
ARCHITECTURE AND PERFORMANCE EVALUATION FOR 
REDUNDANT MULTICAST TRANSMISSION SUPPORTING 

ADAPTIVE QOS 
 

A. Gkamas  Ch. Bouras An. Karaliotas K. Stamos 
Computer Technology Institute - Computer Eng. and Informatics Dept., Univ. of Patras, Greece 
Riga Feraiou 61, GR-26221 Patras, Greece. E-mail: {bouras, gkamas, karaliot, stamos}@cti.gr 

 
Abstract: In this paper we describe the architecture of an application that was developed for the 
transmission of multimedia data, using the multicast mechanism, over the Internet. There are 
two major issues that have to be considered when designing and implementing such a service, 
the fairness and the adaptation schemes. In our application we use a mechanism that categorizes 
the receivers into a number of groups according to each receiver’s capabilities and (the 
mechanism) serves each group of users with a different multicast stream. We have also 
implemented an additional mechanism for the intra-stream bit rate adaptation. The proposed 
mechanism uses a “friendly” to the network users congestion control policy to control the 
transmission of the data. We evaluate the adaptive multicast transmission mechanism through a 
number of experiments in order to examine its behaviour to a heterogeneous group of receivers 
and its behaviour against TCP and UDP data streams. 
 
KEYWORDS: IP Based Networks and Services, Multimedia Systems and Services, Multicast, 
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INTRODUCTION 
 
The heterogeneous network environment that Internet provides to the real time applications as 
well as the lack of sufficient Quality of Service (QoS) guarantees, many times forces 
applications to embody adaptation elements in order to work efficiently. The main goal of such 
an approach is to adapt the data rate that is sent to the network every time that network 
conditions change. The decision whether the rate will increase or decrease is based on feedback 
information that the receivers send back to the sender. Many researchers believe that this end-to-
end control scheme must be implemented in the application layer because today’s Internet 
architecture does not provide such a mechanism in the network layer. In addition any application 
that sends data (mostly multimedia) over the Internet should have a friendly behaviour towards 
the other flows that coexist in today’s Internet and especially towards the TCP flows that 
comprise the majority of flows ([5]). 
The system we propose is based on multicast video transmission with the use of RTP/RTCP 
([2]). The main perspectives we tried to fulfil are the followings:  
1. Each receiver should receive the best video quality that it is capable of  
2. Generated multicast data flow should not be a constraint for the other flows.  
In order to achieve the first goal we create n different streams, each one within certain bandwidth 
limits. All the streams carry the same video information, each one of them having a different 
quality. Receivers join in the appropriate stream depending on the condition of the network path 
towards them and the processing power of each one. If meanwhile the receiver detects that the 
stream it has joined is not suitable for it any more another implemented mechanism is used in 



order to provide the receivers with the capability of moving into another stream. In order to 
achieve the second goal (friendliness towards other flows), we deploy the Additive Increase 
Multiple Decrease (AIMD) scheme in the inter-stream adaptation algorithm. 
The subject of adaptive streaming of multimedia data over networks has engaged researchers all 
over the world. The methods proposed for the multicast transmission of time sensitive data in the 
Internet can be generally divided in three main categories, depending on the number of multicast 
sessions used:  
3. The source uses a single multicast session for all receivers ([1], [3], [6]).  
4. Simulcast: The source transmits versions of the same video encoded in varying degrees of 

quality. This results to the creation of a small number of multicast sessions with different 
rates, responsible for a range of receivers with similar capabilities ([7]).  

5. The source uses layered encoded video, which is video that can be reconstructed from a 
number of discrete data streams and transmit each layer into different multicast session ([4]). 
The receivers subscribe to one or more multicast sessions depending on the available 
bandwidth into the network path to the source. The video is divided into one basic stream and 
more additional streams. The basic stream provides the basic quality and the quality 
improves with each layer added.  

This work is based on the simulcast approach and it is an extension of the work, which has been 
presented in [8] and [7]. In this paper we evaluate the implemented prototype, which has been 
presented in [9].  
 
