
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Machine Learning Approach to User Assignment

in 5G Networks

Michael Kouris1, Vasileios Kokkinos1, Apostolos Gkamas2, Philippos Pouyioutas3, Christos Bouras1
1Computer Engineering and Informatics Department, University of Patras, Patras, Greece

2University Ecclesiastical, Academy of Vella, Ioannina, Greece2
3Computer Science Department, University of Nicosia, Nicosia, Cyprus

mkouris@ceid.upatras.gr; kokkinos@cti.gr; gkamas@aeavellas.gr; pouyioutas.p@unic.ac.cy; bouras@upatras.gr

Abstract—With the advancement of wireless networks the

data needs of the wireless internet have become so great, and the

use of 4G and 5G so ubiquitous, that challenges arise in the

availability and distribution of resources. In this paper we

examine an application of Machine Learning and subsequently

Neural Networks to offer a solution to this problem. The, now

more than ever, profound availability of processing power

greatly empowers and makes the deployment of these tools

easier than ever, even in problems where in the past their

application would not be feasible. The use of machine learning

techniques to distribute resources in wireless networks is

investigated and contrasted to a traditional algorithmic method.

Scenarios are also entertained in which such approaches might

be applicable.

Keywords—5G, MIMO, Deep Learning, Neural Networks,

User Assignment

I. INTRODUCTION

With the rapid advancement of 4th and now 5th generation
mobile networks and their widespread use by the general
public we have more congested wireless networks than ever
before. Having the above in mind, the international scientific
community has been exploring mechanisms and optimization
techniques to alleviate any potential issues. The current
architectures provided by the International
Telecommunication Union (ITU) allow the deployment of
said tools and techniques. Some of these proposals include the
usage of Multiple-Input Multiple-Output (MIMO) and
Downlink and Uplink Decoupling (DUDe) but also of the
implementation of Machine Learning (ML) to better improve
the functionality of said networks. The ongoing development
and research around MIMO and adjacent techniques and
technologies allows us to better take advantage of the
available radio resources. Most research is based around the
effective usage of spectral resources along with heterogenous
networks [1].

Similarly, the ever-increasing availability of computing
power has complemented a rise in the usage of Deep Learning
and neural networks to create solutions in areas where
traditional algorithmic approaches fail or are too costly to
develop. These data structures essentially can be trained to
perform algorithmic-like tasks with decent generalization [2].

Naturally, the intersection of 5G-MIMO and Machine
Learning and/or Deep Learning has already been broached by
other related works such as [3] in which it is used as a tool to
predict the Channel State and in effect act as an optimization
agent. Additionally, in paper [4] ML is used as an all-around
solution for both traffic optimization and revenue
maximization (or energy minimization). Another proposal by
Guan et al. [5] uses reinforcement learning in an effort to

allocate various types of channel resources more efficiently
with no concern for the computing costs. This differs
significantly from what was attempted in this paper, where the
main objective is the decrease of computational complexity
with short amounts of training for our neural networks and
with a somewhat portable solution.

In addition to the above works, in [6] a cascade of Neural
Networks (NNs) is used, one to approximate the bandwidth
allocation and one to output the transmit power required for
the Quality of service (QoS) needs of the users. This work also
differs from our approach, which aims to be more economical
in computing power and in reducing delays, while
simultaneously it highlights the importance of working
towards minimizing the energy requirements as well as
maintaining adequate bandwidth for the users based on their
needs.

In this paper a novel application of ML in the problem of
user assignment is investigated. The user assignment problem
refers to the most favorable assignment of a number of users
to a number of antenna cells in a way that maximizes total
throughput. This is essentially a solved problem as variations
of the Hungarian Algorithm already solve this in an optimal
way in regards to total throughput. However, this is a very
computationally expensive proposition as the algorithm is
highly iterative and exhibits polynomial time complexity of
O(n3) and sometimes even worse. This constitutes a problem
with the low-power hardware that is often used in Base
Stations (BSs). The novelty of this approach lies in the usage
of Neural Networks not for the solving of problems in which
traditional algorithmic approaches fail but rather as a means
of reducing computational complexity.

