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Abstract— MIMO (Multiple-Input Multiple-Output) 

technology has become a fundamental technique in current 

wireless communications, both in cellular and Wi-Fi networks. 

Fifth generation networks (5G) are expected to support 

extremely high data rates and more reliable services. The 

performance of 5G networks can be significantly improved with 

MIMO; yet the integration of optimization algorithms can 

further improve its performance. The purpose of this paper is to 

study an optimization technique for Channel State Prediction in 

a MIMO environment. We will examine a specific 

interconnection between 5G and optimization algorithms, to 

produce a feasible Channel State Prediction mechanism. For 

our experiments, we use a Dataset produced by the DeepMIMO 

simulator, which sets up all necessary parameters for our 

experiment. On this dataset we apply the Hungarian Algorithm 

to optimize the total throughput and based on the results we 

conclude that such mechanism is feasible and required for the 

introduction of 5G Networks in day-to-day tasks. 

Keywords—5G, MIMO, optimization, throughput, channel 

state information 

I. INTRODUCTION  

Worldwide, research into the new generation of mobile 
networks, called 5G, has been launched for years. 
Architectures provided by the International 
Telecommunication Union (ITU) in [1] have made it possible 
to integrate Machine Learning (ML) related mechanisms with 
optimization techniques to cooperate with network systems. 
With this kind of research on 5G technologies, efforts are 
made to improve the performance of existing technologies, 
by blending different areas of expertise. In our work, we will 
blend 5G technology with optimization algorithms, to 
produce a mechanism for Channel State Prediction. 

The term Optimization is mainly related to techniques 
optimizing or even maximizing a problem, given specific 
constraints and problem parameters [2]. Due to the ever-
increasing complexity of 5G Networks, and the increase of 
devices that will be connected to such networks, optimization 
is essential to achieve the 5G Key Performance Indicators 
(KPI). By integrating such algorithms into our experiment, 
we automatize every possible procedure, improve every 
aspect of the technology, and accelerate its introduction in the 
scientific area. The data employed in our approach constitude 
the input that will be fed to our optimization algorithm. It will 
then provide us with the necessary optimum output, without 
knowing the values or footprint. The idea above describes a 
common optimization algorithm, the Hungarian Algorithm 
[3]. 

The idea of applying optimization algorithms in 5G 
networks has been studied and assessed in previous research 

works. In [4], a mechanism is proposed, using a Deep 
Learning algorithm. In detail, a Channel State Prediction 
Mechanism uses a Deep Learning Algorithm to distribute the 
services to the users according to their throughput. We 
believe that a simpler optimization model, will provide a 
mechanism that requires lesser time complexity than a Deep 
Learning model and manages to reach similar size footprint. 
The authors of [5] have concluded that a generic algorithm 
(GA) can reach the similar accuracy of an exhaustive 
algorithm (EA) but without the large time complexity. Their 
idea is tested, through a series of experiments and produces a 
Channel State Prediction Mechanism limited to Video 
Application Services (VASes). We expand their idea and 
introduce a mechanism that could be used in 5G Networks for 
Calls, Music and Gaming as well. 

On the other hand, optimization algorithms could be 
applied in other aspects of 5G networks. For example, in [6], 
a Generic Algorithm (GA) is used to find the optimal places 
of Base Stations (BSs), in several dense area networks, so the 
energy consumption is minimized. The BSs are placed in 
such way, so as to serve as many users as possible with the 
least number of BSs. The results show that a Real-coded 
Generic Algorithm (RGA) can find the optimal places of BSs 
to ensure that energy consumption is at a minimum. In [7] the 
authors, believe that an optimization algorithm would help 
the system performance of 5G networks, by reducing the 
frequency of call drop rate (CDR) and long interruption time 
(IT), when a user is moving. They concluded that an 
optimization algorithm, could make handover (HO) 
seamless, where HO is defined as the process of establishing 
a new radio link connection from the source to the target BS. 

