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1 Introduction

The technological advances in the World Wide Web, the low cost and the ease of access to it from any place in
the world by using, not only conventional computers but also portable devices and cellular phones with
advanced networking capabilities, has dramatically changed the way people face the need for information
retrieval. More and more users migrate from traditional mass media to more interactive digital solutions such as
Internet news portals. These digital neighborhoods provide a direct link to fresh and unfiltered stream of data,
giving their subscribers the opportunity to stay up to date, in real time, with news and all kinds of information
regarding their personal interests from all over the globe. This increasing popularity of Internet, as a vast digital
data pool, which grows in an exponential rate, combined with the rather static and unchanged nature of human
vocabularies, does not come without problems: Over time, it becomes a tedious task for the average user to
successfully select a proper set of keywords that best describe his question and then locate the “right” piece of
information in an ocean of irrelevant data. Also, the computational and memory load in the servers, which run
the search engines that provide users with results, will probably increase at a comparable, if not higher, rate in
the years to come.

Under these circumstances, cleverer search engines should be deployed on most news portals to help users
find what they are looking for with less effort. In the majority of the currently existing search engines, when
different users submit the same query, the same results are returned in the same order, regardless of who
submitted the query. Obviously, it is unlikely that all the users of a search engine are so similar in their
demands that a sole approach to searching fits all needs. Indeed, in terms of searching, one half of all retrieved
documents have been reported to be irrelevant compared to what the user expected (Casaola, 1998).
Additionally, a number of studies have shown that a vast majority of queries to search engines are short and
underspecified (Jansen et al., 2000) and different users may have completely different intentions for the same
query (Lawrence, 2000, Krovetz & Croft, 1992). The explanation is simple as one keyword or a limited set of
keywords cannot always be an unambiguous guide to determine what a user is exactly interested in. This is the
point where the personalized search can be of essential help. Presumably, information retrieval will be more
efficient if individual users’ idiosyncrasies are taken into account. Such a search strategy could decide
autonomously for each user whether he is interested in an article and, in the opposite case, prevent it from being
displayed. By modeling the user appropriately and personalize search according to his individual demands, we
can achieve an improvement in the retrieval accuracy.

Throughout literature, we can identify two major directions for search personalization. Query expansion
and Result Processing can complement each other and by understanding both the user and the context, a
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breakthrough in search efficiency can be achieved (Lawrence, 2000, Xu & Croft, 1996). Query expansion is a
way of solving the problem of word mismatch, which arises when users employ different terms than those used
by content authors, to describe the same concept. This is achieved by expanding submitted queries with more
relative words or phrases and it may offer an efficient solution (Xu & Croft, 1996). Context can take different
forms, like category manually selected by the user (Glover et al., 1999) or combination of titles and
descriptions of clicked search results after an initial query has been submitted (Leoryet al., 2003). On the other
hand, result processing includes filtering and reorganizing of the search results in order to provide the user with
a more refined output. This filtering can be either in the domain of the returned results (Oyama et al., 2004),
eliminating in this way documents irrelevant to specific web domains, or in the news items that may not be of
interest to a given user, according to that user’s explicit (through rankings) or implicit (viewing and order
duration) feedback, leading in personalized views of the result. Another approach to result processing deals
with re-organization and re-ranking of the results, which is one of the major ideas of our work. This may
involve the construction of a user profile over time with resources such as issued queries and visited links as in
(Teevan et al., 2005). Previous queries and summaries of clicked results could also be used for re-ranking in the
current session as in (Shen et al., 2005(1)). In addition to these server-side techniques, some client-side
techniques have been proposed in the past, as in (Shen et al., 2005(2)), where query expansion and result re-
ranking are employed on the basis of the immediately preceding query and of summaries of viewed results.

In our work, we use a enhanced combination of query expansion and results processing to produce
personalized output. The difference with the aforementioned implementations, regarding the query expansion,
is that it is executed after the first unranked set of result has been retrieved, participating and contributing in
this way in the result processing. In the procedure, which we will describe, we expand the user’s query with
keywords that the engine has selected for a category or for a user. This selection is based on the user’s previous
search sessions and the categorization system of peRSSonal. By assigning increased or decreased importance
weights to some keywords, it becomes feasible for the engine to obtain some kind of knowledge over the user’s
preferences. Thus, for each resulting article, a relevance factor is computed from keywords weight allowing the
re-ranking of articles according to it.

We also explore the possibilities of speeding up the operation of the search engine of peRSSonall.
peRSSonal is a web-based mechanism for the retrieval, processing and presentation in a personalized view of
articles and RSS feeds collected from major Internet News portals. In traditional search engines, when each
query is submitted, a new database index search procedure is initiated to find and return a number of related
articles (with a short summary for each one), which are relative to the given query. Depending on the
complexity of the query, the engine potentially makes several accesses to the database data and metadata,
probably residing in a secondary storage, and may consume significant computer resources. If a query is
popular among different users or frequently used by the same user, then caching its results may improve
performance significantly by reducing the computation and I/O overhead of the query evaluation, since the
query results will be calculated only once: when the query is submitted for the first time.

