
ISBN 978-3-903176-42-3© 2021 IFIP

A mechanism for 5G MIMO performance

optimization and evaluation

Dimosthenis Tzanakos, Foivos Allayiotis, Vasileios Kokkinos, Christos Bouras

Computer Engineering and Informatics Department

University of Patras

Patras, Greece

tzanakos@ceid.upatras.gr, st1056636@ceid.upatras.gr, kokkinos@cti.gr, bouras@cti.gr

Abstract— MIMO (Multiple-Input Multiple-Output)

technology has become a fundamental technique in current

wireless communications, both in cellular and Wi-Fi networks.

Fifth generation networks (5G) are expected to support

extremely high data rates and more reliable services. The

performance of 5G networks can be significantly improved with

MIMO; yet the integration of optimization algorithms can

further improve its performance. The purpose of this paper is to

study an optimization technique for Channel State Prediction in

a MIMO environment. We will examine a specific

interconnection between 5G and optimization algorithms, to

produce a feasible Channel State Prediction mechanism. For

our experiments, we use a Dataset produced by the DeepMIMO

simulator, which sets up all necessary parameters for our

experiment. On this dataset we apply the Hungarian Algorithm

to optimize the total throughput and based on the results we

conclude that such mechanism is feasible and required for the

introduction of 5G Networks in day-to-day tasks.

Keywords—5G, MIMO, optimization, throughput, channel

state information

I. INTRODUCTION

Worldwide, research into the new generation of mobile
networks, called 5G, has been launched for years.
Architectures provided by the International
Telecommunication Union (ITU) in [1] have made it possible
to integrate Machine Learning (ML) related mechanisms with
optimization techniques to cooperate with network systems.
With this kind of research on 5G technologies, efforts are
made to improve the performance of existing technologies,
by blending different areas of expertise. In our work, we will
blend 5G technology with optimization algorithms, to
produce a mechanism for Channel State Prediction.

The term Optimization is mainly related to techniques
optimizing or even maximizing a problem, given specific
constraints and problem parameters [2]. Due to the ever-
increasing complexity of 5G Networks, and the increase of
devices that will be connected to such networks, optimization
is essential to achieve the 5G Key Performance Indicators
(KPI). By integrating such algorithms into our experiment,
we automatize every possible procedure, improve every
aspect of the technology, and accelerate its introduction in the
scientific area. The data employed in our approach constitude
the input that will be fed to our optimization algorithm. It will
then provide us with the necessary optimum output, without
knowing the values or footprint. The idea above describes a
common optimization algorithm, the Hungarian Algorithm
[3].

The idea of applying optimization algorithms in 5G
networks has been studied and assessed in previous research

works. In [4], a mechanism is proposed, using a Deep
Learning algorithm. In detail, a Channel State Prediction
Mechanism uses a Deep Learning Algorithm to distribute the
services to the users according to their throughput. We
believe that a simpler optimization model, will provide a
mechanism that requires lesser time complexity than a Deep
Learning model and manages to reach similar size footprint.
The authors of [5] have concluded that a generic algorithm
(GA) can reach the similar accuracy of an exhaustive
algorithm (EA) but without the large time complexity. Their
idea is tested, through a series of experiments and produces a
Channel State Prediction Mechanism limited to Video
Application Services (VASes). We expand their idea and
introduce a mechanism that could be used in 5G Networks for
Calls, Music and Gaming as well.

On the other hand, optimization algorithms could be
applied in other aspects of 5G networks. For example, in [6],
a Generic Algorithm (GA) is used to find the optimal places
of Base Stations (BSs), in several dense area networks, so the
energy consumption is minimized. The BSs are placed in
such way, so as to serve as many users as possible with the
least number of BSs. The results show that a Real-coded
Generic Algorithm (RGA) can find the optimal places of BSs
to ensure that energy consumption is at a minimum. In [7] the
authors, believe that an optimization algorithm would help
the system performance of 5G networks, by reducing the
frequency of call drop rate (CDR) and long interruption time
(IT), when a user is moving. They concluded that an
optimization algorithm, could make handover (HO)
seamless, where HO is defined as the process of establishing
a new radio link connection from the source to the target BS.

