
Multi-User Layer in the EVE Distributed Virtual Reality
Platform

Ch. Bouras D. Psaltoulis Ch. Psaroudis Th. Tsiatsos
Computer Engineering
and Informatics Dept.,
Univ. of Patras, Greece

and
Research Academic

Computer Technology
Institute, Greece
bouras@cti.gr

Computer Engineering
and Informatics Dept.,
Univ. of Patras, Greece

psaltoul@ceid.upatras.gr

Computer Engineering
and Informatics Dept.,
Univ. of Patras, Greece

psaroudi@ceid.upatras.gr

Computer Engineering
and Informatics Dept.,
Univ. of Patras, Greece

and
Research Academic

Computer Technology
Institute, Greece
tsiatsos@cti.gr

Abstract
In this paper, we present the design and

implementation of a VRML97 multi-user layer, which is
introduced in the EVE distributed virtual reality platform.
Main consideration of our multi-user extension is the ease
of transforming single-user virtual worlds to multi-user
virtual worlds, as well as the conformity with any standard
VRML97 browser. Furthermore, we present the EVE' s
communication platform, which can be used in order to
support Collaborative Virtual Environments (CVEs). Main
issues regarding the effective network communication as
well as the initialization of the 3D scene are discussed in
this paper.

1. Introduction
Nowadays the use of CVEs is one of the most

promising uses of virtual reality. Overthe past decades the
traditional user interfaces over the World Wide Web
evolved into Virtual Environments (VEs) [6], in order to
provide the users with a sense of realism. Furthermore, the
technical improvements, in both 3D graphics cards and
high-speed networks make this evolution easier. However,
the VEs are single-user virtual worlds and the user can
only interact with the environment. The need for new
services, such as collaborative work and distance learning,
leads to the development of CVEs. The central concept of
CVEs is a multi-user virtual world, i.e., a computer
generated space where participants can meet and interact.
Users are embodied in the world by an avatar, which
provides them with a 3D representation that follows the
movement of their viewpoint. The essence of CVEs is that
the shared space defines a consistent and common spatial
frame of reference. From the technical viewpoint, Virtual
Reality Modeling Language (VRML97) [8] is the standard

technology for the creation of virtual environments and
their distribution over the web [4]. This technology has
been used by a wide range of VEs and is supported by
various editors and 3D authoring tools [3]. However,
VRML does not provide support for multi-user virtual
worlds. Thus, there is a definite need for a multi-user
extension behind the VRML. This extension should satisfy
at least the following requirements: (a) conformity with a
standard VRML97 browser, and (b) easy transformation of
a single user world to a multi-user 3D world. The first
attempt for standardization of a multi-user extension has
been made by the Web3D's Living Worlds (LW) working
group [8]. It is designed to work with any standard
VRML97 browser. However, the sharing description is
blended with the geometry description. The creator of the
worlds should insert new nodes into the existing VRML97
scene graph and modify the desirable shared routes in
order to transform a single-user VRML world to a multi-
user VRML world. This results in a very complex creation
of multi-user worlds. It also requires programming skills to
carefully update the states of a shared object because high
network traffic is generated if events are often sent to
change them [1]. Two other approaches have also been
proposed: VSPLUS and SPIN-3D. The VSPLUS [1]
proposal offers easier transformation of a single user world
to a multi-user 3D world than the LW. However, VSPLUS
is a simplification of the LW project. As a result VSPLUS
does not support the whole functionality that is described
in the LW specifications. Furthermore it works only with
predefined multi-user worlds and it does not support
dynamic shared objects. The SPIN-3D [6] introduces a
new approach on VRML data sharing. More specifically,
SPIN-3D proposes a field substitution mechanism rather
than a node insertion mechanism (that both LW and
VSPLUS use). The main idea behind SPIN-3D is the

mailto:bouras@cti.gr
mailto:tsiatsos@cti.gr

substitution of object fields that need to be shared by new
fields with network behavior embedded (called
SharedNodes). It supports easy transformation of a single
user world to a multi-user 3D world, as well as
manipulation of dynamic created shared objects. However
SPIN-3D is not compatible with a standard VRML
browser. The above reasons led us to introduce a new
approach for VRML data sharing, which is described in
this paper. Main consideration of our multi-user extension
is the easy transformation of single-user virtual worlds to
multi-user virtual worlds, as well as the conformity with
any standard VRML97 browser. Furthermore, we present
the EVE' s communication platform, which can be used in
order to support CVEs. This platform is based on the use
of VRML for representing the virtual environment,
VRML-External Authoring Interface (EAI) [8] for
accessing the virtual worlds from external applications,
and Java networking for the network communication. Main
issues regarding the effective network communication as
well as the initialization of the 3D scene are also discussed
in this paper. This paper is structured as follows. Section 2
presents the Educational Virtual Environments (EVE)
communication platform. Section 3 describes the VRML
data sharing mechanism used in EVE platform. Sections 4
and 5 discuss main technical issues such as initialization
and reliable message transmission across the network.
Finally, section 6 describes our vision for the next steps,
and some concluding remarks.