The technique of caching query results and documents as a way to reduce access latency is being
extensively used on the Web since its very first days. A simple client-side solution is to cache search results
from the web browser inside the computer’s main memory. This solution, although being widely used,
produces poor results as it rarely leads to high hit rates (Abrams et al., 1995). As an improvement, caching
proxy servers are employed. The large caches of the proxies serve a stream of requests coming from a large
number of clients. However, because of the fact that even these large cache memories eventually fill up, there
have been developed cache replacement policies. One of the first replacement policies considered is the LRU
(least recently used) algorithm and its variations. LRU is based on the heuristic that the documents not used
recently are probably not to be requested in the near future. One first extension of LRU uses heuristics that give
priority to the caching of small documents instead of large documents (Markatos, 1996). A straighter alternative
is the complete removal of large documents (Williams et al, 1996, Pitkow & Recker, 1994). The main idea
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behind these variations originates to statistics showing that smaller documents were accessed more frequently
than larger ones. Some other policies (Scheuearmann et al., 1997) also take into account network latency in
order to avoid replacing documents that take a lot of time to download. By combining all above improvements,
some techniques (Cao & Irani, 1997, Lorenzetti et al., 1998) aggregate all the aforementioned factors (access
recency, size and latency) into a weight and try to keep in the cache the documents with the largest values.

In (Spink et al., 1998) and (Jansen et al., 1998) we can find and analysis over the transaction logs posed by
users of Excite, a major Internet search engine. Among their most interesting findings, regarding how users
search the web and what they search on it, are that users tend to ask short queries and choose to view no more
than 2-3 pages of the query’s results. (Silverstein et al., 1998) have studied a very large log of AltaVista queries
and among other results they report that the average frequency of the queries in the trace was 3.97. That is, each
query was submitted four times, which implies that caching search queries’ results may lead to high hit rates.

These findings are particularly encouraging for our approach as they demonstrate that there is a capable
amount of locality in search engine queries. In our approach, we take advantage of this space and time locality,
and we cache the results from very recently used queries (RSS feeds tend become older much faster than URLs
coming from web search engines) in order to reduce the latency on the client side and the database-processing
load from the server side. Because of the fact that the caching is server side, both registered and unregistered
users of the portal can take benefit.

2 Architecture

The architecture of the system is distributed and based on standalone subsystems but the procedure to reach at
the desired result is actually sequential, meaning by this that the data flow is representative of the subsystems of
which the mechanism consists. Another noticeable architectural characteristic is the existence of modularity
throughout the system’s lines. This section is a description of how these features are integrated into the
mechanism. We are putting the focus on the personalized search subsystem, though brief analysis of the other
modules is presented in order to cross-connect the features of our system. As already mentioned, the
personalized search procedure both produces and consumes knowledge from the personalization mechanism in
order to enhanced output quality.

The architectural schema consists of a series of subsystems, as depicted in Figure 1. The collaboration
between the distributed parts relies on the open standards for input and output that are supported by each part of
the system and on the communication with a centralized database.

The general procedure of the mechanism is as follows: at first, web pages are captured and only the useful
text (drop stop words, punctuation etc.) is extracted from them. Then, the extracted text is parsed followed by
summarization and categorization. Finally we have the presentation of the personalized results to the end user.

For the first step, a simple web crawler is deployed, which uses as input the addresses extracted from the
RSS feeds. Theses feeds contain the web links to the sites where the articles exist. The crawler fetches only the
html page, without elements such as referenced images, videos, CSS (Cascading Style Sheets) or JavaScript
files. Thus, the database is filled with pages ready for input to the 1st level of analysis, during which, the
system isolates the “useful” text from the html source. Useful text contains the article’s title and main body.
This procedure can be found in (Bouras et al, 2005).

In the 2nd level of analysis, XML files containing the title and the body of articles are received as input,
targeting at applying pre-processing algorithms on this text in order to provide as output the keywords, their
location in the text together with their absolute frequency in it (number of times met in the text). These results
are the primary input to the 3rd level of analysis. In the 3rd level of analysis, the summarization and
categorization technique takes place. Its main scope is to characterize the articles with a label (category) and
come up with a summary of them. Details about these procedures can be found in (Bouras et al., 2006). The
core of our work can be found in the 4th level of analysis, where the results are presented to the end user in a
personalized view. The algorithms of personalization, which will be analyzed in the next section, take as input,
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information about the user’s profile and preferences, collected and processed during his past sessions in the
portal. For each user, a set of keywords with assigned relevance weights is used as the main criteria for the final
order in which the articles will be presented as well any extra articles that the engine considers as “possibly
interesting” for the specific user, although these articles might not be directly linked to the specified query. This
way the system manages to enrich the user’s experience.
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Figure 1: The search module within PeRSSonal's Architecture

In Figure 2, we can see the general schema and flow of the advanced and personalized search sub-module.
The user submits the keywords together with the search configuration options through a form. The keywords
first pass through a Stemmer so that they get in the form that they are stored in the database. A caching
algorithm is used to search for similar queries submitted in the past from the same user, and if matches are
found, cached results are directly obtained improving in this way the search speed. In the next step, the query is
enriched with more keywords, relative to the user’s profile acting as a base for more relevant articles to be
retrieved. In the final step, a weighting algorithm is deployed to adjust the weights of the keywords that the
engine has characterized as favorite for the user who conducts the query, according to his past searches and
general behavior in the system. We will focalize on this module of the system as this is the one that implements
and executes the personalized search procedure of the system.
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Figure 2: Search Module Internal Architecture

3 Algorithmic Aspects

In this section we will describe the algorithmic aspects of the proposed mechanism.