For our research we are going to develop an environment
that incorporated MIMO technology. Using specific
parameters, we get an appropriate dataset, that we then use it
as input to our optimization algorithm. We will step on a
MIMO Dataset based on accurate ray-tracing data from [8]
and [9]. From there we will apply our optimization algorithm
to produce the result. Our mechanism ensures that the total
sum of throughput, that each user receives, is in the end
maximized and does so in the best time possible.

The rest of the paper is organized as follows. In Section II
we analyze our problem, its necessary features, and the
optimization aspect. In Section III, we examine the
optimization model, the method used in the experiments, the
parameters and conditions contained in its inputs and the
results, while we also describe the proposed mechanism.
Furthermore, in Section IV we describe the testbed and
examine all the necessary parameters presented in the
experiments. The performance evaluation is presented in
Section V with the use of plots and figures. Finally, the

conclusions and some possible future steps are briefly
described in Section VI.

II. SYSTEM MODEL

In this section, we describe the adopted MIMO system and
the network side of our problem.

We use the communication setup introduced in [9]
(DeepMIMO Dataset), where a group of users are served by
multiple antennas simultaneously. Our system model could
easily be illustrated as a normal MIMO environment with
many Base Stations (BSs). We assume that multiple users
receive signals from multiple antennas and that the Base
stations are equipped with several (M) antennas.

With this example environment we generate data that will
serve as input for our optimization algorithm. The data are
based on specific parameters set by the creators of [9] and
[10]. The dataset is open source and available to be used by
anyone. It contains data from three different scenarios, but the
one that interests us is the one where signals are being
produces by stationary BSs. The parameters, that were set by
the original creators of the dataset, are divided into two
categories. Firstly, the parameters that the system contains as
standard information for its channels. The parameters for
every Base Station and for every channel are the Angles of
Departure (AoD) from the base station φaz

b,u , φel
b,u, , the Angles

of Arrival (AoA) at the user, θaz
b,u, θel

b,u , the power received
by the user, Pl

b,u, the phase of the path θl
b,u and the delay of the

path τl
b,u. Secondly the parameters that have a geometrical

meaning in our environment, such as the number of Base
stations (BS) , the number of antennas at each Base Station
(M), the antenna spacing (d) , the bandwidth of the system (B),
the total of the OFDM subcarriers Κ used for the channels’
calculations and the number of the paths of the channels (L).

Fig. 1. A 2D example of the system, representing the real life MIMO
environment with two main streets, buildings, 18 Base stations and the

users along the streets. [10]

Using these data and considering the parameters, we calculate
the Channel State Information.We firstly construct the MxN
channel vector hκ

b,u for every pair of BS and user that the
researcher activates. The calculations are based on the number
of subcarriers, using all the data mentioned above and which
are necessary for these calculations [8], and hκ

b,u is then
generated from (1):

ℎ��,� � ∑ 	
�
�
��� ������,�� ���

� ���,���� !"#�,�, !$��,�% (1)

After processing these data and using them accordingly,
we generate the received signal results. With the knowledge

of the channel vector between the BS and the user, which is
the Channel State Information for these two parameters, the
signal received by the BS and more specifically at the
subcarrier Κ is then calculated, as in:

 &� � ∑ ℎ�,'()'�� *�,' + ,� (2)

where xk,n is the transmit power (for example a transmit power
of 30dBm) and where we also added the noise vκ at the
subcarrier Κ.

The Dataset that we will use, created in [9], is defined by
a ray-tracing scenario, based on works of [10], and it holds
information concerning the signals, the bandwidth, the Angle
of Arrival and Departure (AoA, AoD), etc. On this Dataset we
apply a ML algorithm, to extract the Spectral Efficiency
dataset as output. After being processed, the data are then
passed and sorted into a matrix. Finally, they are categorized
according to the service (Call, Music, Video, Gaming). More
precisely, we will use these limits as a classification in the
dataset that we obtain. The dataset itself contains the
throughput information of the channel for each user (lines of
the matrix), according to the codebook created by the Base
Stations (rows of the matrix) [11]. Considering that every line
of the matrix is a user and that the columns are the properties
of the user, which are predefined by a codebook, we make
assumptions and predict the throughput state of each user and
the recommended service for the user.