2. EVE communication platform
The EVE communication platform is presented in this

paragraph in order to introduce the basic modules that are
used in the description of the VRML97 multi-user layer,
the network communication and the initialization of the
multi-user virtual worlds. Having in mind that our platform
aims to support CVEs, the main requirements that it should
fulfill are the following: (a) to offer scalability; (b) to keep
the multi-user worlds consistent; (c) to support specific
services for interaction (such as text and audio chat). In
order to meet the above requirements, we propose a new
hybrid multi-server communication model [2], using two
kinds of servers (the Message servers, and the Application
servers) and a database. The basic idea of our architecture
(Figure 1) is to divide the processing load of necessary
services of a CVE (such as text and audio chat) to a set of
servers (application servers) and to exploit dedicated
servers (Message servers) for the users’ manipulation, the
management and the initialization of the virtual worlds.
This is a different approach compared to other models [7],
and aims to enhance the scalability of the system, because
it not only alleviate the Message server from the
processing load of the voice and text chat services but it
also uses multiple Message servers in case of many
concurrent users in many virtual worlds.

Server: The Message server is responsible for
manipulating a set of multi-user virtual worlds, serving the
latecomers in these multi-user virtual worlds as well as
keeping the multi-user virtual world consistent by
reflecting every shared event to all participants in the
virtual world. It can also serve as back-up of another
message server by keeping the current state of the multi-
user virtual worlds of the other server [2] in order to offer
scalability and stability. The message server consists of the
following modules: the ConnectionServer, the InitServer,
and the VrmlServer.

Figure 1: Architecture and Components
The ConnectionServer is the core module of the

MessageServer. Every other server is connected to the
ConnectionServer in order to be aware of the users that are
connected to the system. Basic operations of the
ConnectionServer are (a) to handle the connection requests
of the users in a certain virtual world, (b) to communicate
with the database in order to authenticate the users, (c) to
accept the users into the system and notify the rest of
servers for the new user. The InitServer is responsible for
the initialization of the multi-user virtual world in each
new client (new connected user into the system). This
server holds the last state of the virtual world. The
VrmlServer, is responsible for sharing the state of the
multi-user virtual world as well as for sending update
messages regarding the user avatar’s position and
orientation in the multi-user virtual world. The Application
servers are responsible to offer specific functionality to the
participants in the virtual world. Each application server is
connected with the ConnectionServer in order to be aware
of the connected/disconnected users to/from the system. So
far the ChatServer (for text chat), and the AudioServer (for
voice chat) have been implemented. The database of the
system contains information about the users that have
access to the system as well as the available groups that a
user can join. Furthermore the database contains the role of
each user per group.

Client: The client, in order to communicate with the
above-described set of servers, consists of the following
components: the web browser, the VRML browser, the
MainClient, the VRMLClient, the ChatClient, the

AudioClient. The VRML browser is a plug-in, used for the
users’ navigation in the VRML world. Any VRML97, EAI
compliant browser could be used. The other clients are
java applets. The MainClient establishes the initial
connection to MessageServer and presents the current
connection status, and a list of the participants populating
the same multi-user virtual world. The VrmlClient is
responsible for the initialization of the 3D scene as well as
for the interaction between the user and the 3D scene. The
ChatClient is used for the text chat and the AudioClient for
voice chat functionality.

3. VRML data sharing using EVE’s
approach

The basic goal of a platform for CVEs is the sharing of
users’ representations and actions in the worlds. So far
there is no standard in this area. The LW working group of
the Web3D consortium, which has been frozen, has made
the first attempt for standardization. Other remarkable
proposals are the VSPLUS proposal, which is a
simplification of the LW proposal, and the SPIN-3D
approach. As it can be realized from the introductory
section, the afore-mentioned approaches for VRML data
sharing have some limitations. LW is complex, VSPLUS
does not support dynamic created objects and SPIN-3D
requires a proprietary VRML browser.