For our research we are going to develop an environment 
that incorporated MIMO technology. Using specific 
parameters, we get an appropriate dataset, that we then use it 
as input to our optimization algorithm. We will step on a 
MIMO Dataset based on accurate ray-tracing data from [8] 
and [9]. From there we will apply our optimization algorithm 
to produce the result. Our mechanism ensures that the total 
sum of throughput, that each user receives, is in the end 
maximized and does so in the best time possible. 

The rest of the paper is organized as follows. In Section II 
we analyze our problem, its necessary features, and the 
optimization aspect. In Section III, we examine the 
optimization model, the method used in the experiments, the 
parameters and conditions contained in its inputs and the 
results, while we also describe the proposed mechanism. 
Furthermore, in Section IV we describe the testbed and 
examine all the necessary parameters presented in the 
experiments. The performance evaluation is presented in 
Section V with the use of plots and figures. Finally, the 



conclusions and some possible future steps are briefly 
described in Section VI. 

II. SYSTEM MODEL 

In this section, we describe the adopted MIMO system and 
the network side of our problem. 

We use the communication setup introduced in [9] 
(DeepMIMO Dataset), where a group of users are served by 
multiple antennas simultaneously. Our system model could 
easily be illustrated as a normal MIMO environment with 
many Base Stations (BSs). We assume that multiple users 
receive signals from multiple antennas and that the Base 
stations are equipped with several (M) antennas. 

With this example environment we generate data that will 
serve as input for our optimization algorithm. The data are 
based on specific parameters set by the creators of [9] and 
[10]. The dataset is open source and available to be used by 
anyone. It contains data from three different scenarios, but the 
one that interests us is the one where signals are being 
produces by stationary BSs. The parameters, that were set by 
the original creators of the dataset, are divided into two 
categories. Firstly, the parameters that the system contains as 
standard information for its channels. The parameters for 
every Base Station and for every channel are the Angles of 
Departure (AoD) from the base station φaz

b,u , φel
b,u, , the Angles 

of Arrival (AoA) at the user, θaz
b,u, θel

b,u , the power received 
by the user, Pl

b,u, the phase of the path θl
b,u and the delay of the 

path τl
b,u. Secondly the parameters that have a geometrical 

meaning in our environment, such as the number of Base 
stations (BS) , the number of antennas at each Base Station 
(M), the antenna spacing (d) , the bandwidth of the system (B), 
the total of the OFDM subcarriers Κ used for the channels’ 
calculations and the number of the paths of the channels (L). 

 

Fig. 1. A 2D example of the system, representing the real life MIMO 
environment with two main streets, buildings, 18 Base stations and the 

users along the streets. [10] 

Using these data and considering the parameters, we calculate 
the Channel State Information.We firstly construct the MxN 
channel vector hκ

b,u for every pair of BS and user that the 
researcher activates. The calculations are based on the number 
of subcarriers, using all the data mentioned above and which 
are necessary for these calculations [8], and hκ

b,u is then 
generated from (1): 
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After processing these data and using them accordingly, 
we generate the received signal results. With the knowledge 

of the channel vector between the BS and the user, which is 
the Channel State Information for these two parameters, the 
signal received by the BS and more specifically at the 
subcarrier Κ is then calculated, as in: 
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where xk,n is the transmit power (for example a transmit power 
of 30dBm) and where we also added the noise vκ at the 
subcarrier Κ. 

The Dataset that we will use, created in [9], is defined by 
a ray-tracing scenario, based on works of [10], and it holds 
information concerning the signals, the bandwidth, the Angle 
of Arrival and Departure (AoA, AoD), etc. On this Dataset we 
apply a ML algorithm, to extract the Spectral Efficiency 
dataset as output. After being processed, the data are then 
passed and sorted into a matrix. Finally, they are categorized 
according to the service (Call, Music, Video, Gaming). More 
precisely, we will use these limits as a classification in the 
dataset that we obtain. The dataset itself contains the 
throughput information of the channel for each user (lines of 
the matrix), according to the codebook created by the Base 
Stations (rows of the matrix) [11]. Considering that every line 
of the matrix is a user and that the columns are the properties 
of the user, which are predefined by a codebook, we make 
assumptions and predict the throughput state of each user and 
the recommended service for the user. 

