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Abstract— The integration of drone technology with 5G
networks presents novel opportunities for enhancing wireless
communication systems. This paper explores the application of
beamforming  optimization  techniques in  dynamic
environments, specifically focusing on moving drones in a
simulated environment based on the DeepMIMO O1 scenario.
By leveraging the unique properties of the O1 drone setup of
DeepMIMO simulation environment, which simulates realistic
urban mobility patterns at millimeter-wave (mmWave)
frequencies, we propose a novel beamforming algorithm
designed to optimize the signal quality and stability in highly
mobile aerial networks. Key performance metrics used in this
study include Signal-to-Noise Ratio (SNR), battery
consumption, and power consumption of both the drones and
the base station. Our findings indicate that the adaptive
beamforming algorithm not only enhances the SNR and reduces
power consumption but also optimizes battery usage compared
to conventional beamforming methods. This study enhances the
understanding of mmWave beamforming dynamics in aerial
scenarios but also lays the groundwork for future advancements
in drone-based communication networks.

Keywords— Adaptive Beamforming, 5G Drone Communication,
DeepMIMO O1 Scenario, Millimeter-Wave Frequencies, Signal-
to-Noise Ratio (SNR) Optimization

I. INTRODUCTION

As Unmanned Aerial Vehicles (UAVs), commonly known
as drones, become increasingly prevalent in commercial,
recreational, and governmental applications, the need for
robust and efficient communication systems to support them
has become apparent. Particularly, the implementation of 5G
technologies offers the potential to dramatically improve the
operational capabilities of drones through enhanced data
transmission rates, reduced latency, and increased
connectivity.

However, the dynamic nature of drones, characterized by
high mobility and varying altitudes, poses significant
challenges to stable and reliable communication. One
promising solution to these challenges is the optimization of
beamforming techniques, which can direct the transmission
and reception of radio waves to focus on a specific moving
target, thereby maximizing the signal quality and efficiency.

Recent research in drone technology and 5G networks
have spurred a substantial body of research focused on
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optimizing communication systems for aerial vehicles.
Beamforming, a critical technique for enhancing signal
quality and efficiency, has been extensively studied in static
and low-mobility scenarios. For instance, traditional
beamforming methods often rely on pre-established
parameters that do not adapt dynamically to the rapid
movements and changing trajectories of drones. Studies have
explored fixed beamforming techniques and their application
in relatively predictable environments [1][2]. These
approaches, while effective in maintaining communication
stability in low-mobility contexts, often fall short in dynamic
and high-mobility scenarios typical of urban drone operations.

Furthermore, recent advancements have also begun to
address the unique challenges posed by highly mobile drones
in urban settings. An adaptive beamforming method that
leverages machine learning to predict drone movements and
adjust beam directions accordingly and a beam alignment
algorithm for drone swarms were introduced, emphasizing
collaborative signal optimization [3][4][5].

In this paper, we focus on the beamforming challenges and
opportunities presented by the DeepMIMO O1 drone scenario
[6], a well-regarded dataset that models realistic urban
mobility in millimeter-wave (mmWave) frequencies. This
scenario provides a perfect testbed to study the effects of
beamforming on moving drones, as it includes various user
mobility patterns and detailed environmental features. Our
main contribution is the development of an adaptive
beamforming algorithm that optimizes the directionality and
power of beams in real-time as drones move through a
simulated urban landscape. We compare our approach to a
simpler one (fixed angle beamforming) evaluating metrics
such as Signal-to-Noise Ratio (SNR), power consumption of
the base station and the drones to demonstrate its effectiveness
in maintaining high-quality communication links, thereby
ensuring continuous and reliable drone operation as well as
better consumption.

Through this study, we aim to push the boundaries of
drone communication technology, paving the way for more
sophisticated and efficient aerial communication networks in
the 5G era and beyond. The paper introduces a beamforming
optimization algorithm that stands out from existing research
by specifically addressing the rapid mobility and
unpredictable trajectory changes of drones in urban
environments at mmWave frequencies. Unlike previous
studies, which primarily focus on static or predictably moving
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targets, our algorithm dynamically adapts to the real-time
movement of drones, leveraging predictive analytics to
anticipate future positions and optimize beam directions
preemptively, optimizing SNR, the power consumption of the
base station while it enhances the drones’ signal and the
battery consumption of the drones. This proactive approach
not only enhances the communication reliability between
drones and ground stations but also significantly reduces the
latency and overhead associated with re-establishing lost
connections due to beam misalignment. Furthermore, the
utilization of the DeepMIMO O1 scenario dataset allows for a
highly realistic simulation environment that incorporates both
the physical and the electromagnetic characteristics of urban
landscapes, providing validation for our algorithm that is
robust and reflective of real-world operational conditions.

