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Abstract—With the advancement of wireless networks the 

data needs of the wireless internet have become so great, and the 

use of 4G and 5G so ubiquitous, that challenges arise in the 

availability and distribution of resources. In this paper we 

examine an application of Machine Learning and subsequently 

Neural Networks to offer a solution to this problem. The, now 

more than ever, profound availability of processing power 

greatly empowers and makes the deployment of these tools 

easier than ever, even in problems where in the past their 

application would not be feasible. The use of machine learning 

techniques to distribute resources in wireless networks is 

investigated and contrasted to a traditional algorithmic method. 

Scenarios are also entertained in which such approaches might 

be applicable. 
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I. INTRODUCTION 

With the rapid advancement of 4th and now 5th generation 
mobile networks and their widespread use by the general 
public we have more congested wireless networks than ever 
before. Having the above in mind, the international scientific 
community has been exploring mechanisms and optimization 
techniques to alleviate any potential issues. The current 
architectures provided by the International 
Telecommunication Union (ITU) allow the deployment of 
said tools and techniques. Some of these proposals include the 
usage of Multiple-Input Multiple-Output (MIMO) and 
Downlink and Uplink Decoupling (DUDe) but also of the 
implementation of Machine Learning (ML) to better improve 
the functionality of said networks. The ongoing development 
and research around MIMO and adjacent techniques and 
technologies allows us to better take advantage of the 
available radio resources. Most research is based around the 
effective usage of spectral resources along with heterogenous 
networks [1].  

Similarly, the ever-increasing availability of computing 
power has complemented a rise in the usage of Deep Learning 
and neural networks to create solutions in areas where 
traditional algorithmic approaches fail or are too costly to 
develop. These data structures essentially can be trained to 
perform algorithmic-like tasks with decent generalization [2]. 

Naturally, the intersection of 5G-MIMO and Machine 
Learning and/or Deep Learning has already been broached by 
other related works such as [3] in which it is used as a tool to 
predict the Channel State and in effect act as an optimization 
agent. Additionally, in paper [4] ML is used as an all-around 
solution for both traffic optimization and revenue 
maximization (or energy minimization). Another proposal by 
Guan et al. [5] uses reinforcement learning in an effort to 

allocate various types of channel resources more efficiently 
with no concern for the computing costs. This differs 
significantly from what was attempted in this paper, where the 
main objective is the decrease of computational complexity 
with short amounts of training for our neural networks and 
with a somewhat portable solution.  

In addition to the above works, in [6] a cascade of Neural 
Networks (NNs) is used, one to approximate the bandwidth 
allocation and one to output the transmit power required for 
the Quality of service (QoS) needs of the users. This work also 
differs from our approach, which aims to be more economical 
in computing power and in reducing delays, while 
simultaneously it highlights the importance of working 
towards minimizing the energy requirements as well as 
maintaining adequate bandwidth for the users based on their 
needs. 

In this paper a novel application of ML in the problem of 
user assignment is investigated. The user assignment problem 
refers to the most favorable assignment of a number of users 
to a number of antenna cells in a way that maximizes total 
throughput. This is essentially a solved problem as variations 
of the Hungarian Algorithm already solve this in an optimal 
way in regards to total throughput. However, this is a very 
computationally expensive proposition as the algorithm is 
highly iterative and exhibits polynomial time complexity of 
O(n3) and sometimes even worse. This constitutes a problem 
with the low-power hardware that is often used in Base 
Stations (BSs). The novelty of this approach lies in the usage 
of Neural Networks not for the solving of problems in which 
traditional algorithmic approaches fail but rather as a means 
of reducing computational complexity.  

The paper is laid out as follows. In Section II the tools used 
to simulate a simple 5G wireless network are explained as well 
as some of the parameters and options chosen to create the 
datasets. Section III examines the method by which our 
networks are trained and contrasted against a traditional 
algorithmic approach, along with some practices to ensure the 
integrity of the testing. In Section IV the performance results 
are evaluated and examined with the help of plots and figures. 
Finally, Section V briefly outlines the conclusions that one can 
draw from these results as well as some ideas for future work 
and improvements both on the models used and some of the 
tools. 

II. SYSTEM MODEL SIMULATION 

This section includes the description of the MIMO 
simulation system as it pertains to the network side of the 
problem.  