The paper is laid out as follows. In Section II the tools used
to simulate a simple 5G wireless network are explained as well
as some of the parameters and options chosen to create the
datasets. Section III examines the method by which our
networks are trained and contrasted against a traditional
algorithmic approach, along with some practices to ensure the
integrity of the testing. In Section IV the performance results
are evaluated and examined with the help of plots and figures.
Finally, Section V briefly outlines the conclusions that one can
draw from these results as well as some ideas for future work
and improvements both on the models used and some of the
tools.

II. SYSTEM MODEL SIMULATION

This section includes the description of the MIMO
simulation system as it pertains to the network side of the
problem.

The simulation tool used in [7] offers a variety of
scenarios, as well as customization options in regards to
number of BSs, number of antennae cells per BS, their
position, signal strength, number of users etc. In addition, this
tool simulates the obstruction and interference caused by
buildings and other objects which might hinder any individual
cells’ signal strength to the users. There is a variety of
scenarios built-in the tool, differing on the building layout and
some other factors, in Fig. 1 we can see the scenario that was
picked for this experiment.

We use REMCOM’s Wireless InSite which features
reflections, transmissions and diffractions of the
Electromagnetic signals (EM) along with atmospheric
absorption and diffuse scattering for a more realistic
propagation of EM radio resources. What is more it is
specifically designed to emulate MIMO antennae used in 5G
networks along with some of the most common techniques
like beamforming and spatial multiplexing in order to predict
various channel metrics like signal-to-interference & noise
ratio (SINR) as well as bit error rate (BER).

In order to calculate these effects some parameters are
used that are initialized by the creators of the application such
as the Angles of Departure (AoD) from the BS, the Angle of
Arrival (AoA) to the user, the power received, the phase of the
path and finally the delay. Other parameters that are set by the
‘user’ include the number of BSs, number of users (and by
extension User Equipments, UEs), the location of the users
and BSs, the number of antennae per BS as well as the
bandwidth of the system. Using this data and the parameters
the Channel State Information (CSI) is calculated. First a MxN
vector of the channel hk

b,u is calculated, where M and N are the
number of users and antenna cells respectively.

The calculations are based on the number of subcarriers
using all the data that were mentioned above and as such we

can calculate hk
b,u

 as:

 ℎ𝑘
𝑏,𝑢 = ∑  𝐿

𝑙=1 √
𝜌𝑙

𝐾
𝑒
𝑗(𝜃𝑙

𝑏,𝑢+
2𝜋𝑘

𝐾
𝜏𝑙
𝑏,𝑢𝐵)

𝛼(𝜑𝑎𝑧
𝑏,𝑢, 𝜑𝑒𝑙

𝑏,𝑢) ()

From the processing of this data, the results of the recipient
signal are created. Knowing the vector of the channel between
BS and the User (the CSI) for these 2 parameters the signal
received from the BS and specifically in subcarrier K is
calculated as follows:

 𝑦𝑘 = ∑  𝑁
𝑛=1 ℎ𝑘,𝑛

𝑇 𝑥𝑘,𝑛 + 𝑣𝑘 ()

where xk,n is the transmission strength (in dBm) and the
addition of noise vk to the subcarrier K. The sum of the data
that will be used are set by a raytracing scenario; an ML
algorithm is applied to this data to calculate the spectral
efficiency. Upon calculation the data is stored and sorted on a
matrix form. This contains the information concerning the
channel for every user (lines on the matrix) according to the
code book created by the BS (rows on the matrix).

The achievable rate of the channel Rn
(p) is calculated as

follows:

 𝑅𝑛
(𝑝) =

1

|𝐾|
∑  𝑘∈|𝐾| log2⁡ (1 + 𝑆𝑁𝑅 |𝑓

𝑝
𝑇ℎ𝑘

𝑛,𝑢|
2

) ()

Having calculated the achievable rate of the channel one
can calculate the efficiency of the channel. This process
isolates the bandwidth from the dataset used up until that
point. This content shows the spectral efficiency of the
channel, usually expressed as ‘bits per second per hertz’ or
bit/s/Hz.