In summary we firstly, use a supervised learning model
that links the number of OFDM subcarriers in the Base
Stations that we have chosen to activate with the beamforming
vector created by each one of them. With that beamforming
algorithm, we manage to gather every information necessary
for the channel so that we can continue with the calculation of
the output for our experiments. This output is the rate of the
Channel for every pair of BS and users and it is also referred
as the achievable rate of the channel. Its content is measured
in bps/Hz and we calculate it as follows; for every BS n the
achievable rate of the channel Rn(p), with a beamforming
vector fp, is given by:

 -'./0 � �
|�| ∑ log5.1 + 78-9:/(ℎ�',�950�∈|�| (3)

Then, using the achievable rate of the channel, we
calculate the throughput of the channel. This process excludes
the Bandwidth from the Dataset that we have until that point.
The Dataset with the achievable rate of the Channel contains
Information with the form of bps/Hz. This content shows the
spectral efficiency of the channel. Spectral efficiency most
commonly is expressed as “bits per second per hertz,” or
bits/s/Hz. It can also be defined as the data rate of the channel
divided by the bandwidth of the channel in Hz.

Spectral efficiency = channel data rate in bps / Channel
Bandwidth in Hz

In our example, the bandwidth of the channel is 0.5 GHz,
and it can support a data rate of 6 Mbps. In that case the
spectrum efficiency of the channel can be calculated as
follows:

Spectral efficiency= 6 x 106 / 5 x 108 = 12 x 10-2
bits/second/Hz

The information we need for the maximization side of our
experiments is bps. Then, we evaluate the quality of the
channel and propose different services for it. The services are
based on known throughput limits that are set worldwide and
of course are dependent of the channel itself.

Based on the service we want to support in our system, the
more throughput our users require. For our experiments, we
only collect the speed requirements for 4 types of services:
music, video, gaming, and calls. Each of these services have
different speed requirements. For example, a call needs less
bps than a song, which need less bps than a video. Then of
course, online gaming consumes more bps than all the other
services. Then again, the number of bps that each service
requires depends on many factors, such as the number of
services used at the same time or the quality of service that the
user asks for. To make our experiments simpler and easier to
understand, we will simply take into consideration the
minimum recommended speed for every service. We will
think of the services as one independent from the other. We
collect the recommended speed for the 4 services as followed:

TABLE I: THE THROUGHPUT RECOMMENDATIONS FOR INTERNET

SERVICES

Services and Throughput

Service
Recommended Throughput in

bps

Call(VoIP) 100 kbps

Music 160 kbps

Video 500 kbps

Gaming 6000 kbps

All of the above equations and the overall Dataset is
applied to the algorithms we will discuss in detail in the next
Section, where we analyze our mechanism, and the overall
idea behind our research.

III. PROPOSED MECHANISM DESCRIPTION

To better understand our experiment from the mobile
networks side, it is very important to explain the mechanism
that we used to produce all the necessary parameter values of
our system. To do that, it is better to present the pseudocode
hidden behind the lines of code that produce, line by line, our
dataset and all the content of the simulated environment. This
simulation is a good example of a real environment and it
shows how every part of the system, such as the antennas or
the subcarriers, would interact with all the other parts of the
system, such as the user or the other antennas.

The proposed system model follows a specific process step
by step. It is highly adaptable at any stage of the process and
is also intertwined with our system parameters and the dataset
that we introduce as input. The process is as follows:

Algorithm 1 Proposed scheme:

1: Set system parameters

2: Run ray-tracing simulator Wireless InSite by Remcom

3: Get channel calculations

4: Run Machine Learning model

5: Get users’ throughput

6: Run Hungarian Algorithm

7: For i = 1: total_num_users % Define ML classes

8: if user_throughput(i) < 100 kbps

9: class_user(i) = 1

10: else if 100 kbps <= user_throughput(i) < 160 kbps

11: class_user(i) = 2

12: else if 160 kbps <= user_throughput(i) < 500 kbps

13: class_user(i) = 3

14: else

15: class_user(i) = 4

16: end % if statement

17: end % for loop

We first create the virtual environment and system
characteristics as proposed by [9]. We determine all the
necessary parameters that will define our 5G MIMO system.
We reproduce all the inputs and scripts in MATLAB, and we
export various results and channel datasets. The dataset that
we will use on the first level of output processing is the
Channel State Information dataset. That Dataset is used by a
Machine Learning algorithm, which gives us a more detailed
channel calculations like the spectral efficiency of the channel
for specific conditions. Next, we prepare the spectral
efficiency Dataset to get the throughput of the channel for the
user and for the same specific conditions. We then run the
Optimization model which studies our system and provides us
with maximized solutions based on the Dataset and the
throughput criteria that we defined. What we just described
can also be depicted with a simple flowchart (Fig. 3).

Fig. 2. The process of the throughput-information creation and of the
maximization.

In our scenario, we advocate using the Hungarian
Algorithm because it is a general-purpose algorithm for
solving assignment problems, providing us with the maximum
and/or minimum results at the shortest time complexity. The
Hungarian Algorithm primarily aims to reduce the total
output. In our case, we want to increase the total throughput.
To achieve this, we minimize the amount of throughput we
would normally lose. Thus, the first two steps have been added
to the generic Hungarian Algorithm to obtain the desired
output. It's a very useful model for our system requirements,
as we have a lot of characteristics that primarily slow down
our system. With the steps of the algorithm presented below,
we accelerate our system’s results and maximize the desired
output. The algorithm that we implement is as follows:

Algorithm 2 Hungarian Algorithm:

1: Find maximum value of the matrix

2: Subtract all elements from maxValue

3: Find row minimum

4: Subtract row min from all values in that row

5: Find column minimum

6: Subtract column min from all values in that column

7: Cover all zeros with lines

8: If num_lines < users

9: Find min and subtract from elements with no line

10: Add min to elements with two lines

11: Go to line 7

12: Make the final assignment

The algorithm above is applied to the outputted Dataset of
the ML model introduced in [9] and discussed in detail above.
The algorithm can be summarized in words as such: Firstly,
we find the maximum value of the matrix and subtract from
that value all the elements. We then find the minimum from
every row and subtract it from all the elements of that row. We
perform the same action to the columns. Then we try to find
an optimal assignment. We take each row and search for a
zero. If there are more than one zero in that row, we leave it,
and we continue. If there is only one zero, we make the
assignment and delete all other zeros in the column where the
zero was found. We continue until no more rows are left. The
same process happens for the columns. If there is only one
zero, our code makes the assignment and deletes all other
zeros in the row where the zero was found. We continue until
no more columns are left. If each row has an assignment, we
move forward. If not, we repeat the assignment process, until
no more assignments are possible. If an optimal assignment
was found, the Algorithm stops.

If an optimal assignment has not been found, we follow

the procedure below:

• Tick an unassigned row. If there is a zero in that row,

tick the corresponding column. Stop when no more

ticking is possible

• Look up all the ticked columns if there is an

assignment tick the corresponding row. Stop when no

more ticking is possible

• Run lines through unticked rows and ticked columns

• Find the minimum from the elements that have no lines

passing through them

• Subtract the minimum from the elements that have no

lines passing through them. Add the minimum to all

elements that have two lines passing through them.

Leave the rest unchanged

• Test for an optimal assignment and repeat the process

• Make the final assignment if there is one

The Hungarian Algorithm produces the desired result in

O(n3) time. Initially it worked only on square matrices, but

later versions have modified the algorithm to work with any

size of matrices [12]. In [13], James Munkres had determined

that the algorithm is strongly polynomial.

IV. TESTBED DESCRIPTION

For creating a MIMO-compliant maximization dataset, we
used the MATLAB tool to simulate a real-world environment
with specific parameters. The parameters that we can change
depending on our needs are: Active BSs, Active users,
Number of BS antennas, Antenna spacing, System bandwidth,
OFDM parameters and Number of channel paths.

By setting the parameters as shown in Table II, we firstly
get the Channel State Information. Then we use that
information to get the content that we want for our
experiments.

TABLE II: THE DATASET PARAMETERS WE USED FOR OUR SYSTEM.

