern design programs. It consists of the component palette, the design panel and several pop-up

menus.

The palette includes all of the input options for the design panel, such as node types, links, lists of

connected objects and a few buttons that are responsible for other scenario parameters. The rest of

the simulation design plane is filled with the design panel, where the network topology schematic

representation will be displayed. Depending on the network object type selected from the palette, an

according shape will be painted there, resembling a network component. That shape also provides

access to the menu related to its individual component.

All menus appear in separate windows, and allow for node customization, connecting existing

wired nodes using links or specifying parameters necessary for the scenario that are not part of the

visual design. These parameters include simulation scheduling, output file names etc. Users can keep

the menu windows open while still accessing the design panel to edit or add more features to the

network.

The next layer is the script layer. It transforms the network topology as shown, and its underlying

data, and creates a simulation script file appropriate for NS-2, using the OTcl language’s rules. The

script file generation follows a specific format native to TRAFIL, which allows for a network layout

reconstruction in the design panel, for later use. This allows users to save and load again later their

work, or manipulate scripts that were previously created by TRAFIL without having to rearrange

components in the topology layout. Nonetheless, the specific format does not mean a specific file

type too. The output files are still normal tcl file types.

The next layer is the execution layer. This is an optional layer; depending on the user’s opera-

tional system as well as whether NS-2 is installed, the user can immediately test the new scenario.

The script generated in the previous layer is forwarded to NS-2, using the required syntax to perform

the simulation. After the simulation is complete, the execution layer retrieves the output log as well

as the files produced by NS-2 and sends them to the next layer. The resulting trace file is automati-

cally parsed and saved in TRAFIL’s database, producing metrics along the way.

The last layer is the feedback layer. Here TRAFIL displays a menu with the option to display the

data or the output log produced by the simulation. Moreover, there are options to rerun the simula-

tion, or return to the design layer and continue where the user left off.

5.2 Node Creation and Configuration

One of the most important components of a Network Simulation is a node. A node can represent a

variety of entities but its importance lies in the fact that it is the means of introducing data traffic in a

network.

NS-2 supports both wired and wireless nodes, each with its own unique parameters. Therefore,

TRAFIL enables users to create any of these node types using the graphical user interface. The node

is selected from a palette and can be either wired or wireless. The selected node can be placed and

dragged anyway inside the design panel.

TRAFIL’s new module gives users the opportunity to create a whole network pattern of nodes,

and assign them any available options, using a pop-up menu designed for easy node parameter con-

figuration. In order to simplify the process, we avoided manual entry of values as much as possible,

using drop-down menus and pre-set values. This way the user can maintain control of the topology

without having to deal with OTcl node, or even NS-2 documentation, to find out what his options are.

All NS-2 available node parameters can be edited and correspond to the ones that are set using OTcl.

The difference lies in the fact that the user is not obligated to have any previous knowledge of the ac-

tual commands to set them. In order to edit the parameters of a specific node the user can simply

double-click or right-click a node in the design panel, revealing the parameter edit pop-up window.

5.3 Agents - Traffic Generators/Applications

In the previous sub section we explained how to create and configure network nodes. Although

nodes and their proper setup are a major part of a simulation topology, they are not enough to power

up a scenario, since they need a way to send packets to each other. For this purpose each node has to

be associated with an agent, and possibly with a traffic source as well.

Figure 7 Connection between agent and traffic source in NS-2

Figure 7 illustrates how an agent and a traffic source are connected. NS-2 offers a variety of

agents (sending or receiving) as well as traffic sources. Traffic sources are divided in two major cate-

gories: traffic generators (like the one used in Figure 7) and already simulated applications. Traffic

sources can be attached to almost any type of agent. This is not the case though for simulated appli-

cations, which send their packets through a TCP transport agent only.

TRAFIL uses each node’s configuration menu to assign agents and traffic sources to that node.

Currently it provides support to all current NS-2 traffic sources, and the most common agents, which

are TCP, User Datagram Protocol (UDP) and Null. The support integration is designed in such way

so that when a user selects a type of agent for a protocol, TRAFIL shows the appropriate applica-

tions. Similarly, selecting an application shows you all of its specific NS-2 parameters.