Some of the parameters that had to be set manually include

• Number of BSs: 2

• Number of cells per BS: 500

• Maximum number of users: 1000

• Antenna spacing: 0.5

Fig. 1. The topology simulated by the DeepMIMO tool.

III. MECHANISM DESCRIPTION

The testing mechanism builds upon the works of [1] and is
built to evaluate the performance and limitations of a ML-
based approach for user assignments as opposed to a more
traditional algorithmic approach. Firstly, the dataset on which
the NNs will be trained is created. The process used follows
the Algorithm below:

Algorithm

1: Set System Parameters

2: Set number of Users

3: Execute Simulation using DeepMIMO Dataset Generator

4: Receive relevant channel information, namely throughput
of users to every BS

5: Execute Hungarian Algorithm

6: Save the results of the Hungarian Algorithm and repeat
steps 2-6 as needed, hundreds/thousands of times

7: Feed 90% of the unsolved problems and their solution
(results of step 6) to a feedforward Neural Network

8: [net, tr] = train(net,input,desiredM','useGPU','yes');

9: Solve the remaining 10% of problems both by the now
trained Neural Network as well as the Hungarian
Algorithm

10: y=net(input_test);

11: [Minput,uR,uC] = matchpairs(DL_output,
costUnmatched, 'max');

12: Compare runtimes and cumulative throughput afforded to

users

• A number of users is decided and they are placed into
the simulation suite of DeepMIMO.

• The simulation then calculates the achievable
throughput of every user in relation to every antenna
cell of each BS.

• The assignment problem is then optimally solved in
polynomial time O(n3) through an improved version of
the Hungarian algorithm.

• The data is saved and the optimal antenna-user pairs
are identified in regards to their relative location in this
specific geographic topology.

• Repeat for a great variety of user numbers and
locations, always keeping the BSs stationary in the
same positions and the geographic topology constant.

Each iteration of this process generates a matrix sized
MxN (Number_of_users*Number_of_Antennae) which in
each position has the signal strength/throughput (the two are
analogous in this context) for the current user with all the
antennae as well as an identically sized extremely sparse
matrix which only denotes the optimal coupling of antennae
cells with users for a maximum total throughput.

These datasets, they are then fed into a feedforward NN
for training. This, in essence, allows the NNs to understand
the topology.

Having created the datasets, 90% of them are fed into our
feedforward NNs along with the correct assignment as
indicated by the Hungarian algorithm to begin the process of
supervised learning. The remaining 10% of the datasets are
used to evaluate the NNs performance in examples they have
not been trained on, a very important factor to avoid
overfitting.

The NNs used are Feedforward Neural Nets [8], meaning
the information only moves forward through the hidden nodes
and doesn’t loop. In addition, the training function used was
Scaled Conjugate Descent (SCD) as it performs very well in
highly parallel tasks and is shown to be significantly faster
than simple backpropagation and other conjugate gradient
methods [9], [10].

A few different networks architectures were used in
conjunction with a manual softmax layer. Specifically, 5
networks of differing numbers of neurons and hidden layers
were tested to examine both their suitability for our problem
but also to observe if different helpful properties could be
observed in any of them. Before the datasets were fed into the
Neural Nets they were converted into binary scale so as to
denote the BS-User pairings in the matrices. Due to storage
limitations a few hundred examples were created. Each
example had a 1000x1000 matrix denoting the relative signal
strength of each user to each individual antenna cell, the
solved pairing by the Hungarian algorithm for each such
matrix which was also a 1000x1000 extremely sparse binary
matrix as mentioned above as well as some other relevant
information concerning the channels.

Of the 5 networks tried, as seen in Table I, and in the
interest of brevity, we will examine some of the training data
from Network 3 and whose architecture can be seen in Fig. 2,
in which we can observe 2 hidden layers of 100 neurons each
and one output layer.

Fig. 2. Network 3 architecture.

Fig. 3. Mean Squared Error of Training Net 3.