3.1 Configuration and Keyword Refinement

Before the engine triggers the search procedure, the user has first to configure the search. Apart from the
specified keywords, a few other options are provided, including the date period for the target result, the
selection of the logical operation (“OR” and “AND), which will be performed in the articles matching and the
thematic category of the desired output. Before proceeding with query search operation, the engine passes the
keywords through a stemmer, which implements the Porter Stemming Algorithm on the English language. Thus,
we enable the integration of the search engine with the rest of system, which is build on stems rather than full
words for the articles categorization. Additionally, simple duplicates elimination is executed on the stems,
taking into account that some duplicates are not removed due to their nature of lexicological co-existence.

3.2 Results Fetching

In the first phase of the algorithm, we fetch from the database the articles that constitute a direct match to the
submitted query, taking into account the configuration of the search options. We should emphasize here, that if
the user has requested articles of a particular category, then an article is fetched only if it has the biggest
frequency in the specified category among all categories. This can be achieved straightforward, as peRSSonal
maintains the frequency per category for each article it collects from the Internet, by associating the frequency
of its keywords with every thematic category. In the algorithm we can see the execution of the above procedure.
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Keywords[] = Stem Query();
Query = Construct SQL (Keywords[], Category, Dates, Logical Operator);
Articles[] = Fetch Articles(Query);

Foreach (Ar as Articles|[])
If (Is_Selected(Category)) Then
High Freq Cat = Ar.Find Category With Biggest Frequency ()
If (Category==High Freq Cat) Then
Ar.Store Article();

End If
Else
Ar.Store Article();
End If
End For

The results are temporarily stored in array structures so that they can be sorted in later stages of the algorithm
execution.

3.3 Query Expansion and Personalization on User

In the next phase of the search procedure, we have to refine the order of the articles to be shown both for the
case of a generic and for the case of a personalized search.

In the first case of a generic search of an anonymous user, the query is expanded with more keywords so
that results with highest relevance to the search request can be obtained. For this reason the algorithm presented
below is used. This algorithm takes each keyword in the query and assigns a weight to it. Keyword weights in
our experiments start from 0.1 for the first keyword in the query, with each next keyword having weight 0.01
less than the previous one. Furthermore, we compute its absolute frequency for all categories in the system. The
purpose is to expand the query of an anonymous user by enriching it with more keywords from categories with
high relevance to the query’s original keywords. To accomplish it, we use in our experiment different values for
the representativity factor ranging from 1.5 to 4.5. The way the representativity factor affects the number of the
added keywords is described later in the chapter. For our system, a representativity factor of value R means that
a keyword K is considered as representative of category C, only if its absolute frequency of appearance in C is
R times higher compared to its absolute frequency in the category where keyword K has the second highest
absolute frequency. Consequently, higher values of R yield lower possibility for the user to select category-
representative keywords, while lower values allow for easier query expansion with more keywords to refine the
results. In case we find high relevance to a category, we proceed with expanding the query with more keywords
from this category. For this reason, we retrieve the keywords having absolute frequency greater or equal to the
particular keyword in the query and we select these two that have frequency just above or equal to the query’s
original keyword. Each new child keyword gets the weight of its higher weighted parent keyword (for
keywords with more than two parents).

Keywords[] = Stem Query();
Define Relativity Factor(R);
Enrich Keywords[] = Empty Array();
Foreach (Key as Keywords[])
Parent Weight = Assign Weight () ;

Frequencies[] = Find Frequence For Each Category (Key) ;
Freq 1 = Max(Frequencies|[]);
Freq 2 = Second Highest (Frequencies|[]);

If(Freg 1 > R * Freq 2)Then
Child Keys[] = Find Two More Keywords();
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If (Child Keys[] Not In Enrich Keywords[])Then
Child Keys Weight = Parent Weight;
Enrich Keywords.add(Child Keys[]);
End If
End If
End For

After the expansion process has been completed and the weights of all keywords have been adjusted, including
the keywords added to expand the query, we can compute the relevance of an article to the user’s query
according to the following formula:
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In this formula, X, , y; denote the computed weight and the actual frequency of the i"" keyword X in the

I relevance

expanded query of N keywords and the actual frequency of the i keyword Y in the document respectively

where X and Y are the common keywords, while Z; denotes the actual frequency of the i"™ keyword of the list

of all M keywords existing in the fetched article. Obviously, this index gives a normalized measure of an
article’s relevance to a given query.