5.4 Links

However, creating and configuring nodes alone is not always enough to define a topology. Some

simulation scenarios use wireless nodes, while others define wired networks. In the latter case, links

have to be defined between nodes. This can be done using topology panel, and all link details are

shown in a table window that displays existing links. Specific link parameters, such as bandwidth,

delay, and queue type are configured using this window. There is a variety of link types available in

NS-2 which are supported by TRAFIL.

In order to establish a link between two wired-type nodes a user has to select a new link from the

palette, and then click on the two nodes to be linked. The new link is a shown as a straight line be-

tween the nodes, and its parameters can then be edited in the window described above.

5.5. Simulation design example

Figure 8 depicts the Graphic User Interface of TRAFIL’s design module. In the example shown, 3

wired nodes (squares) are set up and linked together. There is also a wireless node present (circle).

Both links are listed in the open link window, showing their editable parameters.

Figure 8 TRAFIL simulation design

6. TRACE FILE ANALYSIS

This section describes one of TRAFIL’s core procedures and functionalities. Before any analysis

on the results of a simulation, a trace file is firstly classified in terms of type and properly processed

in order for its data to be retrieved and stored. Following these operations, users can then retrieve

measurements and plot charts based on the trace file data.

6.1 Identification, Processing and Storage

In order for a meaningful analysis of a trace file’s data to take place, the trace file in question has

to be classified. A trace file can be either one of NS-2’s supported formats (Normal, Old Wireless or

New Wireless) or a user specified trace file format. The identification of a trace file is essentially a

procedure of matching it with the appropriate metafile. In other words, TRAFIL identifies the meta-

file whose encoding describes the trace file’s structure. In the case that no such metafile exists, then

either the trace file structure is wrong or the metafile repository does not contain the appropriate

metafile and the user should create one.

Having identified a metafile that properly describes the trace file in question TRAFIL proceeds to

parse, process and finally store its data to the local database. Parsing and processing requires the use

of all sub-metafiles that belong to the correct metafile since a trace file contains a variety of lines de-

pending on the packet type or the events.

Figure 9 Trace file processing algorithm

Using the metafile and sub metafile data the trace file is processed line by line. Figure 9 presents

the pseudo code for the trace file processing operation which is one of the most important of

TRAFIL’s procedures since without properly and efficiently retrieving the data no further analysis

can be made.

As shown in Figure 9, each line’s number of elements is the first condition checked. That number

is firstly checked if it matches that of the fields of the metafile and if that condition holds then the

metafile is used to process the line in question. In addition to the number of elements criterion, an

additional check is made to establish that indeed the line is described by the metafile using some

“Unique Characters” that are defined in the metafile as it is also shown in Figure 9.

If the number of elements in a line is greater than the number specified by the metafile the sub

metafiles are used. TRAFIL attempts to identify a combination of sub metafiles that can be used to

process the additional fields. Thus, TRAFIL matches the additional fields with sub metafiles until no

fields are left that have not been processed. If there is a subset of additional fields that cannot be

matched to any sub metafile then the line is flagged as erroneous.

The identification and processing phase terminates when all the trace file lines have been proc-

essed. The next step is the data transfer to TRAFIL’s local database and their storage. A new table is

created and is named after the trace file. Its structure is based on the metafile that was used along

with all its sub metafiles.

6.2 Statistics Calculation

Having correctly processed and stored a trace file or loaded a pre-existing one, a variety of infor-

mation can then be retrieved. TRAFIL automatically calculates and presents the trace file’s general

simulation information without any user involvement. This information refers to the simulation as a

whole and also to each specific simulation node. However, the user should specify the node for

which he wants to view the general simulation information. More specific QoS metrics are calculated

when the user requests them since such metrics refer to the communication between two specific

nodes. The remainder of this sub section describes the exact general simulation information that can

be retrieved using TRAFIL.

6.2.1 General Simulation Information

The general simulation information considers the simulation as a whole and can be viewed via

TRAFIL’s Simulation Information tab. It includes information such as the simulation’s start time,

end time and overall duration time. General simulation information about the simulation’s nodes in-

cludes the Number of Nodes and Number of Sending Nodes. Moreover, the general simulation in-

formation includes communication information in terms of packets and bytes. More precisely, infor-

mation such as: Number of Sent Packets, Number of Received Packets, Number of Dropped Packets,

Number of Generated Packets and Number of Forwarded Packets. For each one of the aforemen-

tioned values there is a corresponding one calculated in bytes.