In summary we firstly, use a supervised learning model 
that links the number of OFDM subcarriers in the Base 
Stations that we have chosen to activate with the beamforming 
vector created by each one of them. With that beamforming 
algorithm, we manage to gather every information necessary 
for the channel so that we can continue with the calculation of 
the output for our experiments. This output is the rate of the 
Channel for every pair of BS and users and it is also referred 
as the achievable rate of the channel. Its content is measured 
in bps/Hz and we calculate it as follows; for every BS n the 
achievable rate of the channel Rn(p), with a beamforming 
vector fp, is given by: 
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Then, using the achievable rate of the channel, we 
calculate the throughput of the channel. This process excludes 
the Bandwidth from the Dataset that we have until that point. 
The Dataset with the achievable rate of the Channel contains 
Information with the form of bps/Hz. This content shows the 
spectral efficiency of the channel. Spectral efficiency most 
commonly is expressed as “bits per second per hertz,” or 
bits/s/Hz. It can also be defined as the data rate of the channel 
divided by the bandwidth of the channel in Hz. 

Spectral efficiency = channel data rate in bps / Channel 
Bandwidth in Hz 

In our example, the bandwidth of the channel is 0.5 GHz, 
and it can support a data rate of 6 Mbps. In that case the 
spectrum efficiency of the channel can be calculated as 
follows: 

Spectral efficiency= 6 x 106 / 5 x 108 = 12 x 10-2 
bits/second/Hz 

The information we need for the maximization side of our 
experiments is bps. Then, we evaluate the quality of the 
channel and propose different services for it. The services are 
based on known throughput limits that are set worldwide and 
of course are dependent of the channel itself. 



Based on the service we want to support in our system, the 
more throughput our users require. For our experiments, we 
only collect the speed requirements for 4 types of services: 
music, video, gaming, and calls. Each of these services have 
different speed requirements. For example, a call needs less 
bps than a song, which need less bps than a video. Then of 
course, online gaming consumes more bps than all the other 
services. Then again, the number of bps that each service 
requires depends on many factors, such as the number of 
services used at the same time or the quality of service that the 
user asks for. To make our experiments simpler and easier to 
understand, we will simply take into consideration the 
minimum recommended speed for every service. We will 
think of the services as one independent from the other. We 
collect the recommended speed for the 4 services as followed: 

TABLE I: THE THROUGHPUT RECOMMENDATIONS FOR INTERNET 

SERVICES 

Services and Throughput 

Service 
Recommended Throughput in 

bps 

Call(VoIP) 100 kbps 

Music 160 kbps 

Video 500 kbps 

Gaming 6000 kbps 

All of the above equations and the overall Dataset is 
applied to the algorithms we will discuss in detail in the next 
Section, where we analyze our mechanism, and the overall 
idea behind our research. 

III. PROPOSED MECHANISM DESCRIPTION 

To better understand our experiment from the mobile 
networks side, it is very important to explain the mechanism 
that we used to produce all the necessary parameter values of 
our system. To do that, it is better to present the pseudocode 
hidden behind the lines of code that produce, line by line, our 
dataset and all the content of the simulated environment. This 
simulation is a good example of a real environment and it 
shows how every part of the system, such as the antennas or 
the subcarriers, would interact with all the other parts of the 
system, such as the user or the other antennas. 