In the case of a personalized search, the relevance of each article to the query has to be computed by
taking into account the individual profile and the preferences of the user committing the search request. In the
profile of each user in the database we have assigned different weights to a large group of keywords so that we
can more efficiently describe the user preferences. Keywords with high relevance over a user’s favorite
thematic category gain positive weights, while keywords belonging in categories which are of less or of no
interest to the user have lower or negative weights accordingly. The profile for each user is initialized during
his registration into the system, where he can provide an index of interest (-5 to 5) for each thematic category.
This profile can change dynamically overtime in accordance to the user’s overall behavior inside the system
(visited articles, time spent over an article etc.). Based on such profiles, we can compute for each article in the
system an index of relevance for each user. The formula used for this reason in our implementation of the
personalized search is the following:
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In the above formula, N is the number of keywords that have been assigned a weight (negative or positive)

in the user’s profile, p, is the weight of each such keyword, w, is the actual frequency of each such keyword

in the specific article; M is the total number of keywords in the article and z, is their actual frequencies inside

the article. From this formula we can see how highly weighted keywords in the user’s profile can increase the
relevance of an article, therefore the rank in which it will be finally displayed, and that for different users we
obtain different relevance for a given article. For example, if a user has declared high interest over education
and no interest over sports, then keywords such as “school”, “pupil”, “teacher”, etc. have obtained high weight
leading in high computed relevance for articles around education, while keywords such as “football”, “athlete”,
etc. have negative weights, leading in low relevance for articles around sports.

Finally, by sorting the fetched articles array according to their computed relevance, we manage to present
the user with results personalized and targeted to his profile and preferences.
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3.4 Caching Algorithm

In this section, we shall analyze the caching algorithm of our search implementation, that is used in order to
enhance the speed of the complete procedure and lessen the computational overload of our resources.

Prior to searching for the result articles, the system searches for cached data from previous search sessions. All
cached data are stored on the server’s storage space and the caching algorithm also operates in the server’s
memory so the procedure, which will be described, will be of benefit for both registered users (members) as
well as unregistered users (guests) of the portal without creating any computational overhead for their machines.

For each submitted query, we store in a separate table in our database information about how it was
configured. This information includes the id of the user who made the search request, the exact time of the
request (as a timestamp), the keywords used in the query formatted in a comma-separated list and a string
containing information about the desired category of the results and the logical operation, which was selected
for the matching. For the above data, our caching algorithm operates in a static manner. For example, if a user
submits a query containing the keywords “nuclear technology”, by selecting the “science” category as the target
category for the returned articles, this query will not match against an existing (cached) query which contains
the same keywords but which was in the first case cached for results on the “politics” category. Also, when a
query containing more than one keyword is submitted, it will not match against cached queries containing
subsets or supersets of the keyword set of the submitted query. For example, if the incoming query contains the
keywords “Monaco circuit formula”, probably referring to the famous Grand Prix race, it will not be considered
the same with a cached query containing the keywords “circuit formula™ which probably refers to an electrical
circuit formula of physics. This decision for the implementation was taken in order to avoid semantic
ambiguities in the keywords matching process.

The dynamic logic of our caching algorithm lies in the target date intervals of a search request, which are
represented by the “date from” and “date to” fields in the search configuration form of the portal. This
perspective of caching was chosen after considering the fact that is very common for many web users to submit
identical queries repeatedly in the same day or during a very short period of days. The algorithm designed for
this reason takes into account the following 4 cases for the cached “date from” and “date to” fields and
submitted “date from” and “date to” fields:

el . —

Figure 3: Date-Matching Scenarios

1st Case: the DATE FROM-TO interval of the submitted query is a subset of the DATE FROM-TO
interval of the cached query. In this case, we have the whole set of the desired articles in our cache plus some
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articles out of the requested data interval. The implementation fetches all the cached results and it filters out the
articles, which were published before DATE FROM and these, which were published after DATE TO attribute
of the submitted request. The server’s cache is not updated with new articles because in this case no search is
performed in the articles database.

2nd Case: the DATE FROM of the submitted query is before the DATE FROM of the cached query and
the DATE TO of the submitted query is after the TO DATE TO of the cached query. In this case, the desired
articles are a superset of the articles, which are cached in the database. As a consequence, the algorithm fetches
all the cached results but it also performs a new search for articles in the date intervals before and after the
cached date interval. When the search procedure finishes, the algorithm updates the cache by extending it to
include the new articles and by changing the DATE FROM and DATE TO attributes so that they can be
properly used for future searches.

3rd Case: the DATE FROM of the submitted query is before the DATE FROM of the cached query and
the DATE TO of the submitted query is between the DATE FROM and DATE TO of the cached query. In this
case, a portion of the desired articles exists in the cache. The algorithm first fetches all the results and then it
filters out the articles, which are after the DATE TO date of the submitted request. Furthermore, a new search is
initiated for articles not existing in the cache memory. For the new search the DATE FROM and DATE TO
dates become the DATE FROM date of the submitted query and the DATE FROM date of the cached query.