Dataset parameters and Values

Dataset parameters Values

active_BS [3, 10]

active_user_first and active_user_last 1600 and 1620

num_ant_x, num_ant_y, and num_ant_z [1, 32, 8]

ant_spacing 0.5

bandwidth 0.5

num_OFDM, OFDM_sampling_factor,

OFDM_limit
[1024, 1, 64]

num_paths 3

For creating a MIMO-compliant maximization dataset, we
used the MATLAB tool to simulate a real-world environment
with specific parameters. The parameters that we can change
depending on our needs are:

• Active BSs (active_BS in the MATLAB code): The

first parameter is the number of the Base Stations that

we want to use and activate in our experiments. By

having active and inactive Base Stations in our code,

we minimize the Dataset size and in the same time

maximize the performance of our technique and

algorithm. In case we want for example to assess the

interaction between the mobile users and the Base

Stations 3 and 10, we set active_BS=[3,10].

• Active users (active_user_first and active_user_last in

the MATLAB code): In the same context as in Active

BSs, we define our active users, meaning the ones that

want to use our network at that specific period of time.

We do that by naming the first and last row of the users

that need the networks services at that time. For

example, by setting active_user_first=1600 and

active_user_last=1620, we activate the users between

the rows 1600 and 1620.

• Number of BS antennas (num_ant_x, num_ant_y, and

num_ant_z in the MATLAB code): In our example, we

have a total of 18 Base Stations in an area depicted in

Fig.1. With a uniform array, our Base Stations expand

in the x, y and z axes. That means that if our system

and our Base Stations have a 16 × 16 uniform planar

array (UPA) along the street, we set num_ant_x=1,

num_ant_y=16, and num_ant_z=16.

• Antenna spacing (ant_spacing in the MATLAB code):

The distance between two antennas of a Base Station

is relative to the system’s wavelength. In our

experiments, we set ant_spacing=0.5 , as in a half-

wavelength antenna spacing system.

• System bandwidth (bandwidth in the MATLAB code):

Our system requires a GHz type of data transfer

capacity. A network with the specifications of our

experiments would need a 500MHz bandwidth. Thus,

we set bandwidth=0.5.

• OFDM parameters (num_OFDM,

OFDM_sampling_factor, and OFDM_limit in the

MATLAB code): The antennas contained in our

system’s BSs have a specific number of subcarriers,

the number of which we can control. By activating

only some of the subcarriers, we reduce, as mentioned

previously, the Dataset’s size. With the OFDM_limit

parameter, we set a limit on the samples that we want

to consider for our experiments. With

OFDM_sampling_factor we define exactly that

sample group of subcarriers which we take into

consideration for our calculations. In our example,

meaning an OFDM system with 1024 subcarriers, we

set num_OFDM = 1024, OFDM_sampling_factor = 1,

and OFDM_limit = 64 because we calculate the

channels only at the first 64 subcarriers,

• Number of channel paths (num_paths in the MATLAB

code): For each interaction between a mobile user and

a Base Station, our system calculates a total of 25

possible paths, each one with different received power

and data capacity. In many applications, we consider

only the strongest path, or a number of the strongest

paths. We set num_paths=3 for the calculation of the 3

strongest channel paths calculated in the system.

V. PERFORMANCE EVALUATION

In this section, we give describe our experiment, and an
explanation of the results with plots and figures.

To begin with the production of our last dataset, we select
the beam detection scenario we are interested in, from the
available scenarios provided by Remcom Wireless InSite [8].
In our case, a real mobile phone system. This ray tracing
scenario contains the appropriate data describing the physical
characteristics of the environment we are studying, as
described in IV, and in the form of MATLAB code entry (base
stations, users, buildings, materials). We prepare the
environment on which the simulations will be made, giving to
the code the appropriate parameters for the experiments. We

give the values of Table II in the corresponding parameters in
the code file, we run the first level of experiments and we get
the Channel State Information Dataset. Then, after generating
the dataset with the CSI content, we use it as input to the 2nd
part of the simulation, which is to use Machine Learning
techniques to produce the dataset with the throughput
information we want for the final part of the experiments. This
step generates all the useful files that contain useful
information to describe the channel and the user-base station
relationship. In addition to useful, for our case, files, such as
the codebook, which determines the order in which the
information is placed in the final dataset for the throughput of
the user, and the Deep Learning input, which is the processed
dataset with complex information for the throughput.