The proposed system model follows a specific process step 
by step. It is highly adaptable at any stage of the process and 
is also intertwined with our system parameters and the dataset 
that we introduce as input. The process is as follows: 

Algorithm 1 Proposed scheme: 

1: Set system parameters 

2: Run ray-tracing simulator Wireless InSite by Remcom 

3: Get channel calculations 

4: Run Machine Learning model 

5: Get users’ throughput 

6: Run Hungarian Algorithm 

7: For i = 1: total_num_users % Define ML classes 

8: if user_throughput(i) < 100 kbps 

9:  class_user(i) = 1 

10: else if 100 kbps <= user_throughput(i) < 160 kbps 

11:  class_user(i) = 2 

12: else if 160 kbps <= user_throughput(i) < 500 kbps 

13:  class_user(i) = 3 

14: else 

15:  class_user(i) = 4 

16: end % if statement 

17: end % for loop 

We first create the virtual environment and system 
characteristics as proposed by [9]. We determine all the 
necessary parameters that will define our 5G MIMO system. 
We reproduce all the inputs and scripts in MATLAB, and we 
export various results and channel datasets. The dataset that 
we will use on the first level of output processing is the 
Channel State Information dataset. That Dataset is used by a 
Machine Learning algorithm, which gives us a more detailed 
channel calculations like the spectral efficiency of the channel 
for specific conditions. Next, we prepare the spectral 
efficiency Dataset to get the throughput of the channel for the 
user and for the same specific conditions. We then run the 
Optimization model which studies our system and provides us 
with maximized solutions based on the Dataset and the 
throughput criteria that we defined. What we just described 
can also be depicted with a simple flowchart (Fig. 3). 

 

Fig. 2. The process of the throughput-information creation and of the 
maximization. 



In our scenario, we advocate using the Hungarian 
Algorithm because it is a general-purpose algorithm for 
solving assignment problems, providing us with the maximum 
and/or minimum results at the shortest time complexity. The 
Hungarian Algorithm primarily aims to reduce the total 
output. In our case, we want to increase the total throughput. 
To achieve this, we minimize the amount of throughput we 
would normally lose. Thus, the first two steps have been added 
to the generic Hungarian Algorithm to obtain the desired 
output. It's a very useful model for our system requirements, 
as we have a lot of characteristics that primarily slow down 
our system. With the steps of the algorithm presented below, 
we accelerate our system’s results and maximize the desired 
output. The algorithm that we implement is as follows: 

Algorithm 2 Hungarian Algorithm: 

1: Find maximum value of the matrix 

2: Subtract all elements from maxValue 

3: Find row minimum 

4: Subtract row min from all values in that row 

5: Find column minimum 

6: Subtract column min from all values in that column 

7: Cover all zeros with lines 

8: If num_lines < users 

9:  Find min and subtract from elements with no line 

10:  Add min to elements with two lines 

11:  Go to line 7 

12: Make the final assignment 

The algorithm above is applied to the outputted Dataset of 
the ML model introduced in [9] and discussed in detail above. 
The algorithm can be summarized in words as such: Firstly, 
we find the maximum value of the matrix and subtract from 
that value all the elements. We then find the minimum from 
every row and subtract it from all the elements of that row. We 
perform the same action to the columns. Then we try to find 
an optimal assignment. We take each row and search for a 
zero. If there are more than one zero in that row, we leave it, 
and we continue. If there is only one zero, we make the 
assignment and delete all other zeros in the column where the 
zero was found. We continue until no more rows are left. The 
same process happens for the columns. If there is only one 
zero, our code makes the assignment and deletes all other 
zeros in the row where the zero was found. We continue until 
no more columns are left. If each row has an assignment, we 
move forward. If not, we repeat the assignment process, until 
no more assignments are possible. If an optimal assignment 
was found, the Algorithm stops. 

If an optimal assignment has not been found, we follow 

the procedure below: 

• Tick an unassigned row. If there is a zero in that row, 

tick the corresponding column. Stop when no more 

ticking is possible 

• Look up all the ticked columns if there is an 

assignment tick the corresponding row. Stop when no 

more ticking is possible 

• Run lines through unticked rows and ticked columns 

• Find the minimum from the elements that have no lines 

passing through them 

• Subtract the minimum from the elements that have no 

lines passing through them. Add the minimum to all 

elements that have two lines passing through them. 