The rest of the paper is organized as follows. Section II
discusses the DeepMIMO Ol drone scenario, detailing the
environment and its characteristics which provide a realistic
testbed for our beamforming optimization algorithm. In
Section III, the proposed adaptive beamforming algorithm is
introduced, and its implementation is explained. The
evaluation metrics are outlined in Section IV, followed by the
presentation of the simulation results. Finally, Section V
concludes the paper with a summary of the findings and
suggestions for future research.

II. DESCRIPTION OF THE ENVIRONMENT

The urban environment of the DeepMIMO O1 drone
scenario is characterized by dense building structures, which
introduce significant multipath effects. These multipath
components are vital in understanding the signal propagation
and the resultant beamforming challenges. The scenario
includes not only the Line-of-Sight (LoS) paths but also Non-
Line-of-Sight (NLoS) conditions, making it a comprehensive
testbed for advanced beamforming algorithms. The diverse
building heights and materials contribute to varying reflection,
diffraction, and scattering effects, which are crucial for
realistic simulation outcomes.

The testbed configuration for the DeepMIMO O1 Drone
scenario is meticulously designed to emulate a realistic urban
environment, providing a challenging setting for evaluating
beamforming algorithms. Operating at a frequency of 200
GHz with a transmission power of 45 dBm, the testbed models
realistic urban mobility patterns at mmWave frequencies,
crucial for high-speed data transmission and low latency.

Across four distinct drone User Grids (UG)—UGI, UG2,
UG3, and UG4—a staggering total of nearly 270,000 drones
span the skies. These grids, meticulously arranged and
vertically aligned, present a mosaic of wireless connectivity
challenges. Each grid boasts 124 rows of drones meticulously
spaced at 81 centimeters apart and ranging in height from 40
meters to 42.4 meters with each row having 544 drones. At an
operating frequency of 200 GHz, the propagation model
intricately accounts for reflections, allowing for a nuanced
exploration of communication dynamics amidst the urban
cacophony.

The drones present in the grids also have velocities from -
8m/s to 8m/s and accelerations from —4m/s? to 4m/s? with
the negative values representing the opposite direction from
the positive one, chosen at random for each drone so that the
predictive beamforming algorithm is able to showcase its
superiority over the fixed angles one.
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Fig. 1. The top view of the ‘Ol Drone’ scenario
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Fig. 2. Bird-eye View of the ‘O1 Drone’ scenario

As seen in Figure 1 which represents the top view of the
environment and in Figure 2 which represents the bird-eye
view, two bustling streets intersect, flanked by towering
buildings whose heights vary and are prominently displayed.
Along the 600-meter-long main street and the 440-meter-long
cross street, structures of uniform and varying dimensions
define the skyline. Among them, a Base Station (BS1) stands
at a modest 6-meter height while a Flying Reconfigurable
Intelligent Surface (FRIS) hovers at an elevated 80-meter
altitude, strategically positioned approximately 101.86 meters
away. The drone grid, illustrated in red, forms a dynamic and
flexible infrastructure capable of adjusting its position and
orientation to optimize signal transmission and reception.
These configurations were chosen to provide a realistic and
highly dense drone network, allowing for a nuanced
exploration of communication dynamics and the effectiveness
of beamforming algorithms.

TABLE L. SIMULATION PARAMETERS

Parameter Value
Main Street Length 600 meters
Cross Street Length 440 meters
Base Station Height (BS1) 6 meters
Drone Grids UGI, UG2, UG3, UG4
Rows Per Grid 124
Drones Per Row 544
Total Number of Drones ~270,000
Drone Altitude Range 40 - 42.4 meters
Drone Spacing 81 centimeters
Operating Frequency 200 GHz
Transmission Power 45 dBm
Drone Velocity Randi(-8,8)
Drone Acceleration Randi(-4,4)
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The street setting and the lengths provide a realistic setting
that includes both a main and a cross street, simulating typical
urban layouts and the base station height represents a typical
installation height for urban cellular base stations. As for the
drones, the grids represent a dense and structured aerial
network. The altitude range and spacing mimic real-world
deployment of drone swarms in a controlled formation. These
configurations were chosen to model a highly dense and
organized drone network. Finally, the transmission power
chosen is one that mimics the real-world power of a macro cell
base station, and the operating frequency was selected because
it falls within the mmWave band, known for its high
bandwidth and low latency, which are crucial for high-speed
data transmission.