Figure 2: ROUTE removal
In order to overcome these limitations we introduce

EVE's approach. Main characteristic of our method is the
removal of ROUTEs (Figure 2) that we want to share
(from the single-user world), rather than the "insertion"
proposed by VSPLUS and "substitution" proposed by
SPIN-3D. These ROUTEs are inserted in a new kind of
file: the SVE file. Benefits of the EVE approach are the
simplicity of use, the support of dynamic created objects,
and the conformance with a standard VRML97 browser.
Drawback is the need for one SVE file per multi-user 3D
world. In the following paragraphs, the following concepts
regarding the VRML data sharing are introduced: SVE
file, SharedNodes, SFCreate and SFDelete Events.
Afterwards, we describe the way that a single-user VRML

world can be transformed to a multi-user VRML world,
using our approach as well as how we manipulate the
sharing of human created objects.
3.1 SVE file

In a multi-user VRML environment, a small part of
objects and especially nodes, eventIn(s), eventOut(s) and
ROUTE(s) is (are) necessary to be shared. Therefore, each
new client in the virtual scene should be aware of both the
shared objects and the current state of each shared object
(especially if the client is not the first client that entered in
the CVE). The concept of SVE file is introduced in order
to: (a) Notify the clients what are the sNodes (we call
sNodes the nodes of the single-user virtual worlds, that we
want to share); (b) Help the initialization process, in order
to keep the latecomers in the virtual world consistent with
the previous actions on the 3D scene; (c) Support dynamic
created objects; (d) Support necessary actions in a CVE
such as text insertion, which that are not supported by
VRML. Actually the SVE file has a VRML-like syntax and
it contains all the sNodes and ROUTEs of a multi-user
virtual world. More specifically, the SVE file must contain
all the ROUTEs that have been removed from the single-
user world along with their source and destination nodes.
A sNode’s definition in the SVE file should not include all
the eventIns, eventOuts and fields supported by this node
in the single-user VMRL file, but just the eventIns or
eventOuts that are involved in a shared route. Some special
nodes are also supported such as: (a) text: a node that
‘implements text’ is used for the text insertion in the virtual
world from an external java applet. We decided to
introduce this node due to the fact that text insertion in a
virtual world is a common problem in VRML [8].
Although some effort has been done in order to overcome
this difficulty, the available solutions are still far from
functional. (b) routeCreator: a node that ‘implements
routeCreator’ is used for the communication of the world
with the client in order to dynamically create and delete
shared nodes and routes. Apart from these special nodes,
two special event types are supported: SFCreate and
SFDelete. These event types are presented later in this
paper.
3.2 SharedNodes

Using the SVE file, both clients and servers are aware
of the sNodes (the nodes that the creator of the virtual
world wants to share). Therefore, in order to share the
events and the state of each sNode we need a method in
order to update their state. For this reason we introduce the
concepts of SharedNode, SharedEventIn and
SharedEventOut. Actually, a SharedNode (SharedEventIn
or SharedEventOut) is the representation (of an instance)
of a sNode in Java. Therefore, the delivery of all
SharedNodes to client solves the problem of delivering the
set of sNodes. Furthermore, a SharedNode (SharedEventIn

or SharedEventOut) contains the same values as the
corresponding VRML sNode (EventIn or EventOut) and a
pointer to this node. So, the network behavior is embedded
in the SharedNodes. Thus, when a user alters a value of a
VRML node in the 3D scene, the same value of the
corresponding SharedNode is updated concurrently.
Respectively, when an event-message arrives from the
server (VrmlServer) and it is applied on a SharedNode, the
same event is applied to the corresponding VRML node
(sNode), modifying the 3D scene. Furthermore, a
SharedNode contains the parameter LastModified, which
maintains the sequence number of the last event that has
been applied to it. This parameter is very critical for the
initialization process as described later in this paper. The
SharedNodes can represent the following VRML node
types: SFBool, SFColor, SFFloat, SFInt32, SFRotation,
SFString, SFVec3f, SFVec2f, and SFTime. The
SharedNodes can be lockable or unlockable. An
unlockable node can be manipulated by every user. When
a user locks, only s/he can manipulate this object until s/he
unlocks it. The other participants in the virtual world can
see the actions of the user that manipulates the shared
object. In order to denote whether a shared object is
lockable or not we use the boolean parameter "lock" in the
SVE file when declaring a sNode.
3.3 SFCreate and SFDelete Events