4th Case: The form case is similar to the third case but in the opposite date direction. The final results
consist of the cached results between DATE FROM date of the submitted request, the DATE TO date of the
cached request and the new articles coming from a new search between the DATE TO date of the cached query
and the DATE TO date of the submitted query.

We should notice that for the cached results data, an expiration mechanism is deployed. Every cached
query is valid for a small number of days, in order to keep the engine’s output to the end user as accurate and
fresh as possible. Whenever a search for a matching with the cached results is performed, cached data that have
expired are deleted from the database and are replaced with new one. It is also possible for the same query to
exist in more than one cached records as long as they have not expired. The selection of the proper expiration
time for the cached data will be discussed in the next paragraph. The overall operation of the algorithm is
presented with pseudo code in the algorithm below.

match = Search In Cache (query);
If (Is_Found(match))
expired = Check Expiration(match);
If (expired==true)
Delete From Cache (match) ;

results[] = Execute New Search(query);
Insert In Cache(results([]);
Else
Check Case(1):
results[] = Fetch Results (match);
results[] = Filter (results([]):;
Check Case (2)
results[] = Fetch Results(match);

results.append (Execute New Search Before());
results.append (Execute New Search After());
Update Cache (results(]);

Check Case(3):

results[] = Fetch Results(match);
results = Filter (results([]);
results.append (Execute New Search Before());

Update Cache (results(]);
Check Case (4):
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results[] = Fetch Results (match);

results = Filter (results([]);
results.append (Execute New Search After());
Update_ Cache (results([]);

Endif

Else

results[] = Execute New Search (query) ;
Insert In Cache(results[]);

Endif

By examining this algorithm, operating in the server’s memory, we can see that in all four cases, we
achieve to limit the computational overhead of a fresh search in the database by replacing it with some
overhead for cached results filtering. However, this filtering is implemented with simple XML parsing routines
and cannot be considered as a heavy task for the server. The most significant improvement happens in the first
case, where no new search is performed and all the results are fetched directly from the cache. This is a great
benefit to our method as this is the most common case, where the users submits the same query over and over
without changing the DATE FROM and DATE TO fields or by shrinking the desired date borders. The worst
case is the second, where the user expands his query in both time directions (before and after) in order to get
more results in the output. In this case, the engine has to perform two new searches, followed by an update in
the database cache. However, this is the rarest case, as the average user tends to shrink the date interval rather
than expanding it, when he repeatedly submits an identical query in order to get more date-precise and date-
focused results. In the other two situations, one new search is executed each time and one update is committed
in the database. This means that in an average case, we can save more than 50% of our computational overhead
when the expansion of the date borders (with the newly submitted query) are not bigger than the cached results
date interval.

4 Experimental Evaluation

In this section we provide experimental evaluation that is done to the system. The experiments presented are
limited to a number of virtual users as the complete system is still under experimental evaluation. Nevertheless,
the results concerning the searching mechanism are promising.

4.1 Representativity Factor

In the query expansion process, we manage to enrich the user’s query by using a number that we call
representativity factor. This number, as described in previous paragraph, represents the user’s possibility of
selecting keywords that are highly representative of some thematic categories of the system. When the user
picks these keywords in his query, the engine expands the query it by adding in it more keywords from the
category with the highest relevance. In Figure 4, we present the relation between the representativity factor and
the number of keywords in the system, which automatically become category representative. For the
construction of this chart, we first obtained the 100 most representative keywords for 7 of the basic thematic
categories existing in PeRSSonal. We removed the duplicates and we ended with 490 different keywords. As
we can see from this graphic, the possibility of selecting category representative keywords is relatively high,
almost 70%, when the representativity factor takes values below 2 and falls at 50% and lower for values above
3.5, making it more “difficult” to select representative keywords. The extra-added keywords do not participate
in the articles result set, which will be presented to the user, but their role is to aid in the re-ranking procedure
of the final results. We should notice that neither low values for the factor should be used, as this would make it
very possible to re-rank the output articles based on keywords the user had not in mind when submitting the
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query, nor low values as this would make the final articles result difficult to focalize one the thematic category,
but it would spread among different categories.

4.2 Personalized Vs. Non-Personalized Search

In order to compare the results of a personalized search to the results of a non-personalized search, we
conducted our experiments for three virtual users we created. During the registration process, we gave each user
a positive preference bias over one category and negative bias for all other categories of the peRSSonal,
simulating in this way different groups of people. In the tables and graphics that follow, we consider user A as a
user with high preference over sport news, user B with high preference over business news and user C with
high preference over technological news. This said, a user with favor over a particular category, is not excluded
from being presented or selecting to view articles from different categories but the engine tries to adapt as much
as possible the results to his profile. The queries we experimented on consist of category independent keywords
so that the results we obtain are generic. Examples of such keywords are ‘Sunday’, ‘New York’, ‘red’,
‘environment’ etc. In this point we should notice that prior to gathering the presented results, we trained the
system for each user separately with articles that were of high interest for these users. As a result, his profile
became more category-polarized on the category the user initially indicated as categories of interest.