In Fig. 3 we can see one of the validation performance
graphs of the training of Network 3. Their function is to
measure the Mean Square Error (MSE) between observations
and predictions as well as their performance in the validation
sample. In general this error is reduced as the epochs progress.
Delayed increase usually indicates an overfitting problem
which occurs when the examples are too similar which leads
to a weakness to generalize. There is protection against this
issue as after 6 continuous increases of the MSE the training
halts. As long as the error continues to decrease the training
continues and receives asymptotically better accuracy. For
implementation reasons networks were halted at 1000 epochs
of training.

The lack of any continuous increases that was observed in
the training of all of the networks shows that no overfitting has
occurred which in turn indicates that these models could have
increased performance with further training or more data, for
practical implementation reasons this was not attempted.

Fig. 4. Training state plot of Net 3.

Training state plots provide us with the value of the
backpropagation gradient in each epoch in a logarithmic scale
(Fig. 4). Effectively this indicates the speed at which the
model converges to the local minima of the activation
functions. Validation fails indicate overfitting or overtraining.
As expected, the model converges quickly in the beginning

and levels off. This is a strong indicator that further increases
in accuracy would require more data rather than more training
time.

In the following Table we can see a brief overview of the
different variations of the Feedforward Neural Networks that
were used.

TABLE I. NETWORK CHARACTERISTICS

Nets Nr of Layers Nr of Neurons Nr of weights

Net 1 1 100 205924

Net 2 1 1024 2099200

Net 3 2 200 216024

Net 4 3 250 169874

Net 5 3 350 236174

IV. PERFORMANCE EVALUATION

Different architectures of NNs were tried, with different
number of neurons as well as differing number of hidden
layers. The computational cost of training these networks
differs and in general linearly increases with the number of
neurons and hidden layers. The comparison between them in
this regard is not judged important as it is a one-time cost that
is only relevant during the first creation of the network.

The two main metrics that are examined are the following:

• Efficiency, the total sum of the throughput that is
achieved by users with their specific BS pairing which
can be seen in Fig. 5.

• The runtime of the NN as an expression of the
computational complexity as contrasting to the
runtime of the Hungarian algorithm. An important
factor here is the usage of CPU (for both) so that
comparisons are applicable. The results can be seen in
Fig. 6.

Important to note that runtime was used rather than
calculating the computational complexity as it is not feasible
to perform said calculation on NNs.

Firstly the NNs are compared to each other and to the
Hungarian algorithm in both efficiency and runtime followed
by a more in depth look at the NNs and their architectures.

Fig. 5. Average throughput achieved per user.

Fig. 6. Runtime of Neural Networks.

As expected, a decrease in efficiency is observed, as
outlined previously. This holds especially true in the more
rudimentary Networks such as 1 & 2, it is theorized that this
is the result of the significantly fewer weights leading into a
weakness to learn all the required information. After a certain
point, further adding hidden layers and neurons in the
networks seem to result in diminishing returns. The worst
performing Net 1 achieves 82% of the total throughput
achieved by the Hungarian Algorithm and the best
performing, Net 5 achieves 90%. It is assumed that a further
and more thorough training with more examples would
increase said performances.

The difference in runtime as an analogue to computational
complexity, however, is staggering. 10-fold decreases in
runtime and more were observed. This was the main objective
of this work. It is also assumed that these differences will only
magnify as more users and BSs are added and the
computational cost of the Hungarian algorithm dramatically
increases. What is more these are the times needed by a
powerful desktop CPU, whereas BSs will be using low power
(and performance) processing units which would only
exacerbate the runtimes. It is worth noting the difference in
runtime between the Hungarian algorithm in identical
problems (which means identical operations), this occurs
because at different times the computer has other tasks in the
background which create small fluctuation in how long an
identical process will need on the same hardware. This is
treated as noise/error for the purposes of this paper. This is
important as especially with the shorter runtimes of the Nets
this error margin overwhelms the ability to meaningfully
compare the networks against one another.