In order to solve the problem of the initialization of
dynamic created objects, especially for the latecomers, we
introduce the concept of SFCreate and SFDelete events.
The syntax of these events is the same with the syntax of
VRML eventIn and eventOut. They are inserted in the
SVE file (and not in the original VRML file). We use
SFCreate to denote the event that creates dynamically a
VRML object in the original VRML file. Actually, an
SFCreate is an SFString, whose each new value creates a
new SharedNode at the server (InitServer) as a child to the
destination SharedNode. We have chosen SFString type
due to the fact that this type is the more general event type
of VRML. Therefore, using SFString type we can simulate
every other type. In order to delete every dynamically
created object the SFDelete event is introduced. This event
is actually an SFInt32 event. The value of this event
defines the actual position (in a stack of nodes) of the
dynamic created SharedNode that must be deleted.
Furthermore, if the value of the SFDelete event is -1, then
all “children” SharedNodes of the destination SharedNode
will be deleted.
3.4 Dynamic sharing

Sometimes an object should not be shared when the
virtual world is loaded but at a later time. Some other
times, an object is not predefined and its definition could
not be inserted in the SVE file. These occasions show that
it is necessary to have a way to make a VRML node and a

ROUTE shared without accessing the SVE file. This can
be achieved by using the connection between the multi-
user VRML world and the EVE's server through the java
applet (EVE's client) and the network. A special node that
‘implements routeCreator’ is used for this communication.
An eventOut of type SFString informs the java applet
about the dynamically shared routes. Moreover, this node
can use another eventOut of type SFString to delete shared
nodes and routes. All the routes that contain either a
deleted node or a deleted event are also removed.
3.5 Easy transformation of a single-user 3D
world to a multi-user 3D world

Main goal in the designing phase of the EVE platform
is to offer an, as simple as possible, way of making multi-
user a single-user VRML world. Indeed, the
transformation of a single-user 3D world to a multi-user
3D world is quite simple using the EVE's VRML data
sharing. The creator of the 3D world should follow the
following steps:
Collision {children DEF AvatarRoot Group{children[]}}
DEF ProxSensor ProximitySensor {size 1000 1000 1000}

Figure 3: Necessary nodes for avatar representation
Step 1: Insertion of both a Collision node (which is the

root of the users' avatars) and a Proximity sensor node
(which is responsible for giving the position and
orientation of the avatars in the virtual world). Using these
nodes we can share the users' representation (Figure 3).

Step 2: Removal of the shared ROUTEs from the
original VRML file (to add them into the SVE file).

Step 3: Creation of the corresponding SVE file. The
SVE file should contain the definition of the nodes that we
want to share (sNodes). More specifically, the starting
node of a ROUTE (along with the corresponding
eventOut) and the destination node (along with the
corresponding eventIn) are inserted. Also, the ROUTEs
that are removed from the original VRML file are inserted
into the SVE file.
#VRML V2.0 utf8
Group { children [
DEF box Transform {children Shape{geometry Box {} }}
DEF sensor SphereSensor {}]}
ROUTE sensor.rotation_changed TO box.set_rotation

Figure 4: An example of single-user VRML world
In order to show the transformation of a single user

world to a multi-user virtual world using the EVE's VRML
data sharing, we use as example a single-user VRML
world, which contains a simple box that can be rotated in
any direction. The VRML code of this world is shown in
Figure 4. After the steps 1 and 2 the VRML world has
been transformed as it is shown in Figure 5 (the bold fonts
are used for the code of the single-user VRML world).
After the step the 3, the corresponding SVE file is created
as it is depicted in Figure 6.

#VRML V2.0 utf8
Step 1: Addition of Avatar Root and Proximity Sensor
Collision{children DEF AvatarRoot Group{children [] }}
DEF ProxSensor ProximitySensor {size 1000 1000 1000 }
Group { children [
DEF box Transform {children Shape{geometry Box{}}}
DEF sensor SphereSensor {}]}
Step 2: Removal of the shared ROUTEs
#ROUTE sensor.rotation_changed TO box.set_rotation
Figure 5: An example of multi-user VRML world using

EVE approach
node box {eventIn SFRotation set_rotation;}
node sensor{eventOut SFRotation rotation_changed;}
ROUTE sensor.rotation_changed TO box.set_rotation;