The DL output contains the spectral efficiency information
we have mentioned above and which we use to find the final
dataset with the throughput for the channel from the user’s
side. It has a size where U is the number of users and C is the
number of columns given by the codebook. We then divide by
the channel wavelength to produce a matrix of the same size,
but with throughput (bps) information. We believe that an
optimization algorithm helps us achieve our goal in a
relatively small amount of time.

So, for the optimization application that we recommend,
we have the following:

• We take the output of the Deep Learning and remove
the wavelength from the dataset, dividing each cell by
the wavelength of the system.

• Each line of the generated dataset is a user (entity for
the optimization algorithm).

• We run the proposed optimization algorithm on the
output matrix.

• The final dataset is composed of as many rows as users
and four columns. The first column is the user’s
throughput given from a specific subcarrier. The
second column holds the number of the subcarrier that
provides the throughput, while the third column has the
service the throughput falls upon. The final column
contains the recommended throughput the user needs
to carry on his service with no problem.

With this method, we will receive a maximized solution
with the proposed internet service. We give as an example four
services, but a future implementation could include a wider
range of throughput. In the graphs, below we can see the
results when we run three different scenarios of algorithms
used to generate the final output. The first two algorithms are
basic forms of the Hungarian Algorithm The third algorithm,
instead, provides the optimized implementation of the
Hungarian Algorithm. We choose this approach to show that
optimization algorithms, will always favor others, both in
results and in time complexity. The algorithms are as follows:

• Algorithm 1 uses basic “for” loops and “ifs” to scan
the input matrix for the maximum value. It then deletes
the user and subcarrier from which the max value came
from. It continues iteratively until all the users are
satisfied.

• Algorithm 2 uses the built-in functions for retrieving
the maximum value in linear indices, and it transforms
them into row and column values. The returned row
and column represent the user to whom the
Throughput belongs to and the subcarrier from which

the maximum Throughput is originated. The returned
user and subcarrier are deleted. It also continues
iteratively until all the users are satisfied.

• Algorithm 3 is the implementation of the proposed
Hungarian Algorithm. The Algorithm runs the built-in
function “matchpairs()” which finds the best
assignment for all users to achieve the maximum total
throughput.

In Fig.3, we show the different aforementioned scenarios
(marked as S in the figure, where S1 corresponds to Scenario
1, S2 to Scenario 2 and S3 to scenario 3). The number, under
each bar corresponds to the number of users we employed to
our system. Finally, AL1 corresponds to Algorithm 1, AL2 to
Algorithm 2, while HA corresponds to the Hungarian
Algorithm. As we can see, the proposed algorithm greatly
impacts the total throughput. In all cases, the total throughput
per number of users is greater than both the other algorithms
that use a very basic structure. This is achieved as the
Hungarian Algorithm is designed to solve assignment
problems, in such a way that in the end the desired output, in
our case the throughput, is maximized. The users are served
by the nearest subcarrier, as the closer a user is to an antenna
the larger the generated Throughput is. Furthermore, the other
two algorithms eliminate a subcarrier without taking into
account the other users. More specifically, the deleted
subcarrier may provide the highest throughput to a single user,
but if the deleted subcarrier covered another user equally well,
the total throughput could have been higher if the deleted
subcarrier had been assigned elsewhere. The other two
algorithms do not take such cases into account.

Fig. 3. The effects of each algorithm on the throughput of the users.

Fig.4 shows that our proposed algorithm produces the final
output in the best time possible. Even though, the time for a
small number of users is slightly greater than the other two
algorithms, with several users, around 500 and 1000, it
produces the results in less time than both algorithms. It takes
longer than the other two algorithms in cases where the users
are fewer as it is not profitable to run this complex algorithm
for such a small number of samples. While in cases of
increasing number of users we can say that it handles a larger
volume of data better than the other two algorithms, as it
consists of much fewer iterations and no nested iterations. It
also takes advantage of MATLAB’s built in functions, which
are designed to execute at the best possible time, but also
makes better use of recursion. Another thing to factor in, is the
fact that the Hungarian Algorithm only requires to be executed

once and it also skips the process of deleting the user who
requests Throughput, and the subcarrier who provides it.