In the case of trace files that refer to wireless scenario simulations TRAFIL presents the following

additional information: Number of Generated Packets and Bytes as well as Number of Received

Packets and Bytes for each of the AGT (application layer), RTR (routing layer) and MAC (medium

access layer) trace levels that NS-2 supports. Thus, users who are interested only in the packets and

bytes regarding a specific communication layer can specify that layer and retrieve the information

they want.

6.2.2 Node Specific Information

TRAFIL can also calculate similar information to the General Simulation Information, but for

specific nodes again via the Simulation Information tab. Users can specify the node of interest and

TRAFIL will calculate the general information that is specific to that node. This kind of information

includes statistics such as the Number of Sent, Received, Dropped, Forwarded and Generated Pack-

ets. Similar to the General Simulation Information the same information is also shown in terms of

bytes for that node. Furthermore, for wireless scenario simulations TRAFIL provides additional met-

rics for the AGT, RTR and MAC trace levels as it does for the general simulation information men-

tioned in 6.2.1.

6.2.3 QoS Parameters

In addition to General Simulation Information, TRAFIL enables users to calculate more specific

metrics via the Metrics Tab. These are metrics that refer to the communication between simulation

nodes. Thus, users specify the node pair of interest and TRAFIL provides the metrics that were men-

tioned in section 3.1 (TRAFIL Architecture). We specify here that the calculation of the Delay Jitter

related measurements is based on the RFC 3550 [16] for RTP packets. Furthermore, if the trace file

refers to a wired simulation the user must select the layer for which the calculation will be conducted.

The options in this case are Link Layer or Physical Layer. If the simulation refers to a wireless sce-

nario then the user must select between the 3 trace levels: AGT, RTR and MAC. After all the appro-

priate parameters have been set, the measurements can then be calculated. If there is no communica-

tion between the specified nodes at the particular layer then all the metrics are set to zero.

6.3 Plotting Charts

Chart plotting takes place via TRAFIL’s Charts tab. TRAFIL supports the following charts:

Packet Delivery Rate in packets/sec, Throughput in bytes/sec, Delay Jitter and Packet Loss Ratio.

These charts can be drawn either for a node pair or for a single node. In addition, users should also

specify the sampling rate in seconds and the trace level. For wired simulations the appropriate levels

are Link Layer and Physical Layer and for wireless scenarios the appropriate trace levels are AGT,

MAC and AGT. If there is no communication in the specified layer then an empty chart is displayed.

6.4 User initiated SQL Queries

TRAFIL’s database stores each trace file in its own table. Each table’s structure is based on the

metafile that was used to process it. Thus, a table’s columns are as many as the metafile’s fields and

all its corresponding sub metafiles’ fields. Having each trace file stored in the database allows for

faster loading and on-demand processing. Although the General Simulation Information and QoS

metrics produced by TRAFIL cover the most common statistics, there is the possibility that a user

will be interested in a measurement that currently is not offered by TRAFIL. Therefore, TRAFIL al-

lows SQL queries directly to the database to alleviate this issue.

7. SIMULATION EXECUTION

Although TRAFIL was originally created as a post-simulation front-end framework, many pre-

simulation features have since been added. For all these features to work, a function that communi-

cates with NS-2 was created, allowing the user to execute any OTcl script using TRAFIL’s graphic

user interface. The results of such simulations are automatically imported in the local trace file data-

base, allowing direct and seamless access to the results. Of course, it is required that the operational

system natively supports NS-2 (i.e. unix systems).

There are several circumstances where TRAFIL uses this function, which are listed and explained

below.

7.1 Simulation design plane scenarios

Following the process described in section 5 (Graphical Simulation Scenario Setup), the user can

use the generated script file immediately for simulation. TRAFIL’s generated scripts use a special ex-

tra notation in the form of comments, so that a user can save and later load the work he has done.

They also have a standard structure, which consists of four parts: Script parameters (such as file

names etc), node list, link list (and their parameters), agent information, and the simulation schedule.

If the Tcl script file creation is successful, TRAFIL saves it in a folder dedicated for that purpose.