 
1 SYSTEM ARCHITECTURE 
 
Our system is based on the multicast transmission of video. On the session layer, according to 
the OSI reference model, we use the Real Time Protocol (RTP). The RTP-RTCP protocol was 
also used because of the feedback capabilities that it offers (RTCP reports). At the same time, a 
CORBA (Common Object Request Broker Architecture) connection is established between each 
Client and the Server. This connection provides the necessary information to the Client 
concerning the multicast IP address as well as the port that will be used. Because of the 
variations on the quality of video that various Clients can handle, the source transmits a small 
number of (in our implemented prototype we use three) different multicast video streams, each 
one with its own bandwidth limits, with no overlapping. The transmission rate within each 
stream is adapting within its limits according to the capabilities and the state of the Clients 
participating in it. The Server is unique and responsible of:  
1. Creating the n different multicast streams 
2. Setting each one’s bandwidth limits,  
3. Tracking if there are any Clients that are not handled with fairness and  
4. Providing the mechanisms to the Clients to change stream whenever they consider that they 

should be in another stream closer to their capabilities. 
The Server generates n different Stream Managers. In each Stream Manager an arbitrary number 
of Client Managers is assigned. Each Client Manager corresponds to a unique receiver that has 
joined the stream controlled by this Stream Manager. The Server uses a Synchronisation Server, 
which is responsible for the management, synchronization and intercommunication between 
Stream Managers. The Stream Manager is responsible for the maintenance and the monitoring of 
one of the n different multicast streams that are generated in the beginning of the application. 
Also the Stream Manager entity has all the intra-stream adaptation mechanisms for the 
adjustment of the transmission rate. The Client Manager corresponds to a unique Client. It 
processes the RTCP reports generated by the Client and can be considered as a representative of 
the Client at the side of the Server. Client Manager receives the RTCP reports from the Client 



and processes them based on packet loss rate and delay jitter information. It then makes an 
estimation of the state of the Client, based on the current and a few previous reports that it stores 
in a buffer.  
 
 
2 DESCRIPTION OF SYSTEM OPERATION AND ALGORITHMS 
 
The source initially constructs a number of streams. When a Client wants to start receiving 
video, it requests from the Server the address of a multicast session belonging to a transmitting 
stream (through CORBA communication). After the Client joins the multicast session, a 
dedicated Client Manager is created to represent the Client at the side of the Server. RTCP 
reports are sent back to the stream and in particular to the appropriate Client Manager. 
Information in RTCP reports contains two values that describe the quality of the transmission: 
packet loss rate and delay jitter. These values are passed through the following filters used to 
avoid wrong estimations and determine the aggressiveness of the feedback analysis protocol: For 
the packet loss rate: 

LRnew = a * LRold + (1-a) * LRnet                                                 (1) 
Where:  
• LRnew: The new filtered value of packet loss rate.  
• LRold: The previous filtered value of packet loss rate.  
• LRnet: The packet loss value that was contained in the RTCP report received from the Client.  
• a: a parameter that determines the aggressiveness of the adaptation concerning the packet 
loss value. Its value ranges from 0 to 1.  
For delay jitter: 

Jnew = b * Jold + (1-b) * Jnet                                                      (2) 
Where:  
• Jnew: The new filtered value of delay jitter.  
• Jold: The previous filtered value of delay jitter. 
• Jnet: The delay jitter that was contained in the RTCP report received from the Client.  
• b: a parameter that determines the aggressiveness of the adaptation concerning the delay jitter 
value. Its value ranges from 0 to 1. 
For the sake of clarity, a distinction has to be made between two kinds of states, that both can 
take the values of UNLOADED, LOADED or CONGESTED: we call the first one the 
“unprocessed state” and the second the “processed state”. The unprocessed state is derived 
directly from the filtered values of packet loss rate and delay jitter, according to the following 
rules: 

if (LRnew >= LRc) unprocessed state = CONGESTED 
if (LRu < LRnew < LRc) unprocessed state = LOADED                          (3) 

if (LRnew <= LRu) unprocessed state = UNLOADED 
if (Jnew > γ*Jold) unprocessed state = CONGESTED 