The simulation tool used in [7] offers a variety of 
scenarios, as well as customization options in regards to 
number of BSs, number of antennae cells per BS, their 
position, signal strength, number of users etc. In addition, this 
tool simulates the obstruction and interference caused by 
buildings and other objects which might hinder any individual 
cells’ signal strength to the users. There is a variety of 
scenarios built-in the tool, differing on the building layout and 
some other factors, in Fig. 1 we can see the scenario that was 
picked for this experiment. 

We use REMCOM’s Wireless InSite which features 
reflections, transmissions and diffractions of the 
Electromagnetic signals (EM) along with atmospheric 
absorption and diffuse scattering for a more realistic 
propagation of EM radio resources. What is more it is 
specifically designed to emulate MIMO antennae used in 5G 
networks along with some of the most common techniques 
like beamforming and spatial multiplexing in order to predict 
various channel metrics like signal-to-interference & noise 
ratio (SINR) as well as bit error rate (BER).  

In order to calculate these effects some parameters are 
used that are initialized by the creators of the application such 
as the Angles of Departure (AoD) from the BS, the Angle of 
Arrival (AoA) to the user, the power received, the phase of the 
path and finally the delay. Other parameters that are set by the 
‘user’ include the number of BSs, number of users (and by 
extension User Equipments, UEs), the location of the users 
and BSs, the number of antennae per BS as well as the 
bandwidth of the system. Using this data and the parameters 
the Channel State Information (CSI) is calculated. First a MxN 
vector of the channel hk

b,u is calculated, where M and N are the 
number of users and antenna cells respectively.  

The calculations are based on the number of subcarriers 
using all the data that were mentioned above and as such we 

can calculate hk
b,u

 as: 
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From the processing of this data, the results of the recipient 
signal are created. Knowing the vector of the channel between 
BS and the User (the CSI) for these 2 parameters the signal 
received from the BS and specifically in subcarrier K is 
calculated as follows: 

 𝑦𝑘 = ∑  𝑁
𝑛=1 ℎ𝑘,𝑛

𝑇 𝑥𝑘,𝑛 + 𝑣𝑘  () 

where xk,n is the transmission strength (in dBm) and the 
addition of noise vk to the subcarrier K. The sum of the data 
that will be used are set by a raytracing scenario; an ML 
algorithm is applied to this data to calculate the spectral 
efficiency. Upon calculation the data is stored and sorted on a 
matrix form. This contains the information concerning the 
channel for every user (lines on the matrix) according to the 
code book created by the BS (rows on the matrix).  

The achievable rate of the channel Rn
(p) is calculated as 

follows: 
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Having calculated the achievable rate of the channel one 
can calculate the efficiency of the channel. This process 
isolates the bandwidth from the dataset used up until that 
point. This content shows the spectral efficiency of the 
channel, usually expressed as ‘bits per second per hertz’ or 
bit/s/Hz.  

Some of the parameters that had to be set manually include  

• Number of BSs: 2 

• Number of cells per BS: 500 

• Maximum number of users: 1000 

• Antenna spacing: 0.5 

 

Fig. 1. The topology simulated by the DeepMIMO tool. 

III. MECHANISM DESCRIPTION 

The testing mechanism builds upon the works of [1] and is 
built to evaluate the performance and limitations of a ML-
based approach for user assignments as opposed to a more 
traditional algorithmic approach. Firstly, the dataset on which 
the NNs will be trained is created. The process used follows 
the Algorithm below: 

 

Algorithm  

1: Set System Parameters 

2: Set number of Users 

3: Execute Simulation using DeepMIMO Dataset Generator 

4: Receive relevant channel information, namely throughput 
of users to every BS 

5: Execute Hungarian Algorithm 

6: Save the results of the Hungarian Algorithm and repeat 
steps 2-6 as needed, hundreds/thousands of times 

7: Feed 90% of the unsolved problems and their solution 
(results of step 6) to a feedforward Neural Network  

8: [net, tr] = train(net,input,desiredM','useGPU','yes'); 

9: Solve the remaining 10% of problems both by the now 
trained Neural Network as well as the Hungarian 
Algorithm 

10: y=net(input_test); 

11: [Minput,uR,uC] = matchpairs(DL_output, 
costUnmatched, 'max'); 

12: Compare runtimes and cumulative throughput afforded to 

users 



• A number of users is decided and they are placed into 
the simulation suite of DeepMIMO. 