Then, the user is given the option to run it right away through TRAFIL’s innate NS-2 script execu-

tion function. The results will be directly imported in TRAFIL’s database. However, if the script

creation and execution was not successful, e.g. any parameters were missing or if the network layout

was incomplete, the output of NS-2 will be shown in a report window, informing the user about the

errors.

7.2 Simulation execution

After a script has been created, TRAFIL sends it to NS-2 and retrieves the outcome, displaying it

to the user accordingly. There is no direct interaction of the user with NS-2, since a successful simu-

lation with proper outcome will automatically be parsed by TRAFIL and stored in its local trace file

database.

Of course, it is possible that the user can input his own script file for simulation, bypassing the

simulation design stage. This can be done using the top menu bar, where the user specifies the script

file to be simulated, and starts the rest of the procedure right away, in a similar way to design plane

scenarios.

7.3 Video simulation scenarios

One of the most popular NS-2 add-ons is Evalvid-RA, which enables video stream simulation

across a network. Being an add-on, it also uses similar OTcl script files (adding a few extra parame-

ters, such as video input file), making the simulation result and metrics extraction fairly similar as

that of any other NS-2 simulation.

To that end, TRAFIL has also a special module that specializes in Evalvid-RA simulations and

their specific parameters. Due to the complexity that an Evalvid-RA script file might have, the user

has to input his own script file which describes the simulation topology and schedule. However,

TRAFIL significantly simplifies the process of simulating such a scenario, by taking over all pre and

post simulation stages, such as media file conversion and NS-2 simulation parameters.

Figure 10 TRAFIL Evalvid-RA module

Figure 10 shows the Evalvid-RA module of TRAFIL and the parameters described above. As

shown, the simulation procedure is split in two halves: the pre-simulation part (which includes the

simulation itself) and the post-simulation. In the first part, the user sets the parameters for FFmpeg

and MP4, as well as the video file and script path files. The input video file, which can be in any

video format (*.yuv, *.mov, *.mp4 etc.), is converted to MPEG-4 (*.m4v format) using FFmpeg, and

then gets prepared for simulation by the Evalvid MP4 tool. The preparation produces many different

possible frame traces, which will be used by NS-2.

The second part of the procedure takes over the reconstruction of the video file and the re-

encoding to a common video format file. The reconstruction is done using “et_ra”, a modified ver-

sion of the original evalvid “et.exe” tool, which reads the produced packet Tx and Rx trace files as

well as some dat files that contain information that assists in assembling the resulting MPEG-4 file

(in m4v format again). Afterwards, FFmpeg is used to decode it back to its original format (presuma-

bly *.yuv). Then, PSNR is used to compare the decoded YUV file [17]. Finally, a report window

shows the user the results of the simulation, as well as the produced files, which are typically stored

in a default folder.

8. PLOTS AND RESULTS

In this section we present a usage example of TRAFIL in which we open a new trace file and

show the information that the tool can extract. We present the calculation of the general simulation

information, general node information, QoS measurements between nodes and charts that can be ex-

tracted using TRAFIL. The scenario that was used to create the sample trace file involved 4 wireless

nodes of which 3 were stationary (nodes 0,1,2) and one mobile (node 3). The communication was be-

tween nodes 0-3 and 1-3 and the length of the simulation was 400 seconds. During this simulation

node 3 moved every 50 seconds either closer or away from nodes 0 and 1 and finally at 300 seconds

it moved as far as it could reach from nodes 0 and 1 inside the topology grid. This simulation is

clearly a small one and it is only presented in order to introduce TRAFIL and portray its capabilities.