V. CONCLUSIONS AND FUTURE WORK

It is evident from the results that the process outlined in
this paper works to drastically reduce computational
complexity in the user assignment problem. However, a not
insignificant loss of total throughput was also observed. The
above, in conjunction with the fact that no training validation
graphs at any point showed an increase in the MSE but were
rather halted upon reaching the required epoch number
indicates that there is room for more robust training of the
networks either in training time or in the form of more data.
This is a relatively straightforward problem that essentially
requires more computing power as well as storage, which was
the real limiting factor in this attempt.

At the same time this implies that one could even work to
further optimize some of the simpler networks, like Net 1
which would both make it more accurate but at the same time
maintaining what was the least computationally expensive
option. It would also be interesting to examine the
performance of such an approach is significantly more
massive numbers of users and more complicated geographical
topologies to examine whether the Nets are capable of
adapting.

In today’s hugely populated wireless networks user
assignment done by traditional methods can be very
computationally expensive, especially when one considers
that the movement of users in the network and their exiting or
entering it will necessitate these calculations being ran many
times a minute. Drastically reducing the time these require,
even at some loss of total throughput, will possibly yield
effectively better service and a greater effective throughput for
the end user. This of course is hard to quantify in practice and
beyond the abilities of the used simulation technique which
assumes users that do not move in space. This necessitates the
creation and implementations of even more holistic and
realistic simulation tools that do everything the current ones
do and in addition feature moving users, handshake protocols
for when they move to different BSs and the whole spectrum
of possibilities one might encounter in a real large scale
wireless network.

ACKNOWLEDGMENT

This research has been co-financed by the Hellenic
Foundation for Research & Innovation (H.F.R.I) through the
H.F.R.I.’s Research Projects to Support Faculty Members &
Researchers (project code: 02440).

REFERENCES

[1] L. Zhao , H. Zhao, K. Zheng, and W. Xiang, 2018. “Massive MIMO in
5G networks: selected applications.” Switzerland: Springer
International Publishing.

[2] S. Shalev-Shwartz and S. Ben-David, 2014. “Understanding machine
learning: From theory to algorithms.” Cambridge University Press.

[3] D. Tzanakos, F. Allayiotis, V. Kokkinos and C. Bouras, "A mechanism
for 5G MIMO performance optimization and evaluation," 2021 13th
IFIP Wireless and Mobile Networking Conference (WMNC), 2021, pp.
48-54, doi: 10.23919/WMNC53478.2021.9619012.

[4] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore and X. Costa-
Pérez, "A Machine Learning Approach to 5G Infrastructure Market
Optimization," in IEEE Transactions on Mobile Computing, vol. 19,
no. 3, pp. 498-512, 1 March 2020, doi:
10.1109/TMC.2019.2896950.deepMIMO dataset generator

[5] M. Guan, Z. Wu, Y. Cui, et al. “An intelligent wireless channel
allocation in HAPS 5G communication system based on reinforcement
learning.” J Wireless Com Network 2019, 138 (2019).
https://doi.org/10.1186/s13638-019-1463-8

[6] R. Dong, C. She, W. Hardjawana, Y. Li and B. Vucetic, "Deep
Learning for Radio Resource Allocation With Diverse Quality-of-
Service Requirements in 5G," in IEEE Transactions on Wireless
Communications, vol. 20, no. 4, pp. 2309-2324, April 2021, doi:
10.1109/TWC.2020.3041319.

[7] Α. Alkhateeb “DeepMIMO: A Generic Deep Learning Dataset for
Millimeter Wave and Massive MIMO Applications” arXiv preprint
arXiv:1902.06435 Proc. οf Information Theory and Applications
Workshop (ITA), Feb., 2019.

[8] J. Schmidhuber “Deep learning in neural networks: An Overview”,
Neural Networks, vol 61, 2015, pp. 85-117

[9] M.F. Moller, 1993. “A scaled conjugate gradient algorithm for fast
supervised learning.” Neural Networks, 6 (4), p. 525-533.
doi.org/10.1016/S0893 6080(05)80056-5

[10] H. Braun, M. Riedmiller, , Rprop: “A fast and robust backpropagation
learning strategy.” Proc. of the ACNN, 1993.