III. ALLOCATION ALGORITHMS

The allocation algorithms in this study are designed to
show how the beamforming process can be optimized for
moving drones. The DeepMIMO O1 drone scenario will be
used only with the BS and without the FRIS. The predictive
algorithm that is proposed dynamically adjusts beamforming
parameters (azimuth and elevation angles of the beams) to
ensure robust and efficient communication links between
drones and base stations, considering the high mobility and
complex urban environment. The metrics that will be
measured include the SNR of the drones, the battery
consumption of the drones and the power consumption of both
the drones and the base station. A higher SNR value indicates
better signal quality, while efficient power usage is critical for
base stations and drones when the resources (like the battery
life of the drones) are limited. The findings are then compared
to the ones that are achieved through having fixed parameters
when using the beamforming technique.

The beamforming algorithms employed in this scenario
integrate both fixed and predictive beamforming strategies.
The fixed beamforming approach maintains a constant beam
direction based on the initial positions of the drones. In
contrast, the predictive beamforming algorithm dynamically
adjusts the beam directions in real-time, leveraging the
predicted positions of the drones based on their current
velocities and accelerations.

Fixed beamforming is implemented by calculating the
initial beam angles (azimuth and elevation) based on the
positions of the drones relative to the base station. These
angles remain constant throughout the simulation, resulting in
a simplified but less adaptive beamforming strategy. The fixed
beam angles are determined as follows:

Azimuth_fixed = arctan2((y_drone — y_BS)/(x_drone —
x_BS))

Elevationfixed = arctan2(zBS, sqroot((xdrone — xBS)"2 +
(ydrone — yBS)"2)) 2)

Equations 1 and 2 calculate the azimuth angle by
determining the horizontal angle between the BS and the
initial position of the drone and the elevation angle by
calculating the vertical angle between the base station and the
initial position of the drone for the fixed beamforming
strategy. The azimuth angle is the horizontal angle measured
from the north direction to the line connecting the base station

and the drone. The elevation angle accounts for the difference
in height between the base station and the drone, as well as the
horizontal distance between them. Both angles remains
constant throughout the simulation, making it a simplified
approach that does not adapt to the drone's movement [7][8].

Predictive beamforming enhances the communication link
by dynamically adjusting the beam directions based on real-
time predictions of drone positions. This approach accounts
for the drones' velocities and accelerations, ensuring the
beams are always aligned with the moving targets. The
predictive beam angles are calculated using the predicted
positions of the drones:

Position_pred(t) = Position_current + Velocity - t + 0.5 -
Acceleration - t"2 3)

Azimuth_pred = arctan2((y_pred — y_BS)/(x_pred — x_BS)
) €

Elevation_pred = arctan2(z_BS — z_pred, sqroot((x_pred —
x_BS)*2 + (y_pred — y_BS)"2) )

Equation 3 predicts the future position of the drone at time
based on its current position, velocity, and acceleration. By
incorporating both the linear and quadratic terms of time, it
accurately predicts the drone's trajectory, allowing the
beamforming algorithm to preemptively adjust the beam
direction. While equations 4 and 5 show the calculation of the
predictive azimuth and elevation angles. They both use the
predicted x and y coordinates of the drones so this dynamic
adjustment can ensure that the beam is accurately aligned with
the moving drone and that it accounts fast for changes in
horizontal and vertical distance. This method reduces the
latency and overhead associated with re-establishing lost
connections due to beam misalignment, significantly
improving the SNR and power efficiency.

Linear regression played a critical role in our study for
modeling the path loss experienced by drones as they moved
through the urban environment. By analyzing the data from
the DeepMIMO Ol drone scenario, we employed linear
regression to establish a relationship between the distance of
the drones from the base station and the corresponding path
loss. The regression model provided a predictive framework
that allowed us to calculate the expected path loss based on
the drones' current positions. This approach enabled our
beamforming algorithm to dynamically adjust the
transmission power and beam direction, thereby optimizing
the SNR and ensuring efficient communication. By
continuously updating the path loss model with real-time data,
the algorithm maintained high signal quality and minimized
power consumption, demonstrating the effectiveness of linear
regression in enhancing the reliability and performance of
drone communication networks [9].