400
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Figure 4: Query Expansion - Representativity Factor

In the first phase of the experiment, we conduct a non-personalized search (anonymous user) on a generic
query. The first 60 articles we come up with are presented in table 1. For the sake of simplicity, we do not show
the real article ids in the table, as they are stored in the database, but the rank in which they are returned from
the search. This rank will be used for the evaluation of the personalized results for each user. We also present
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the category for each article (1=Business, 2=Sports, 3=Health, 4=Technology, 5=Science, 6=Education and
7=Entertainment) as well as its relevance to the query, computed from the formulas of section 4.

As we can see from Table 1, because of the generic query the results are spread among the different
categories of PeRSSonal allowing different users to find articles of interest. For this experiment the articles that
our imaginary users selected to view are presented in the table 2.

Art.Id  Category Relevance Art.Id Category Relevance Art.Id Category Relevance

1 4 0.836 21 4 0.597 41 2 0.340
2 1 0.822 22 1 0.562 42 3 0.332
3 1 0.807 23 2 0.559 43 3 0.284
4 4 0.782 24 3 0.556 44 4 0.284
5 2 0.766 25 2 0.545 45 1 0.269
6 5 0.762 26 2 0.533 46 6 0.262
7 3 0.760 27 5 0.532 47 1 0.213
8 2 0.743 28 1 0.530 48 2 0.199
9 3 0.735 29 6 0.528 49 7 0.178
10 4 0.732 30 5 0.525 50 4 0.166
11 6 0.707 31 3 0.519 51 1 0.156
12 1 0.706 32 4 0.515 52 2 0.117
13 6 0.702 33 2 0.487 53 1 0.111
14 3 0.632 34 6 0.476 54 1 0.091
15 2 0.624 35 2 0.474 55 3 0.085
16 2 0.622 36 1 0.468 56 3 0.067
17 4 0.617 37 2 0.427 57 1 0.065
18 7 0.609 38 3 0.411 58 5 0.056
19 1 0.604 39 3 0.410 59 5 0.033
20 2 0.602 40 1 0.369 60 7 0.008

Table 1: All articles fetched in the non-personalized search with category and relevance

User Article Ids per Category
A Sports(8,20,33,48) Business(12,54)
B Business(12,19,40,45,57) Entertainment(18)
C Technology(31,32,44) Health(7) Science(27) Business(19)

Table 2: Articles the virtual users selected in the non-personalized search

In the second phase of the experiment, we conduct a personalized search for each of the three users, using
the same query as in the generic search. This time, we present for each user the first 15 articles of the search
result. For the evaluation of the results in the tables 3-5 that follow, we use as article id, the initial rank of the
article as this was in the non-personalized search. The articles with id ‘New’ are articles that were not in the
table 1 and that now have been fetched in the top 15 ranks for a user as a high relevance was computed for them.
The highlighted articles in tables 3-5 show the articles that the user had selected in the non-personalized query
of table 1.
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Personalized Article Personalized Non-personalized Category
Rank Id Relevance Relevance
1 5 0.846 0.766 Sports
2 8 0.839 0.743 Sports
3 12 0.833 0.706 Business
4 14 0.824 0.632 Health
5 3 0.779 0.807 Business
6 33 0.776 0.487 Sports
7 New 0.763 0.000 Sports
8 39 0.757 0.410 Health
9 35 0.738 0.474 Sports
10 7 0.738 0.000 Health
11 28 0.735 0.530 Business
12 New 0.734 0.000 Sports
13 18 0.730 0.609 Entertainment
14 20 0.729 0.602 Sports
15 6 0.698 0.762 Science
Table 3: Personalized Search for User A
Personalized Article Personalized Non-Personalized Category
Rank Id Relevance Relevance

1 22 0.901 0.562 Business
2 40 0.871 0.369 Business
3 21 0.824 0.597 Technology
4 35 0.801 0.474 Sports
5 12 0.796 0.706 Business
6 28 0.788 0.530 Business
7 1 0.751 0.836 Technology
8 18 0.723 0.609 Entertainment
9 New 0.717 0.000 Business
10 New 0.715 0.000 Sports
11 6 0.699 0.762 Science
12 18 0.680 0.609 Entertainment
13 New 0.658 0.000 Technology
14 45 0.649 0.269 Business
15 New 0.640 0.000 Sports

Table 4: Personalized Search for User B
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Personalized Article Personalized Non-personalized Category
Rank Id Relevance Relevance

1 21 0.928 0.597 Technology
2 7 0.894 0.760 Health
3 New 0.877 0.000 Technology
4 19 0.830 0.604 Business
5 44 0.821 0.284 Technology
6 49 0.819 0.178 Entertainment
7 17 0.782 0.617 Business
8 30 0.760 0.525 Science
9 32 0.754 0.515 Technology
10 56 0.753 0.067 Health
11 10 0.741 0.732 Technology
12 36 0.722 0.468 Business
13 31 0.716 0.836 Technology
14 3 0.691 0.807 Technology
15 New 0.680 0.000 Technology

Table 5: Personalized Search for User C

With a quick look in the tables above, we can see that most of the articles that the three virtual users had
selected in the non-personalized search have now been fetched in higher ranks with higher relevance. For
example, for user A, four of the six articles he had selected in the non-personalized search in the first 60 results
have moved several places higher in the rank of the personalized search, while three of them are now in the first
ten results. This can be seen in figure 5, where the non-personalized and personalized rank of the selected
articles is presented graphically.