Leave the rest unchanged 

• Test for an optimal assignment and repeat the process 

• Make the final assignment if there is one 

The Hungarian Algorithm produces the desired result in 

O(n3) time. Initially it worked only on square matrices, but 

later versions have modified the algorithm to work with any 

size of matrices [12]. In [13], James Munkres had determined 

that the algorithm is strongly polynomial. 

IV. TESTBED DESCRIPTION 

For creating a MIMO-compliant maximization dataset, we 
used the MATLAB tool to simulate a real-world environment 
with specific parameters. The parameters that we can change 
depending on our needs are: Active BSs, Active users, 
Number of BS antennas, Antenna spacing, System bandwidth, 
OFDM parameters and Number of channel paths. 

By setting the parameters as shown in Table II, we firstly 
get the Channel State Information. Then we use that 
information to get the content that we want for our 
experiments. 

TABLE II: THE DATASET PARAMETERS WE USED FOR OUR SYSTEM. 

Dataset parameters and Values 

Dataset parameters Values 

active_BS [3, 10] 

active_user_first and active_user_last 1600 and 1620 

num_ant_x, num_ant_y, and num_ant_z [1, 32, 8] 

ant_spacing 0.5 

bandwidth 0.5 

num_OFDM, OFDM_sampling_factor, 

OFDM_limit 
[1024, 1, 64] 

num_paths 3 

For creating a MIMO-compliant maximization dataset, we 
used the MATLAB tool to simulate a real-world environment 
with specific parameters. The parameters that we can change 
depending on our needs are: 

• Active BSs (active_BS in the MATLAB code): The 

first parameter is the number of the Base Stations that 

we want to use and activate in our experiments. By 

having active and inactive Base Stations in our code, 

we minimize the Dataset size and in the same time 

maximize the performance of our technique and 

algorithm. In case we want for example to assess the 

interaction between the mobile users and the Base 

Stations 3 and 10, we set active_BS=[3,10]. 

• Active users (active_user_first and active_user_last in 

the MATLAB code): In the same context as in Active 

BSs, we define our active users, meaning the ones that 

want to use our network at that specific period of time. 

We do that by naming the first and last row of the users 



that need the networks services at that time. For 

example, by setting active_user_first=1600 and 

active_user_last=1620, we activate the users between 

the rows 1600 and 1620.  

• Number of BS antennas (num_ant_x, num_ant_y, and 

num_ant_z in the MATLAB code): In our example, we 

have a total of 18 Base Stations in an area depicted in 

Fig.1. With a uniform array, our Base Stations expand 

in the x, y and z axes. That means that if our system 

and our Base Stations have a 16 × 16 uniform planar 

array (UPA) along the street, we set num_ant_x=1, 

num_ant_y=16, and num_ant_z=16. 

• Antenna spacing (ant_spacing in the MATLAB code): 

The distance between two antennas of a Base Station 

is relative to the system’s wavelength. In our 

experiments, we set ant_spacing=0.5 , as in a half-

wavelength antenna spacing system. 

• System bandwidth (bandwidth in the MATLAB code): 

Our system requires a GHz type of data transfer 

capacity. A network with the specifications of our 

experiments would need a 500MHz bandwidth. Thus, 

we set bandwidth=0.5. 