The resulting trace file was given as an input to TRAFIL and the procedures described in section

6 took place in order to identify the input's format. When the trace file has been analyzed and proc-

essed its contents are visible via the tool from a table as depicted in Figure 11. This is another feature

that is unique in TRAFIL and its purpose is to enable users to have all the information they could

possibly need centralized and ready to use. The table’s columns are created based on the metafile and

sub metafiles that were used to identify and process the trace file. In addition the general simulation

information, consisting of simple statistics regarding the scenario, is also presented. The only non-

trivial information is the Number of Generated Packets and its difference to the Number of Sent

Packets. We consider as Number of Generated Packets every packet that was produced by a node and

as sent packets the number of generated packets in every node minus the number of packets that were

dropped in the same node they were created. The general information can also be viewed along with

some extra fields regarding packets and bytes in each trace level of wireless scenarios in another part

of TRAFIL named Simulation Information. The measurements in that area of the tool are created

automatically after the trace file has been successfully transferred to the database. When a trace file

that was the result of a wireless scenario is given as an input for analysis, for every trace level it con-

tains information the corresponding extra fields are filled with the appropriate measurements. Thus,

we calculate the same information for each trace level and that is the reason why in the Simulation

Information part of TRAFIL are three fields for the Number of Generated Packets as well as for the

Number of Generated Bytes.

Figure 11 TRAFIL Main View

8.1 QoS Simulation Parameters Extraction

Once a trace file has been added to TRAFIL or loaded from the database it can be used to extract

various QoS parameters such as Throughput, End to End Delay, Jitter and Packet Loss Ratio. These

parameters are some of the most commonly calculated after a simulation and at the same time the

most useful and informative in order to evaluate the performance of a network simulation. The results

for our experiment are shown in Figure 12.

Packet delivery rate is calculated by dividing the number of packets that were successfully sent

and received between the selected nodes at the time of arrival of the first and last packet between the

nodes. To calculate throughput we divide the number of bits that were successfully sent and received

between the selected nodes at the time of arrival of the first and last bit between the nodes. Each

value is calculated in the space defined by the sampling rate.

The End to End Delay for each packet between the two nodes is calculated by finding the differ-

ence in the arrival time and transmission time of every packet that was exchanged from the sender

node to the receiver node.

The Jitter related metrics as we have mentioned earlier are calculated based on the RFC 3550. Fi-

nally the Packet Loss Ratio is calculated by finding all the packets that were sent and received be-

tween the two nodes, dividing their difference by the packets sent and multiplying by 100.

Figure 12 QoS Parameter Extraction

8.2 Chart Plotting

A useful utility offered by TRAFIL is to plot various charts based on the information contained in

a trace file as shown in Figure 13 and Figure 14. The charts can refer either to a pair of nodes (Figure

13) or to a specific node (Figure 14). There are four types of charts that can be extracted using

TRAFIL which are Packet Delivery Rate, Throughput, Delay Jitter and Packet Loss Ratio. Further-

more, the calculation in each case can be made in two distinct sampling rates: 1 and 5 seconds. The

sampling rate defines the time interval in which we calculate the value of the selected chart. Finally

there is also the opportunity to define the communication layer for which the information will be col-

lected. Namely, for wired scenarios that yield Normal trace files the communication levels are Link

and Network Layer and for wireless scenarios the corresponding levels are MAC, RTR and AGT

layer. Thus, the user can define various parameters regarding the chart and obtain a more accurate re-

sult.

8.3 User SQL Query Execution

TRAFIL has been designed in such a manner that the user will be able to conduct his post simula-

tion analysis and retrieve results with the least possible work. Nevertheless, there is no way to predict

and implement all the different functionalities that a user might require during the analysis of a trace

file. Therefore, TRAFIL offers the ability to execute SQL queries directly to the database in order to

retrieve information from trace files that is currently not offered by the tool. The only queries that are

supported are select queries and the reason is to protect the database from user errors that might lead

to corrupting the system. An example of executing a query to retrieve all received packets from a

trace file is shown in Figure 15.

Figure 13 Chart Plotting

Figure 14 Specific Node Chart

Figure 15 SQL Query Execution

8.4 NS-2 via TRAFIL

8.4.1 Executing OTcl Scripts

Every NS-2 simulation scenario is described and constructed using the OTcl scripting language.

A user has the ability to create custom wired or wireless scenarios with an arbitrary number of nodes,

protocols, application clients and traffic generators. Besides the commands that are used to create the

simulation plane, the user can create a number of objects that can be used to control and monitor the

actual simulation like monitor objects and random generators. Finally, after creating the OTcl script

in order for it to be executed the user must invoke NS-2 giving the script as a parameter. After the

simulation has concluded in the majority of cases the most important data reside in the created trace

files. Thus, a user must find a way to process these trace files either using scripting languages like

AWK and Perl or using post simulation analysis tools like TRAFIL, jTrana or Tracegraph.