User A - Rank on Selected
Articles
40
30
20
10 7 l -
5 /--l-
1 2 3 4
B Personalized Rank
Non-Personalized Rank

Figure 5: Rank on selected articles for User A
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4.3 Evaluation of Caching

In our experiment to evaluate the caching algorithm, which was described in the previous paragraph, we create
a virtual user to submit queries to the server. The executed queries consist of keywords from several thematic
categories (sports, science, politics, etc.) used throughout the articles database of our system. We choose to test
caching performance on queries containing no more than three keywords, in order for the output to contain a
big number of articles and for the overall procedure to last as much as needed for our time measurements to be
sufficient and capable of analysis and conclusions.

In this section, we will focus on the following issues:

e The performance of our server-side caching algorithm for the different scenarios of date matching
against submitted queries.

o The way in which the number of cached documents affects the speed of caching and the storage space
required on the server.

e How the selection of an expiration time for our cached queries results affects the quality and the
accuracy of the output to the end user.

In the previous paragraph, we analyzed the way in which the algorithm tries to match a submitted query to
find an identical cached record. During the experiment, we tested several queries, requesting articles from
different categories, covering the period of the last six months. In the first phase, we used an empty cache
memory and the server was configured to have the caching feature disabled. As it was expected, queries
consisting of very focalized and specific keywords were processed very quickly. These queries are not of high
interest concerning our analysis, as the number of articles containing such keywords are always quite limited
and require small computational time to process.

The major problem exists with queries consisting of generic keywords, which can be found on a plethora
of articles in the database. This class of queries makes heavier usage of system resources and can be considered
as a good starting point to evaluate our method. In Figure 6, we can examine the results of caching on execution
procedure speedup for three generic queries (‘sports’, ‘computers’, ‘health or body’), which returned over 5000
articles. This graphic depicts the time in seconds that the system needed to fetch the matching output from the
database. The cases considered in this figure are cases 2, 3 and 4 of our algorithm, where only a subset of the
results for the submitted query exists in the cache memory and the system will initiate a new search in the
database to fetch articles for the missing date periods. The selection of the date period, for which the results
were cached in the first place, before the actual queries were submitted, was a random number of days varying
from 60 to 90. The actual query, which was to be evaluated, required articles published in the last 180 days.
This means that the system had still to search for more articles than the number of articles it had already stored
in its cache memory. In the results presented, we can notice that under some situations, the benefit reached
almost half the time of the actual (without caching) time needed. As it was expected, the worst case is case 2,
where two new un-cached searches have to be executed, one before and the other after the date period of the
cached set. After that, we come up with three different sets of articles. Prior to presenting them to the end user,
we have to re-sort them according to their degree of relevance to the initial query. For cases 3 and 4, the results
are almost similar. The higher times in case 4 could be a consequence of a possibly high concentration of
desired articles in the date period, for which the new search was initiated, combined with a reduced
concentration of articles in the date period stored in the cache memory of the server.
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Figure 6: Time in seconds for un-cached searches and cached searches for cases 2,3,4

In the execution times measured throughout the experiment, an average 0.1 seconds were needed to fetch
the articles from the cache memory, which is at average almost 3% of the overall time needed. Another 2% of
the time was spent on re-sorting the two or three sets of results, according to their relevance to the query, in
order to present them to the end user in the right order of relevance to the query. This said, it is expected for the
case 1 of our algorithm to achieve an almost 95% speed up on the search. After the first execution of these
queries, every next submission of the same request is serviced in under 0.1 seconds. Whenever results are
cached for a query, every following identical one which demands articles inside the date period of the cached
result, will be processed in almost zero time — only the time needed to fetch the results from the cache - no
resorting is required in this case as we have only one already sorted set of articles. This reduces the
computational overhead on the server for time demanding queries to the cost of the search procedure for only
the first time they are executed. Every next time they are processed through the cache memory and the
algorithm operating on it.

4.4 Cache Memory Size

Our second concern was to examine how the number of the cached articles per query in our cache, affects the
overall algorithm performance and the size of the database table used to store the cached data. We executed a
generic query for several numbers of cached articles by increasing each time the date period in which the
caching occurred. The total number of articles for this query was 4782 over a period of 4 months. For this
experiment, we tested cases 2,3 and 4 of our algorithm, so that in every submitted request, a part of the results
were not contained in the cache and the engine could not rely only on the cached data to create the output.