In the simulation code, linear regression is employed to
derive the path loss model, which is then used to calculate the
path loss for drones at new positions based on their previous
positions.

The linear regression model for path loss can be expressed
as:
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Path Loss (PL) = PLO + 10ylog10(d) ©)

Where PLO, y are constants used and log(d) is a function
of the distance between the base station and the drone. The
constants PLO and y are derived from the linear regression
model using the old position data of the drones and then
applied so that the new pathloss values are found [10].

The proposed algorithm for beamforming optimization in
moving drones leverages predictive analytics to dynamically
adjust beamforming angles based on real-time drone
movements. Initially, the algorithm loads the DeepMIMO
dataset and initializes key parameters such as transmission
power and antenna gains. It calculates the Euclidean distance
between base stations and drones, derives the path loss model

TABLE II. SNR (DB) COMPARISON FOR SELECTED DRONES

Drone ID SNR Fixed (dB) SNR Predictive (dB)
253 20 45
167 18 40
184 25 50
286 10 20
217 30 50
47 22 35
359 15 30
399 12 20
82 20 30
65 25 40

TABLE III. BASE STATION AND DRONES POWER CONSUMPTIONS IN

WATTS
through linear regression and determines fixed beam angles
based on initial drone positions. During the simulation, drone D;"D"e Power Power Power Power
.. . . N X . Consumption Consumption Consumption Consumption
positions are updated in each time step considering their BS Fixed (W) | BS Predictive | Drone Fixed Drone
velocities and accelerations. Predictive beam angles are then W) w) Pre(t;ivc)tive
calculate? to1 1opt1m1ze the SNR and reduce power 753 350 360 3 0
consumption [11]. 167 320 310 7 10
Algorithm — Dynamic Beamforming Angles Optimization 134 302 300 10 8
286 350 320 12 11
Fu.nc.tti‘oil. initiatl}ije _patlziloss; _l{mii_sr:r(dataset, distance_matrix, numUsers): 217 300 290 10 3
nitialize pathloss an structures
for each user (u): 47 306 305 10 9
if pathloss data is available for user: 359 320 300 10 8
store user number, bs index, distance, pathloss, SNR, and user 399 500 490 15 12
position i:l struciﬁ{e 4 SNR struct 82 310 300 10 3
return patnloss an structure 65 305 295 10 3

function
baseStationPosition):
calculate fixed azimuth and elevation angles for each drone based on initial
positions
return fixedAzimuth, fixedElevation
function simulate_beamforming(numPoints, dt, params, pathloss_and_snr):
initialize arrays for SNR, power consumption, and battery levels
calculate fixed beam angles based on initial positions
for each time step (t):
update drone positions based on velocities and accelerations
for each drone (i):
calculate predictive beam angles
calculate path loss using log-distance model
compute SNR for predictive and fixed beamforming
estimate power consumption based on SNR
update battery levels
return results (SNR, power consumption, battery levels)

calculate fixed beam angles(dronePositions,

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of the beamforming
algorithms, several performance metrics are considered,
including SNR, power consumption of the base station and the
battery level/power consumption of the drones. The results
from the simulation for 10 randomly selected drones are
summarized in Tables ILIII, while in Figure 3 and 4 the SNR
values of two random drones (with the IDs of 47 and 167) are
observed as these drones move through the grid. The blue line
represents the SNR that is achieved when the drone is ‘hit’
with the predictive beamforming angle while the red one
represents the SNR values with the fixed angle. In Figure
number 3 its power consumption is also observed as it moves
closer and then further from the base station it communicates
with.

Table II shows the SNR achieved by these 10 randomly
chosen drones when the beamforming was at fixed angles
(azimuth and elevation) and the peak SNR achieved by them
when the algorithm used position prediction to optimize the
angles.

Table III shows the power consumption of the base station
when using beamforming on each one of the drones, again
with a fixed angle at first and then with the dynamic
optimization of the angle.

23 SNR Comparison for Drone 47
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Fig. 3. SNR Result Comparison Of The Two Algorithms For Drone 47
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Fig. 4. SNR Result Comparison Of The Two Algorithms For Drone 167
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Fig. 5. Power Consumption Of The Base Station During Communication
With The Drone 47
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Fig. 6. Power Consumption Of The Base Station During Communication
With Drone 167

Figure 3 illustrates how the predictive beamforming
algorithm dynamically adjusts the beam direction based on
real-time predictions of the drone's position, leading to a
significantly higher and more stable SNR. This improvement

demonstrates the effectiveness of predictive beamforming in
maintaining optimal signal quality by continually aligning the
beam with the moving drone, thus reducing signal degradation
and improving communication.