Although these are the steps for executing a certain simulation scenario, TRAFIL enables the user

to execute an OTcl script through the tool. TRAFIL will execute the specified simulation scenario,

locate the resulting trace file and start the trace file analysis procedure described in section 6.

8.4.2 Simulating Video Transmission using Evalvid-RA

Simulating video transmission is one of the most common uses of NS-2 and it is usually imple-

mented using the Evalvid-RA framework. Therefore, TRAFIL has automated this procedure as

shown in Figure 16. The only requirement is that NS-2 is installed on the system and Evalvid-RA has

been incorporated correctly. The simulation procedure is broken into two specific steps, the Pre

Simulation and Post Simulation phases. In the Pre Simulation phase the raw video file as well as the

simulation scenario must be specified. In addition, the Pre Simulation phase includes the raw video's

processing using FFmpeg and its transmission using the MP4 tool. Thus, their parameters must be

specified; TRAFIL has already set some default parameters which are the ones defined by Evalvid's

own examples that accompany its source code. Finally, in order to conduct the Post Simulation phase

the user must specify the names of the files he uses in his TCL script to read the video traces pro-

duced by MP4 and the names of the output receiver and sender files of his script. The file names

must be specified because these files are crucial in the successful execution of the whole simulation

procedure. The files are given as parameters at FFmpeg and et_ra and if they are not specified in ad-

vance there is no way for TRAFIL to complete the simulation without problems.

Figure 16 Video Simulation

Figure 17 Pre-Simulation phase results

Figure 18 Post-Simulation phase

When all the required parameters have been set the simulation can be executed. If the simulation

has been successful then the Post Simulation parameters become available, namely the sender and

receiver files, the .dat files as well as the MP4 video traces. Thus, the user is able to select various

combinations of these files and retrieve QoS statistics for his video transmission. The first phase of

the video simulation, the Pre-Simulation phase, is shown above in Figure 16. In this phase all the

necessary parameters for the video encoding using FFmpeg must be defined.

Then using the MP4 tool trace files for the video transmissions are created and finally the execu-

tion of the simulation takes place by invoking NS-2. The results of a sample video simulation are

shown in Figure 17. The results include the actual console output of all the involved tools (FFmpeg,

MP4, NS-2) as well as all the created files of the simulation. These files are available in a specific

folder in TRAFIL's file hierarchy and its path is also given. In addition, the opportunity is given to

save the files to any folder in the operating system or to delete them from TRAFIL without accessing

the folder in which they are stored. After the Pre-Simulation phase has concluded all the parameters

in order for the Post Simulation phase to be executed become available as shown in Figure 18. All

the created files are now available to be selected and they include the Tx(sender) and Rx(receiver)

files, the data files(Data1, Data2) and MP4’s output trace files. These files are all input parameters

for the et_ra tool and the final parameter is the output video name.

In addition to the et_ra inputs the user must specify FFmpeg’s parameters in order to reconstruct

the video. Again some default parameters are available by TRAFIL.

Figure 19 illustrates the results of the Post-Simulation phase including the PSNR calculation of

the video transmission example simulation. All the resulting files including the console output are

available to the user. The resulting files are included in the same directory as the previously created

file during the Post-Simulation phase. The user is thus able to re-use them in order to conduct further

process and extraction of additional QoS parameters.

Figure 19 Post-Simulation results

8.5 TRAFIL Results

In this section we present timing results about the core procedures described in section 6 which

include identifying a trace file's type, parsing, processing and finally transferring its content to the lo-

cal database. We have argued that TRAFIL, by using metafiles and sub metafiles, not only accom-

plishes to cope with all different kinds of trace files, but it does so exceptionally quick. Therefore, we

present in Table 1 results regarding the aforementioned procedures for a variety of trace file sizes.