From the graphical representation of Figure 7, relating the percentage of execution time speedup with the
percentage of cached results on total results, we can notice that the search execution time reduces at an average
50% when a little less than 40% of the output has been cached. As the total number of articles in this test
covered a period of four months, we can say, by statistic, that the 40% of the results would be retrieved by a
search in a period of less than two months, which, speaking modestly, is a rather limited date interval on a
common search. By that, it is meant that if a user submitted a search query, requesting articles for a period of
more than two months, then every next time he submits an identical request, it would take at most half the time
to be processed. If we add to this the fact that the algorithm updates the cache memory with new results, every
time an extended (in terms of dates) version of an already cached query is submitted (the percentage of cached
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results probably increases and never decreases in every search), we could get even more improved execution
times.
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Figure 7: How the number of cached articles affects the speedup of a new search

Due the fact that the algorithm stores for each query in the cache a limited set of information relative to the
retrieved articles, such as ids, dates and relevance factors, the size of the cache per record in the server memory
is kept at minimum. As an example, for caching the 4782 results of the above query, which is a rather generic
one with a lot of articles to be found relative, the corresponding row size in the cache database table was
measured to be less than 150KB. If we combine the small row size with the periodical deletion of cached query
records that expire, the technique can guarantee low storage space requirements in the server.

4.5 Expiration Date and Results Accuracy

In the last phase of the experiment, we will examine the impact of selecting a proper expiration time for the
cached records on the accuracy and the quality of the final output to the end user. As it was mentioned in the
previous paragraph, the proposed algorithm periodically deletes cached records from the corresponding table in
the database. The implementation of such an expiration mechanism in the algorithm is essential not only
because it helps in keeping the storage space of the server’s cache low, but mainly for keeping the accuracy and
the quality of the search results at high levels.

Our purpose in this last step of the experiment is to examine how extending the expiration time of the
cached records degrades the accuracy of the output result. For this reason, we created a virtual user and
constructed a profile for him with favorite thematic categories and keywords. Having no cached data for this
user on the first day of the experiment, we had him submit several queries to the system and we cached the
results for some of these queries. For the next days of the month, we had the user navigating inside the system
by submitting every day several different queries, this time, without caching any of them or expanding the
already existing cached results. Among the submitted queries, we included queries identical to the cached ones
for comparison to be feasible. The personalization mechanism the portal takes into account the daily behavior
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of each registered user (articles he reads, articles he rejects, time spent on each article) and dynamically evolves
the profile of the user. For example, it is possible for a user to choose the sports as his favorite category upon
his registration, but he may occasionally show an increased interest over science related news. The
personalization system then evolves his profile and starts feeding him with scientific news among the sport
news and this evolution has an obvious impact in his search sessions inside the system.

In figure 8, we can see how is the accuracy of the search result degraded over the days passing when
comparing the actual search results with the cached ones. For our virtual user, on the first day, the average
accuracy is obviously 100% as it is the day that the actual queries are cached. Every next day, we get the results
(uncached) of the actual queries, which have relevance over 35% to the submitted requests, and we count at
average, how many of them existed in the cached queries results. As time passes, the output of the actual
queries change (according to the user’s evolving profile) and the average percentage of the cached results in the
actual output decreases. Until the tenth day of the experiment, we can see that the accuracy is close to 90% to
the actual results. However, after the first two weeks the accuracy is degraded at 70% and toward the end of the
third week, it is close to 55%. In other words, if the user were to be presented, at this point, with the cached
results (cached on the first day), instead of the actual results for his queries, he would see almost, only half of
the results that match his changed (since first day) profile. As a conclusion, caching the results of a search for
more than two weeks is not a preferable solution for a registered user, as it might significantly produce invalid
results, not matching his evolving profile and preferences. However, for unregistered users (guests) of the
system, for whom no profile has been formed, an extended expiration date could be used. In our
implementation, there is a distinction for registered and unregistered users when checking for cached data,
which makes the caching algorithm more flexible.
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Figure 8: How extending date expiration affects the results accuracy
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5 Conclusion and Future Work

Due to the dynamism of the Web, the content of the web pages change rapidly, especially when discussing
about a mechanism that fetches more than 5000 articles on a daily basis and presents them personalized back to
the end user. Personalized portals offer the opportunity for focalized results though, it is crucial to create
accurate user profiles. Based on the profiles that are created from the peRSSonal mechanism we created a
personalized search engine for peRSSonal web portal system in order to enhance the searching procedure of the
registered and the non-registered users. Focalizing on the registered users, meaning that we own information
about their preferences, we presented a system that is able to personalize the search results on each user’s
profile and keep the personalization procedure consistent independently of the changes that the profile may
undergo. We presented the algorithms and the formulas that lead to personalizing the results and more
specifically the ordering of results in order to push the relevant articles to the top of the results for a specific
user’s profile. Comparing the results to the generic search’s results it is obvious that the system is able to
enhance the searching procedure and help the users locate the desired results more easily. The system, as every
web based system, exports its results on XML format in order to assure a universal output format. For the future
what we would like to do is to further enhance the whole system with a more accurate search personalization
algorithm in order to make the whole procedure faster and in order to omit any results that are of very low user
interest.
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