We have defined LRU as the maximum value of the unloaded packet loss rate and LRC as the 
minimum value of the congested packet loss rate. Where γ is a parameter, which specifies how 
aggressive the network condition estimation component will be to the increase of delay jitter. 
The state that will be reported to the Stream Manager is called the processed state. It is computed 
by taking into account the last n unprocessed states, which are held in an n-sized buffer in the 
Client Manager. A CONGESTED unprocessed state does not necessarily impose that the 
processed state will also be congested, especially if the majority of the previous “unprocessed 
states” were UNLOADED. The way the processed state is computed as presented below: We 
first introduce a new variable, USV (Unprocessed State Variable), that takes a new value for 
each unprocessed state as shown: 



if (unprocessed statei = = CONGESTED) then USVi = -1 
if (unprocessed statei = = LOADED) then USVi = 0                               (4) 

if (unprocessed statei = = UNLOADED) then USVi = 1 
The processed state is then determined by the value of  

f(i) = statei * wi + statei-1 * wi-1 + … + statei-n+2 * wi-n+2 + statei-n+1 * wi-n+1 
where wi, …, wi-n+1 are weights used to quantify the decreasing importance of old unprocessed 
states. 

if ( f(i) < 0 ) then processed statei = CONGESTED 
if ( f(i) = = 0 ) then processed statei = LOADED                                 (5) 
if ( f(i) > 0 ) then processed statei = UNLOADED 

We have chosen to completely ignore the first RTCP report since the moment a Client joins a 
new stream, because we observed that this report usually contains a very high packet loss rate 
value. Stream Managers update their rates synchronously and therefore time in system operation 
is divided in epochs of certain length. At the end of an epoch, each Stream Manager polls the 
states of all the Client Managers that correspond to a Client receiving this stream and then 
determines the improvement or degradation in this stream’s video quality. Whether there will be 
an improvement or degradation is determined as follows: If all receivers1 are in the 
UNLOADED state, video quality is improved. If more than a certain threshold of receivers is 
CONGESTED, video quality is degraded. The threshold used for our experiments was one-third 
of all receivers listening to the stream. 
The new bit rate is estimated using an Additive Increase, Multiplicative Decrease (AIMD) 
algorithm, just like TCP. Increase is achieved by adding a standard small value to the previous 
bit rate, and is therefore quite conservative in bandwidth consumption, while decrease is 
achieved by multiplying the previous bit rate with a number in the range of 0…1 (typically 
around 0.5) and so the algorithm is more aggressive when trying to react to congestion. 
There are three cases in this phase that will lead to a Client’s transition towards another stream: 
(1) If the stream from which the Client is currently receiving video has already reached its lowest 
transmitting rate and the Client is still in CONGESTED state then the Client stops listening to 
this stream and joins the session of a lower quality stream (if such a stream exists). (2) If the 
stream from which the Client is currently receiving video has already reached its highest 
transmitting rate and the Client is still in UNLOADED state then the Client stops listening to this 
stream and joins the session of a higher quality stream (if such a stream exists). (3) The third 
case applies to a Client that co-exists in a stream with low capacity receivers but is capable of 
handling better quality video, so it has been unable to improve the video quality of the current 
stream. The mechanism used aims at making the protocol more conservative and operates by 
counting the number of consecutive times the receiver was UNLOADED but failed to improve 
the video quality. When this number exceeds a certain limit, we assume that the receiver has 
indeed higher capabilities and move it to a better quality stream. For a Client transition to occur, 
an additional rule is imposed in all cases: the Client must have sent a minimum number of 
reports (for our experiments this number was set to 5) since it joined the stream it now wants to 
leave. 
 
 
3 PERFORMANCE EVALUATION  
 
In order to evaluate the performance of the implemented prototype, we run three different 
experiments, each with a different configuration, over a controlled networking test-bed, which 
we have implemented over the campus network of University of Patras in Greece. During our 
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experiments we use one Server and six Clients. We connect each participant (the Server and the 
six Clients) with connections of different capacity to our network test-bed with the use of traffic 
policy on the access router of each participant in the test-bed. The Server transmitted three 
streams with the following limits: stream 1:10Kbps-100Kbps, stream 2: 100Kbps-200Kbps and 
stream 3: 200Kbps-300Kbps. During the experiments the Server was using the following 
parameters in order to control the operation of the implemented mechanism: a=0.5, b=0.8, γ=2, 
LRu=0.02, LRc=0.05. The AIMD algorithm of the Server was increasing the transmission rate of 
a stream by 25Kbps, during network unloaded periods and was decreasing the transmission rate 
by 50% during network congestion periods. In the beginning of the all the experiments the 
Server transmits only stream 1 with transmission rate of 10Kbps and all the Clients are 
connected to stream 1. 
 