• OFDM parameters (num_OFDM, 

OFDM_sampling_factor, and OFDM_limit in the 

MATLAB code): The antennas contained in our 

system’s BSs have a specific number of subcarriers, 

the number of which we can control. By activating 

only some of the subcarriers, we reduce, as mentioned 

previously, the Dataset’s size. With the OFDM_limit 

parameter, we set a limit on the samples that we want 

to consider for our experiments. With 

OFDM_sampling_factor we define exactly that 

sample group of subcarriers which we take into 

consideration for our calculations. In our example, 

meaning an OFDM system with 1024 subcarriers, we 

set num_OFDM = 1024, OFDM_sampling_factor = 1, 

and OFDM_limit = 64 because we calculate the 

channels only at the first 64 subcarriers, 

• Number of channel paths (num_paths in the MATLAB 

code): For each interaction between a mobile user and 

a Base Station, our system calculates a total of 25 

possible paths, each one with different received power 

and data capacity. In many applications, we consider 

only the strongest path, or a number of the strongest 

paths. We set num_paths=3 for the calculation of the 3 

strongest channel paths calculated in the system. 

V. PERFORMANCE EVALUATION 

In this section, we give describe our experiment, and an 
explanation of the results with plots and figures. 

To begin with the production of our last dataset, we select 
the beam detection scenario we are interested in, from the 
available scenarios provided by Remcom Wireless InSite [8]. 
In our case, a real mobile phone system. This ray tracing 
scenario contains the appropriate data describing the physical 
characteristics of the environment we are studying, as 
described in IV, and in the form of MATLAB code entry (base 
stations, users, buildings, materials). We prepare the 
environment on which the simulations will be made, giving to 
the code the appropriate parameters for the experiments. We 

give the values of Table II in the corresponding parameters in 
the code file, we run the first level of experiments and we get 
the Channel State Information Dataset. Then, after generating 
the dataset with the CSI content, we use it as input to the 2nd 
part of the simulation, which is to use Machine Learning 
techniques to produce the dataset with the throughput 
information we want for the final part of the experiments. This 
step generates all the useful files that contain useful 
information to describe the channel and the user-base station 
relationship. In addition to useful, for our case, files, such as 
the codebook, which determines the order in which the 
information is placed in the final dataset for the throughput of 
the user, and the Deep Learning input, which is the processed 
dataset with complex information for the throughput. 

The DL output contains the spectral efficiency information 
we have mentioned above and which we use to find the final 
dataset with the throughput for the channel from the user’s 
side. It has a size where U is the number of users and C is the 
number of columns given by the codebook. We then divide by 
the channel wavelength to produce a matrix of the same size, 
but with throughput (bps) information. We believe that an 
optimization algorithm helps us achieve our goal in a 
relatively small amount of time. 

So, for the optimization application that we recommend, 
we have the following: 

• We take the output of the Deep Learning and remove 
the wavelength from the dataset, dividing each cell by 
the wavelength of the system. 

• Each line of the generated dataset is a user (entity for 
the optimization algorithm). 

• We run the proposed optimization algorithm on the 
output matrix. 

• The final dataset is composed of as many rows as users 
and four columns. The first column is the user’s 
throughput given from a specific subcarrier. The 
second column holds the number of the subcarrier that 
provides the throughput, while the third column has the 
service the throughput falls upon. The final column 
contains the recommended throughput the user needs 
to carry on his service with no problem. 

With this method, we will receive a maximized solution 
with the proposed internet service. We give as an example four 
services, but a future implementation could include a wider 
range of throughput. In the graphs, below we can see the 
results when we run three different scenarios of algorithms 
used to generate the final output. The first two algorithms are 
basic forms of the Hungarian Algorithm The third algorithm, 
instead, provides the optimized implementation of the 
Hungarian Algorithm. We choose this approach to show that 
optimization algorithms, will always favor others, both in 
results and in time complexity. The algorithms are as follows: 

• Algorithm 1 uses basic “for” loops and “ifs” to scan 
the input matrix for the maximum value. It then deletes 
the user and subcarrier from which the max value came 
from. It continues iteratively until all the users are 
satisfied. 

• Algorithm 2 uses the built-in functions for retrieving 
the maximum value in linear indices, and it transforms 
them into row and column values. The returned row 
and column represent the user to whom the 
Throughput belongs to and the subcarrier from which 



the maximum Throughput is originated. The returned 
user and subcarrier are deleted. It also continues 
iteratively until all the users are satisfied. 