Figure 6: An example of SVE file

4. Packet Transmission across the Network
In our both server-client and server-server

communication different types of communication are
implemented, each having special characteristics that
provide the requested functionality. In this way, we try to
achieve the improvement of the overall performance, as
well as to minimize the information that it is transmitted
across the network. Generally speaking, the network
communication in the EVE platform is based on TCP or
UDP communication (Figure 1). Furthermore, we have
implemented a UDP with one-way acknowledgements in
order to transmit quickly and to ensure reliability for a
specific class of messages. More specifically, we have
divided the messages, according to the actions in the multi-
user virtual world, in two classes: (a) Position messages
(posMes), and (b) Important messages (impMes). PosMes
are messages that define the position of avatars in the
multi-user world. ImpMes are all the remaining messages.
We separate the messages into two categories, because
posMes have different characteristics and demands than
impMes, and therefore different types of communication
should be implemented for each type of messages. The
following paragraphs describe in detail the three types of
communication that are used in the EVE platform.

TCP Communication: We use TCP communication
only when primary objective is the reliable transmission of
information. In essence, we use TCP for the server-server
(e.g. ConnectionServer-ChatServer) and for the
initialization process of the client-server communication.
For the first case, TCP is the only choice, as data loss
might lead to inconsistency and therefore to problematic
execution of the servers. Similarly, when a client is
connecting to the server, it needs to receive vital
information in order to initialize its 3D scene and any loss
of information could lead to unwanted results.

UDP with One-way Acknowledgements: UDP
communication is fast but not reliable. On the other hand,
TCP is reliable but more time consuming; therefore, a

middle solution should be implemented. The idea lies
beneath the fact that in some cases packet loss is not very
important, yet in others is catastrophic. To become more
specific, in some cases, the lose of a packet that is send
from a client to the server is not creating any problems, as
none of the clients (not even the sender) will receive
anything and therefore the consistency will remain. On the
contrary, the loss of a packet that is sent from the server to
a client could create a severe dependency problem. Thus,
for these cases, we use UDP with acknowledgements for
the server to client communication (one way). In our
platform, we use this type of communication for the
transmission of impMes messages, as we need to assure
that all clients receive the same impMes messages.

Simple UDP Communication: Simple UDP is the
fastest type of communication. It does not guarantees that
data will be sent correctly, but it will send them very fast.
This type of communications is used when primary
objective is the vivid transmission of packets across the
network, and when packet loss does not create any
important problems. In our case, we use UDP
communication for the transmission of posMes messages.
As these messages define the position of avatars into the
scene, the only effect that the loss of a message could
create, is minor (and temporary) misplace of an avatar in
the VRML scene.

5. Initialization of the 3D Scene
An important issue in a multi-user 3D environment is

the initialization process of a new participant. When a new
user enters a multi-user world, the shared objects should be
updated in his/her client in order to become consistent to
all other participants. The client accomplishes this, as
follows: (1) It is notified about the sNodes list of the
VRML scene; (2) It downloads the last state of sNodes,
using SharedNodes; (3) It applies any updates of the
sNodes, which have been made to the sNodes during the
initialization period.

The initialization process in the EVE platform is based
on the use of both SharedNode and SVE file. When
InitServer starts its execution, it parses the SVE file and
creates a list of SharedNodes, the SharedList. Then, the
initialization process is implemented in the following
steps:

Step 1: Transmission of SharedList from InitServer:
Client opens a TCP connection to InitServer and it
receives the list of SharedNodes (Figure 7-1).

Step 2: Connection to VRML server: When the client
starts receiving the SharedList from InitServer, it is
concurrently receiving any update message from the
VRML server that has been applied to sNodes by other
participants in the CVE. These messages are entered in the
client’s buffer and are not applied until the end of the
transmission of the SharedList (Figure 7-2).

Figure 7: Initialization process
Step 3: Disconnection from InitServer and

application of shared events: The client has completed
receiving the SharedList and closes its connection to
InitServer. Then, it starts applying the events (messages)
that are buffered in its queue in the following way (Figure
7-3): The client retrieves from the SharedList the
SharedNode that the event is supposed to be applied to.
Then it compares the SharedNode’s LastModified variable
with the event’s sequence number. If the second one is
bigger then the event is applied on the SharedNode,
otherwise it is ignored. For example, as shown in Figure 7,
when the client receives SharedNodes X and Y their
LastModified variables have values x and y respectively.
While downloading the rest of the SharedList, two events
are sent from VrmlServer with sequence numbers x1 (x1 >
x) and y that concern SharedNodes X and Y respectively.
After the end of the transmission of the SharedList, the
client starts applying the events. Firstly, it compares x1-
event to LastModified variable of SharedNode X. As x1 >
x, the event is applied on the SharedNode and its
LastModefied variable is updated to x1. On the contrary,
when the client compares the value of y-event to the
LastMidiafied variable of SharedNode Y, it sees that the
event has already been applied to the SharedNode Y, thus
it ignores it.