3.1 First experiment: Transmission into a heterogeneous group of receivers 
 
During this experiment we investigate the behaviour of the implemented prototype with a 
heterogeneous group of receivers. In order to implement a test-bed with a heterogeneous group 
of receivers the Server’s outgoing link and each Client’s incoming link is restricted to a specific 
capacity, as Figure 1 shows. We run this experiment for 360 seconds. 
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120 Kbps 220 Kbps
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Figure 1 Experiment topology 
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Figure 2 Transmission rates of Server streams during first experiment 

Figure 2 shows the transmission rates of Server streams and Figure 3 shows the reception rates 
of all the Clients. The straight lines in Figure 3 show the Server stream number from which the 
Client receives video. As Figure 2 shows, when the experiment starts, the Server transmits only 
the stream one and the streams two and three are inactive because all the Clients initially join 
stream one. The transmission of stream two and stream three start at the 122nd and 248th second 
respectively, when some Clients prefer transmission rates more than stream one can deliver. 
Each Client starts receiving video at a different time point. As Figure 3 shows, Client 3 joins 
stream one of the Server and keeps receiving this stream until the end of the experiment. This 
behaviour of Client 3 is as expected because Client 3 is connected to the test-bed with a 120Kbps 
link that discourages it to join a stream with a higher transmission rate. Client 2 and Client 4, 
which share the same link with 300Kbps capacity, join stream one, one after the other. After 
some period of time during which both Client 2 and Client 4 are receiving stream one, Client 4 
(100th second) joins stream two. The capacity of the link (300 Kbps) allows the simultaneous 
reception of stream one (max 100 Kbps) and stream two (max 200 Kbps). Therefore Client 2 



joins stream two at the 135th second. At the 223rd second, Client 4 tries to join stream three. This 
causes congestion to the link and therefore both Clients move to a lower stream (Client 4 returns 
to stream two and Client 2 moves to stream one). Client 6 and Client 1, which share the same 
link with 500Kbps capacity, join stream one, one after the other. After some time Client 6 and 
Client 1 join stream two almost at the same time point (145th second). Finally at the 321st second 
Client 6 joins the third stream because of the high capacity of the link (500 Kbps) that connects 
Client 6 to the test-bed. Client 5 is the last Client, which joins the video transmission. Initially 
Client 5 joins stream one and at the 257th second it joins stream two. The capacity of link (220 
Kbps) that connects Client 5 to the test-bed does not allow Client 5 to receive stream three, so 
this is why Client 5 does not attempt to receive stream three. 

 
Figure 3 Clients reception rate during first experiment 

The behaviour of the implemented prototype was as expected. All the Clients, depending on the 
capacity of the link that connects them to the network test-bed, join the appropriate stream and 
the Server treats all Clients with fairness. An exception is the behaviour of Client 1 between the 
264th second and the 307th second. During the above period, we expected that Client 1 would join 
stream three but Client 1 moved to stream one. We believe that the above behaviour of Client 1 
is a result of low resources in the workstation that Client 1 was running on. The allocation of the 
Clients to the appropriate stream takes some time. This is because of the conservative operation 
of the implemented prototype in order to be TCP-friendly as the following experiment shows. 
 