• The simulation then calculates the achievable 
throughput of every user in relation to every antenna 
cell of each BS. 

• The assignment problem is then optimally solved in 
polynomial time O(n3) through an improved version of 
the Hungarian algorithm. 

• The data is saved and the optimal antenna-user pairs 
are identified in regards to their relative location in this 
specific geographic topology. 

• Repeat for a great variety of user numbers and 
locations, always keeping the BSs stationary in the 
same positions and the geographic topology constant. 

Each iteration of this process generates a matrix sized 
MxN (Number_of_users*Number_of_Antennae) which in 
each position has the signal strength/throughput (the two are 
analogous in this context) for the current user with all the 
antennae as well as an identically sized extremely sparse 
matrix which only denotes the optimal coupling of antennae 
cells with users for a maximum total throughput. 

These datasets, they are then fed into a feedforward NN 
for training. This, in essence, allows the NNs to understand 
the topology.  

Having created the datasets, 90% of them are fed into our 
feedforward NNs along with the correct assignment as 
indicated by the Hungarian algorithm to begin the process of 
supervised learning. The remaining 10% of the datasets are 
used to evaluate the NNs performance in examples they have 
not been trained on, a very important factor to avoid 
overfitting. 

The NNs used are Feedforward Neural Nets [8], meaning 
the information only moves forward through the hidden nodes 
and doesn’t loop. In addition, the training function used was 
Scaled Conjugate Descent (SCD) as it performs very well in 
highly parallel tasks and is shown to be significantly faster 
than simple backpropagation and other conjugate gradient 
methods [9], [10]. 

A few different networks architectures were used in 
conjunction with a manual softmax layer. Specifically, 5 
networks of differing numbers of neurons and hidden layers 
were tested to examine both their suitability for our problem 
but also to observe if different helpful properties could be 
observed in any of them. Before the datasets were fed into the 
Neural Nets they were converted into binary scale so as to 
denote the BS-User pairings in the matrices. Due to storage 
limitations a few hundred examples were created. Each 
example had a 1000x1000 matrix denoting the relative signal 
strength of each user to each individual antenna cell, the 
solved pairing by the Hungarian algorithm for each such 
matrix which was also a 1000x1000 extremely sparse binary 
matrix as mentioned above as well as some other relevant 
information concerning the channels.  

Of the 5 networks tried, as seen in Table I, and in the 
interest of brevity, we will examine some of the training data 
from Network 3 and whose architecture can be seen in Fig. 2, 
in which we can observe 2 hidden layers of 100 neurons each 
and one output layer. 

 

Fig. 2. Network 3 architecture. 

 

 

Fig. 3. Mean Squared Error of Training Net 3. 

In Fig. 3 we can see one of the validation performance 
graphs of the training of Network 3. Their function is to 
measure the Mean Square Error (MSE) between observations 
and predictions as well as their performance in the validation 
sample. In general this error is reduced as the epochs progress. 
Delayed increase usually indicates an overfitting problem 
which occurs when the examples are too similar which leads 
to a weakness to generalize. There is protection against this 
issue as after 6 continuous increases of the MSE the training 
halts. As long as the error continues to decrease the training 
continues and receives asymptotically better accuracy. For 
implementation reasons networks were halted at 1000 epochs 
of training.  

The lack of any continuous increases that was observed in 
the training of all of the networks shows that no overfitting has 
occurred which in turn indicates that these models could have 
increased performance with further training or more data, for 
practical implementation reasons this was not attempted. 

 

Fig. 4. Training state plot of Net 3. 

Training state plots provide us with the value of the 
backpropagation gradient in each epoch in a logarithmic scale 
(Fig. 4). Effectively this indicates the speed at which the 
model converges to the local minima of the activation 
functions. Validation fails indicate overfitting or overtraining. 
As expected, the model converges quickly in the beginning 



and levels off. This is a strong indicator that further increases 
in accuracy would require more data rather than more training 
time. 

In the following Table we can see a brief overview of the 
different variations of the Feedforward Neural Networks that 
were used. 