Table 1 Processing time results

Trace File

Size(MB)

Execution

Time(ms)

0.005 13

0.126 42

0.402 217

1 378

2 998

3 1,569

7 3,558

11 5,186

16 4,887

58 25,351

118 51,087

Table 2 Trace file formats execution comparison

Trace file

size(MB)

Wireless

scenario trace

file processing

time (ms)

Wired sce-

nario trace file

processing

time (ms)

2 1,967 1,456

6 2,499 2,215

13 4,973 3,635

24 8,699 5,613

35 13,095 8,406

47 17,816 11,767

62 20,906 16,048

Based on the above results it is apparent that TRAFIL manages even for very large trace files to

keep their processing time extremely low. For trace files that have size up to 10 MB the execution

time is very small and it does not increase significantly, although for trace file sizes that exceed 10

MB the processing time starts to grow following a near linear increase. Another observation that can

be deducted from Table 1 is that the trace file with size 16MB has a smaller processing time than the

11MB one and the reason is the trace file format. The trace file with size 11MB was produced using a

wireless scenario and the 16MB trace file resulted from a wired scenario. In order to examine why

the trace file format affects the processing time we measured TRAFIL's execution time for trace files

of the same size both for wireless and wired scenarios and the results are shown in Table 2.

From the above results we can draw the conclusion that certainly trace files that are produced

from wired scenarios take less time to be processed by TRAFIL rather than ones which result from a

wireless scenario simulation. The reason is that during the trace file processing and parsing phases

the number of sub metafiles that are tested against each trace file line is smaller for Normal trace files

(produced by wired scenarios) compared to the number that is tested for Wireless trace file formats.

The metafile used to process Normal trace files has two utility sub metafiles and the metafiles used to

process Old Wireless or New Wireless trace files have eight and nine sub metafiles respectively.

Nevertheless, although there is a difference in the processing time it is not a large one and the most

important conclusion is that for both cases TRAFIL manages to keep the processing time extremely

low.

Finally we present a comparison between TRAFIL and other popular tools that are used for trace

file analysis: Tracegraph2.02 and jTrana 1.0. These tools have been described in section 2, they are

among the most known for processing simulation trace files but one of their main drawback is the

amount of time they need to open a trace file [18]. As we have demonstrated above TRAFIL behaves

exceptionally well at this task, therefore we present in Table 3 a detailed comparison between these

tools and TRAFIL:

Table 3 Trace File Analysis Tools Comparison

Trace file

size(MB)

TRAFIL

Processing

Time (ms)

Trace-

graph Proc-

essing Time

(ms)

jTrana

Processing

Time (ms)

2 1,967 27,000 29,700

6 2,499 75,400 68,000

13 4,973 197,600 135,200

24 8,699 495,100 177,700

35 13,095 949,300 272,000

47 17,816 1,090,700 362,700

62 20,906 2,097,100 486,800

The trace files used to create the measurements referred to wireless simulations and were the

same for all three tools. In order to retrieve the timings both for Tracegraph 2.02 and jTrana 1.0 we

manually measured the time it took for each tool to open a trace file. Furthermore, to obtain more ac-

curate results we made each measurement multiple times and calculated the mean value. As it can be

easily deducted from the above table TRAFIL yields timings that are considerably smaller than the

other two tools (ranging from 15 times smaller to 100 times smaller). This fact becomes more obvi-

ous if we consider that TRAFIL's largest processing time is for the trace file with 62 MB size and

even then that processing time is smaller than the time it takes the other two tools to process the trace

file with 2 MB size.

9. CONCLUSION

In this chapter we presented a new tool named TRAFIL that firstly aims to assist and support the

procedure of analyzing simulation trace files and secondly to automate the execution of NS-2 simula-

tions along with the execution and analysis of video simulations. To accomplish these goals TRAFIL

introduces the novel idea of using metafiles and sub metafiles that renders the tool and the process of

identifying trace file types more abstract and robust. The task of creating a metafile and adding it to

TRAFIL’s metafile and sub metafile repository is trivial; therefore TRAFIL is independent of trace

file format and can be used with a variety of trace file formats. Moreover, one of the main objectives

of TRAFIL was to speed up the identification and processing phases of opening a trace file. Similar

tools have not been very effective during this task and needed a fair amount of time to open a trace

file. As we thoroughly presented in section 8 the use of metafiles and sub metafiles enabled TRAFIL

to carry out this task in significantly reduced time compared to other popular tools (up to 100 times

faster). Another unique characteristic of TRAFIL in regard to the trace file analysis domain was the

ability to store each trace file in a local database, alleviating this way the wearing task of having to

re-open each trace file from the disk. Furthermore, TRAFIL gave the opportunity to retrieve a variety

of simulation statistics, information, QoS measurements and charts. Every single piece of informa-

tion that was produced could also be exported from the tool including the actual trace files in their

parsed form either in txt or Excel file.