Fig. 4. The time complexity of each algorithm used in the experiments per

number of users.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for creating a dataset
for a 5G mobile network and maximizing the results each
time, depending on the needs of the system and of the users.
This dataset has a feature that can be used further in
optimization techniques, to automate and accelerate the
mobile network. After generating the dataset with the desired
information, the next step is to convert it to the appropriate
format as an input to an optimization algorithm. To this dataset
we add the minimum throughput required to perform a
particular service on the Internet, such as Call over IP or
playing a video on YouTube. Then, the optimization
algorithm takes this dataset as input and accurately selects the
service that the user can support at that time and under the
specific conditions.

By introducing optimization methods into the system, a
comprehensible and sustainable process is achieved that
solves various problems, such as finding speed limits for the
services provided by the internet. The results show that the
proposed model, with the appropriate input parameters,
effectively adapts to the ever-changing environment, while at
the same time providing a robust mobile network system.

The results of this work encourage various future research,
such as the use of other forms of information to predict and
maximize network quality and the exploration of other
network simulation scenarios in multi-user environments and
multiple antennas.

Finally, a future extension of our work could be done in
the field of Machine Learning in selecting a more appropriate
technical classification. There are many such techniques that
can be applied and evaluated based on meeting the real needs
of users and databases. Examples are linear classifiers,
Perceptron’s sensors, support vector machines, decision trees,
neural networks, Bayes networks, etc.

REFERENCES

[1] F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson,
and V. Ram Ov, “A Flexible Machine-Learning-Aware Architecture
for Future WLANs”, IEEE Communications Magazine • March 2020
IEEE Communications Magazine 58(3):25-31.

[2] S. Amaran, N. V. Sahinidis, B. Sharda, B. “Sharda Simulation
optimization: a review of algorithms and applications”, 4OR-Q J Oper
Res 12, 301–333 (2014).

[3] H. W. Kuhn, "The Hungarian Method for the assignment problem",
Naval Research Logistics Quarterly, 2: 83–97, 1955.

[4] M.-P. Bui, N.-S. Vo, T.-V. Truong, T.-H. Nguyen, N. V. Nguyen, and
C. Yin, “Genetic Algorithms for Multi-tier Caching and Resource
Sharing Optimized Video Streaming in 5G Ultra-dense Networks”.

[5] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R.
Jana, and V. Gopalakrishnan, “On Leveraging Machine and Deep
Learning for Throughput Prediction in Cellular Networks: Design,
Performance, and Challenges”, IEEE Communications Magazine •
March 2020.

[6] R. Sachan, T. J. Choi, C. W. Ahn, “A Genetic Algorithm with Location
Intelligence Method for Energy Optimization in 5G Wireless
Networks”, Hindawi Publishing Corporation, Discrete Dynamics in
Nature and Society, 2016.

[7] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih and K. S.
Mohamed, "Auto Tuning Self-Optimization Algorithm for Mobility
Management in LTE-A and 5G HetNets," in IEEE Access, vol. 8, pp.
294-304, 2020, doi: 10.1109/ACCESS.2019.2961186.

[8] Remcom, “Wireless insite,” http://www.remcom.com/wireless-insite.

[9] DeepMIMO Dataset. [Online]. Available: http://www.DeepMIMO.net

[10] A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for
Millimeter Wave and Massive MIMO Applications”, Proc. of
Information Theory and Applications Workshop (ITA), Feb., 2019.

[11] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive mimo
csi feedback,” IEEE Wireless Communications Letters, 2018.

[12] H. W. Kuhn, "Variants of the Hungarian method for assignment
problems", Naval Research Logistics Quarterly, 3: 253–258, 1956.

[13] J. Munkres, "Algorithms for the Assignment and Transportation
Problems", Journal of the Society for Industrial and Applied
Mathematics, 5(1):32–38, 1957 March.