3.2 Second experiment: Transmission with background TCP traffic  
 
In this experiment, we transmit at the same time multimedia data with the use of the 
implemented prototype and TCP traffic in the same link. The topology of this experiment is the 
same with the topology of first experiment except for the capacity of the link, which connects 
Client 5 with the network test-bed. The capacity of that link has been increased to 300 Kbps. We 
simultaneously transmit to the link of Client 5 TCP traffic at an initial rate of 280Kbps. TCP 
traffic was generated by the LanTrafficV22 traffic generator, configured to send packets of 1436 
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bytes each every 40 ms. Figure 4 shows the transmission rate of TCP traffic and the reception 
rate of Client 5 during the second experiment. We run this experiment for 600 seconds. 
As Figure 4 shows the implemented prototype has friendly behaviour towards TCP traffic: 
Initially, before the transmission of video with the implemented prototype, TCP traffic consumes 
all the available bandwidth. When the transmission of video starts, Client 5 joins stream one of 
the Server and TCP traffic reduces its transmission rate due to the congestion, which takes place 
to the link of Client 5. The transmission rate of stream one increases, and Client 5 consumes 
bandwidth to the link. After some time Client 5 tries to join stream two with a higher 
transmission rate. This action of Client 5 produces congestion to the link and Client 5 backs off 
and returns to stream one in order to release bandwidth for the TCP traffic. The above described 
behaviour continues until the end of the experiment. We stop the transmission of video at the 
560th second and TCP traffic consumes all the available bandwidth. During this experiment the 
TCP traffic has transmission rate of more than 100 Kbps and maximum transmission rate more 
than 200 Kbps, which is good performance for TCP transmission. 
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Figure 4 Transmission rate of TCP traffic and the implemented prototype 

 
3.3 Third experiment: Transmission with background UDP traffic 
 
In this experiment, we transmit at the same time multimedia data with the use of the 
implemented prototype and UDP traffic in the same link. The topology of this experiment is the 
same with the topology of second experiment. We have again one Server that multicasts 
multimedia data to the group of Clients. We simultaneously transmit to the link of Client 5 UDP 
traffic at an initial rate of 280Kbps. At certain time points during the experiment we decreased 
the UDP transmitting rate in order to test whether our application would be able to use the 
available bandwidth. UDP traffic began at a rate of 280Kbps, and we later decreased it to 250, 
200 and 175Kbps. UDP traffic was generated by the LanTrafficV2 traffic generator, configured 
to send packets of 1436 bytes each (the Ethernet MTU) every 40, 45, 55 and 60 ms, according to 
the sending rate we wanted to achieve. Figure 5 shows the transmission rate of UDP traffic and 
the reception rate of Client 5 during the third experiment. We run this experiment for 420 
seconds. 
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Figure 5 Transmission rate of UDP traffic and the implemented prototype 

As Figure 5 shows, when the experiment starts, UDP traffic occupies all the available bandwidth. 
When the implemented prototype starts video transmission (70th second), Client 5 joins stream 
one of the Server and the UDP traffic reduces its transmission rate. Although UDP traffic 
reduces its transmission rate, this reduction is not sufficient and the UDP traffic continues to 



dominate the available bandwidth. The video transmission consumes only around 50 Kbps of 
link capacity. At the 204th, 262nd and 342nd second we changed the parameters of the traffic 
generator in order to reduce the transmission rate of UDP traffic (at the above time periods we 
briefly stopped the transmission rate of UDP traffic in order to change the parameters of the 
traffic generator). Gradually the video transmission consumes more bandwidth in the link but 
again the UDP traffic dominates the link capacity. We stop the transmission of video at the 360th 
second. The above described behaviour of the implemented prototype is as expected because 
during the design of the implemented prototype we focused on implementing a TCP friendly 
application.  
 
 
4 CONCLUSION - FUTURE WORK 
 
In this paper, we present the architecture of a prototype for multicast transmission of adaptive 
multimedia data in a heterogeneous group of receivers with the use of replicated streams. We 
concentrate on the design of a mechanism for monitoring the network condition and estimate the 
appropriate rate for the transmission of the multimedia data in each stream in order to allocate 
each receiver to the appropriate stream and treat the receivers with fairness. Moreover we 
implement a TCP-friendly application. We investigate the behaviour of the implemented 
prototype through a number of experiments. Our future work includes the validation of the 
implemented prototype by using it for the multicast transmission of multimedia data in a 
heterogeneous group of receivers in the Internet. In addition we have planed to examine the 
behaviour of the proposed mechanism in very large multicast groups through simulation.  
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