Apart from the analysis of trace files, TRAFIL gave the opportunity to execute OTcl simulation

scripts in order to have the results passed to TRAFIL immediately and kept organized without need-

ing any further involvement. This feature although useful serves more as a utility functionality in the

grater procedure of executing video transmission simulations. NS-2 and Evalvid-RA have been used

extensively for video simulations, therefore with the development of TRAFIL we aspired to automate

the procedure starting from the video pre processing until the production of QoS measurements and

evaluation of the simulation.

10. FUTURE WORK

Our future work will include extensions in the simulation design module that will enable a more

complete support of NS-2 functionalities and add-ons. We also plan to investigate the possibility of

generalizing the framework to operate around other simulators such as NS-3, in order be able to pro-

vide a generic simulation facilitation framework.

REFERENCES

[1] TRAFIL website, http://ru6.cti.gr/ru6/research_tools.php#TRAFIL

[2] Juliana Freitag Borin, Nelson L.S. da Fonseca, Simulator for WiMAX networks, Simu-

lation Modelling Practice and Theory, Volume 16, Issue 7, August 2008, Pages 817-

833, ISSN 1569-190X, 10.1016/j.simpat.2008.05.002.

[3] Network Simulation Cradle: http://www.wand.net.nz/~stj2/nsc/software.html

[4] NS2Measure: http://cng1.iet.unipi.it/wiki/index.php/Ns2measure

[5] J. Malek and K. Nowak, September 2003. Trace graph-data presentation system for

network simulator ns. In Proceedings of the: Information Systems - Concepts, Tools

and Applications (ISAT 2003), Poland.

[6] The Trace File analysis tool Trace Graph: http://www.angelfire.com/al4/esorkor/

[7] The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,USA.

[8] Qian, H. and Fang, W. (2008). Jtrana: A java-based ns2 wireless trace analyzer:

http://sites.google.com/site/ns2trana/

[9] Aliff Umair Salleh, Zulkifli Ishak, Norashida Md. Din and Md Zaini Jamaludin, 27-28

June, 2006. Trace Analyzer for NS-2. In Proceedings of the 4th Student Conference on

Research and Development (SCOReD 2006), Shah Alam, Selangor, MALAYSIA.

[10] The Trace File analysis tool Trace Analyzer: http://trace-analyzer.sourceforge.net/

[11] Ahmed Sobeih , Wei-Peng Chen , Jennifer C. Hou , Lu-Chuan Kung , Ning Li , Hyuk

Lim , Hung-Ying Tyan , Honghai Zhang, J-Sim: A Simulation Environment for Wire-

less Sensor Networks, Proceedings of the 38th annual Symposium on Simulation,

p.175-187, April 04-06, 2005

[12] J-Sim, Available on: http://sites.google.com/site/jsimofficial/

[13] Lie A, Klaue J., Evalvid-RA: Trace Driven simulation of rate adaptive MPEG-4 VBR

video, Multimedia Systems 2008; 14(1): 33-50.

[14] Evalvid-RA website: http://www.item.ntnu.no/~arnelie/Evalvid-RA.htm

[15] Christos Bouras, Savvas Charalambides, Georgios Kioumourtzis, Kostas Stamos.

TRAFIL: A tool for enhancing simulation TRAce FILes processing. DCNET 2012

Rome, Italy.

[16] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, 2003. “RTP: A Transport Proto-

col for Real-Time Applications”, RFC 3550, July 2003.

[17] Lie A., “Trace driven simulation of rate adaptive MPEG-4 video”

http://www.item.ntnu.no/~arnelie/evalvid_test/Presentation_Dec05.pdf

[18] Ryad Ben-El-Kezadri , Farouk Kamoun , Guy Pujolle, October 27-31, 2008. XAV: a

fast and flexible tracing framework for network simulation, Proceedings of the 11th in-

ternational symposium on Modeling, analysis and simulation of wireless and mobile

systems, Vancouver, British Columbia, Canada