• Algorithm 3 is the implementation of the proposed 
Hungarian Algorithm. The Algorithm runs the built-in 
function “matchpairs()” which finds the best 
assignment for all users to achieve the maximum total 
throughput. 

In Fig.3, we show the different aforementioned scenarios 
(marked as S in the figure, where S1 corresponds to Scenario 
1, S2 to Scenario 2 and S3 to scenario 3). The number, under 
each bar corresponds to the number of users we employed to 
our system. Finally, AL1 corresponds to Algorithm 1, AL2 to 
Algorithm 2, while HA corresponds to the Hungarian 
Algorithm. As we can see, the proposed algorithm greatly 
impacts the total throughput. In all cases, the total throughput 
per number of users is greater than both the other algorithms 
that use a very basic structure. This is achieved as the 
Hungarian Algorithm is designed to solve assignment 
problems, in such a way that in the end the desired output, in 
our case the throughput, is maximized. The users are served 
by the nearest subcarrier, as the closer a user is to an antenna 
the larger the generated Throughput is. Furthermore, the other 
two algorithms eliminate a subcarrier without taking into 
account the other users. More specifically, the deleted 
subcarrier may provide the highest throughput to a single user, 
but if the deleted subcarrier covered another user equally well, 
the total throughput could have been higher if the deleted 
subcarrier had been assigned elsewhere. The other two 
algorithms do not take such cases into account. 

 

Fig. 3. The effects of each algorithm on the throughput of the users. 

Fig.4 shows that our proposed algorithm produces the final 
output in the best time possible. Even though, the time for a 
small number of users is slightly greater than the other two 
algorithms, with several users, around 500 and 1000, it 
produces the results in less time than both algorithms. It takes 
longer than the other two algorithms in cases where the users 
are fewer as it is not profitable to run this complex algorithm 
for such a small number of samples. While in cases of 
increasing number of users we can say that it handles a larger 
volume of data better than the other two algorithms, as it 
consists of much fewer iterations and no nested iterations. It 
also takes advantage of MATLAB’s built in functions, which 
are designed to execute at the best possible time, but also 
makes better use of recursion. Another thing to factor in, is the 
fact that the Hungarian Algorithm only requires to be executed 

once and it also skips the process of deleting the user who 
requests Throughput, and the subcarrier who provides it. 

 

Fig. 4. The time complexity of each algorithm used in the experiments per 

number of users. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a method for creating a dataset 
for a 5G mobile network and maximizing the results each 
time, depending on the needs of the system and of the users. 
This dataset has a feature that can be used further in 
optimization techniques, to automate and accelerate the 
mobile network. After generating the dataset with the desired 
information, the next step is to convert it to the appropriate 
format as an input to an optimization algorithm. To this dataset 
we add the minimum throughput required to perform a 
particular service on the Internet, such as Call over IP or 
playing a video on YouTube. Then, the optimization 
algorithm takes this dataset as input and accurately selects the 
service that the user can support at that time and under the 
specific conditions. 

By introducing optimization methods into the system, a 
comprehensible and sustainable process is achieved that 
solves various problems, such as finding speed limits for the 
services provided by the internet. The results show that the 
proposed model, with the appropriate input parameters, 
effectively adapts to the ever-changing environment, while at 
the same time providing a robust mobile network system. 

The results of this work encourage various future research, 
such as the use of other forms of information to predict and 
maximize network quality and the exploration of other 
network simulation scenarios in multi-user environments and 
multiple antennas. 

Finally, a future extension of our work could be done in 
the field of Machine Learning in selecting a more appropriate 
technical classification. There are many such techniques that 
can be applied and evaluated based on meeting the real needs 
of users and databases. Examples are linear classifiers, 
Perceptron’s sensors, support vector machines, decision trees, 
neural networks, Bayes networks, etc. 
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