6. Conclusions
In this paper we present the EVE platform, which can

be used in order to support every multi-user VRML virtual
world. We also introduce EVE's approach for VRML data
sharing. This approach is based on both the concept of the
SVE file and the removal of the ROUTEs that we want to
share from the single-user world, rather than the
"insertion" proposed by VSPLUS and "substitution"
proposed by SPIN-3D. The concept of the SVE file
guarantees the VRML97 conformity, and ensures the
proper initialization of the 3D scene in order to serve the
late comers in the multi-user virtual world and. SVE file
also extends in a transparent way the VRML behavior in
order to support dynamic creation of shared objects as well
as text insertion in a VRML world. Furthermore, using the
EVE's approach, the transformation of a single-user world

to a multi-user world is very simple. The communication
architecture of the EVE platform is also presented. Main
characteristics of this platform are the efficient
communication across the network, which is based on
three types of communication, as well as the scalability due
to the hybrid multi-server communication model. The
usage of Java for creating both servers and clients of the
platform as well as the conformity with the VRML
standard guaranteed the interoperability and openness of
our platform. From the functional point of view our
platform provides the basic functionalities in order to
support CVEs. These functionalities are text and voice
chat, user representation by human-like avatars, support of
users' groups, as well as support of users with different
roles and rights. Regarding our next steps, the first goal is
to improve the initialization process for achieving better
manipulation of dynamic created shared objects. We also
plan to simulate the described architecture in order to
measure its effectiveness and scalability. Furthermore, we
would like to implement a VRML parser in order to
facilitate the creation of the SVE file. Moreover, due to the
fact that CVEs are increasingly gaining visibility in the
field of collaborative e-learning, we are working on
creating CVEs that support collaboration and interaction
among users for educational purposes. A first prototype
has been implemented so far, which is available at [5].

7. References
[1] Araki, Y. "VSPLUS: A high-level multi-user extension

library for interactive VRML worlds". In proceedings of the
third symposium on Virtual reality modeling language,
February 16-20, 1998, Monterey, California, United States,
pp.39-47.

[2] Bouras, C., Psaltoulis, D., Psaroudis, C., and Tsiatsos, T.
"Protocols for Sharing Educational Virtual Environments".
In proceedings of SoftCOM 2001, Split, Dubrovnik
(Croatia) Ancona, Bari (Italy), October 09-12, 2001, Vol. II,
pp. 659-666.

[3] Bouras, C., Triantafillou, V., and Tsiatsos, T. "Aspects of
collaborative learning environment using distributed virtual
environments". ED-MEDIA 2001, Tampere, Finland, June
25-30 2001, pp. 173-178

[4] Diehl, S., Distributed Virtual Worlds, Foundations and
Implementation Techniques Using VRML, Java, and
CORBA. Springer-Verlag, Berlin Heidelberg, Germany,
ISBN 3-540-67624-4, 2001.

[5] EVE (Educational Virtual Environments) prototype,
http://ouranos.ceid.upatras.gr/vr/.

[6] Picard, S., Degrande, S., Gransart, C., and Chaillou, C.
"VRML data sharing in the spin-3D CVE". In proceeding of
the 7th International Conference on 3D Web Technology-
Web3D 2002, Tempe, Arizona, USA pp. 165 - 172, 2002

[7] Singhal, S., and Zyda, M,. Networked Virtual
Environments: Design and Implementation. ISBN 0-201-
32557-8, ACM Press, 1999.

[8] Web 3D Consortium, http://www.web3d.org.

http://www.web3d.org/

	Introduction
	EVE communication platform
	VRML data sharing using EVE’s approach
	SVE file
	SharedNodes
	SFCreate and SFDelete Events
	Dynamic sharing
	Easy transformation of a single-user 3D world to a multi-user 3D world

	Packet Transmission across the Network
	Initialization of the 3D Scene
	Conclusions
	References