The graph in Figure 4 compares the SNR over the 100-
second timeframe for drone number 167 which represents a
different case than the one of drone 47. The SNR shows a
gradual improvement over time, peaking around 50 dB.
However, there is a sharp dip around the 90-second mark,
where the SNR drops significantly, indicating a moment of
poor signal quality. This dip corresponds to the period of LOS
loss. Despite the dip, the SNR starts to recover quickly,
demonstrating the effectiveness of the predictive algorithm in
mitigating the impact of LOS loss. The overall trend in SNR
shows the system's resilience and its ability to adapt and
recover from signal disruptions, maintaining communication
quality as much as possible.

Figure 5 also shows how predictive beamforming results
in lower power consumption compared to fixed beamforming,
particularly as the drone moves. This reduction is due to the
algorithm's ability to preemptively adjust the beam direction,
ensuring efficient signal transmission and reducing the need
for excessive power to maintain the link and this efficiency is
crucial for optimizing the energy usage of both the base station
and the drone.

In Figure 6 similar to the drone in Figure 4, the base
station's power consumption is relatively stable at around 300
watts for most of the period. However, a dramatic spike occurs
near the 90-second mark, with power consumption surging to
approximately 325 watts. This spike indicates the base
station's response to the drone's loss of LOS, likely ramping
up its power output to re-establish a stable connection with the
drone. The increased power consumption at the base station
highlights the collaborative effort between the drone and the
base station to maintain communication despite the disruption.

The simulation results demonstrate that predictive
beamforming significantly outperforms fixed beamforming in
terms of maintaining higher SNR levels and reducing power
consumption. This improvement is attributed to the
algorithm's ability to anticipate the movements of drones and
adjust beam directions preemptively. The dynamic nature of
predictive beamforming ensures that the communication links
are consistently optimized, reducing the likelihood of signal
degradation due to misaligned beams.
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Fig. 7. Power Consumption Of Drone 47 While Communicating With The
Base Station
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Fig. 8. Power Consumption Of Drone 167 While Communicating With The
Base Station

The battery level/power consumption analysis in Figure 7,
indicates that while the differences between fixed and
predictive beamforming are minimal, the slight improvements
in power efficiency can contribute to longer operational times
for the drones. This is particularly critical in scenarios where
drones are required to operate for extended periods without
frequent recharging. And again, in Figure 8 or the majority of
the duration, the power consumption remains steady at
approximately 10.1 watts and there is a notable spike in power
consumption around the 90-second mark, again because of the
LOS loss.

V. CONCLUSION AND FUTURE WORK

The integration of advanced beamforming techniques with
5G networks represents a pivotal step towards enhancing the
operational capabilities of drones, particularly in urban
environments. Our study introduces a beamforming
optimization algorithm designed to address the rapid mobility
and unpredictable trajectory changes characteristic of drones.
By leveraging the DeepMIMO O1 drone scenario, we have
developed an adaptive beamforming algorithm that optimizes
signal quality and stability while reducing latency and power
consumption.

The results of our extensive simulations demonstrate the
superiority of our predictive beamforming algorithm over
traditional fixed approaches. The ability to dynamically adjust
beam directions based on real-time predictions of drone
positions ensures high-quality communication links and
minimizes the likelihood of signal degradation. This
advancement is critical for the reliable and efficient operation
of drones in urban settings, where maintaining continuous and
robust communication is paramount.

Moreover, the slight improvements in power efficiency
observed in our simulations can significantly contribute to
longer operational times for drones, which is particularly
critical in scenarios requiring extended operations without
frequent recharging. The ability to maintain high-quality
communication with lower power consumption also
underscores the practical benefits of our predictive
beamforming algorithm in real-world applications.

Our research lays the groundwork for future advancements
in drone-based communication networks, highlighting the
potential for further exploration into predictive analytics to
enhance beamforming techniques. Additionally, expanding
the scope of our simulations to include diverse environmental
conditions and more complex mobility patterns will provide
deeper insights into the practical applications of our algorithm.

In conclusion, our study not only advances the
understanding of mmWave beamforming dynamics in aerial
scenarios but also establishes a robust framework for the
development of future drone-based communication networks.
The innovative approach and significant improvements over
traditional methods demonstrated by our algorithm pave the
way for more reliable, efficient, and resilient drone
communication systems in the era of 5G and beyond.
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