TABLE I.  NETWORK CHARACTERISTICS 

Nets Nr of Layers Nr of Neurons Nr of weights 

Net 1 1 100 205924 

Net 2 1 1024 2099200 

Net 3 2 200 216024 

Net 4 3 250 169874 

Net 5 3 350 236174 

 

IV. PERFORMANCE EVALUATION 

Different architectures of NNs were tried, with different 
number of neurons as well as differing number of hidden 
layers. The computational cost of training these networks 
differs and in general linearly increases with the number of 
neurons and hidden layers. The comparison between them in 
this regard is not judged important as it is a one-time cost that 
is only relevant during the first creation of the network.  

The two main metrics that are examined are the following: 

• Efficiency, the total sum of the throughput that is 
achieved by users with their specific BS pairing which 
can be seen in Fig. 5. 

• The runtime of the NN as an expression of the 
computational complexity as contrasting to the 
runtime of the Hungarian algorithm. An important 
factor here is the usage of CPU (for both) so that 
comparisons are applicable. The results can be seen in 
Fig. 6. 

Important to note that runtime was used rather than 
calculating the computational complexity as it is not feasible 
to perform said calculation on NNs. 

Firstly the NNs are compared to each other and to the 
Hungarian algorithm in both efficiency and runtime followed 
by a more in depth look at the NNs and their architectures. 

 

Fig. 5. Average throughput achieved per user. 

 

Fig. 6. Runtime of Neural Networks. 

As expected, a decrease in efficiency is observed, as 
outlined previously. This holds especially true in the more 
rudimentary Networks such as 1 & 2, it is theorized that this 
is the result of the significantly fewer weights leading into a 
weakness to learn all the required information. After a certain 
point, further adding hidden layers and neurons in the 
networks seem to result in diminishing returns. The worst 
performing Net 1 achieves 82% of the total throughput 
achieved by the Hungarian Algorithm and the best 
performing, Net 5 achieves 90%. It is assumed that a further 
and more thorough training with more examples would 
increase said performances.  

The difference in runtime as an analogue to computational 
complexity, however, is staggering. 10-fold decreases in 
runtime and more were observed. This was the main objective 
of this work. It is also assumed that these differences will only 
magnify as more users and BSs are added and the 
computational cost of the Hungarian algorithm dramatically 
increases. What is more these are the times needed by a 
powerful desktop CPU, whereas BSs will be using low power 
(and performance) processing units which would only 
exacerbate the runtimes. It is worth noting the difference in 
runtime between the Hungarian algorithm in identical 
problems (which means identical operations), this occurs 
because at different times the computer has other tasks in the 
background which create small fluctuation in how long an 
identical process will need on the same hardware. This is 
treated as noise/error for the purposes of this paper. This is 
important as especially with the shorter runtimes of the Nets 
this error margin overwhelms the ability to meaningfully 
compare the networks against one another. 

V. CONCLUSIONS AND FUTURE WORK 

It is evident from the results that the process outlined in 
this paper works to drastically reduce computational 
complexity in the user assignment problem. However, a not 
insignificant loss of total throughput was also observed. The 
above, in conjunction with the fact that no training validation 
graphs at any point showed an increase in the MSE but were 
rather halted upon reaching the required epoch number 
indicates that there is room for more robust training of the 
networks either in training time or in the form of more data. 
This is a relatively straightforward problem that essentially 
requires more computing power as well as storage, which was 
the real limiting factor in this attempt.  



At the same time this implies that one could even work to 
further optimize some of the simpler networks, like Net 1 
which would both make it more accurate but at the same time 
maintaining what was the least computationally expensive 
option. It would also be interesting to examine the 
performance of such an approach is significantly more 
massive numbers of users and more complicated geographical 
topologies to examine whether the Nets are capable of 
adapting. 

In today’s hugely populated wireless networks user 
assignment done by traditional methods can be very 
computationally expensive, especially when one considers 
that the movement of users in the network and their exiting or 
entering it will necessitate these calculations being ran many 
times a minute. Drastically reducing the time these require, 
even at some loss of total throughput, will possibly yield 
effectively better service and a greater effective throughput for 
the end user. This of course is hard to quantify in practice and 
beyond the abilities of the used simulation technique which 
assumes users that do not move in space. This necessitates the 
creation and implementations of even more holistic and 
realistic simulation tools that do everything the current ones 
do and in addition feature moving users, handshake protocols 
for when they move to different BSs and the whole spectrum 
of possibilities one might encounter in a real large scale 
wireless network. 
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