
The Effect of Clock Drifts on the Performance of
Distributed Timestamp Ordering ∗

C. J. Bouras P. G. Spirakis

Department of Computer Science and Engineering
University of Patras, Greece

and Computer Technology Institute, Greece

Abstract

Timestamp–based algorithms have been proposed to protect distributed
database from inconsistencies during concurrent access. In such algorithms,
transactions may reach a paricular site out of the order of their timestamps,
due to unexpected network delays. This causes conflicts which the distributed
concurrency control mechanism has to cope with. In this paper we analyze
the essential features of the conflict phenomenon under the realistic assump-
tion of the local site clocks out of total synchrony. We quantify the way in
which local clock inaccuracies affect the phenomenon of transaction conflicts.
In particular, we express the probability of order–reverse as a particular in-
creasing function of the maximum clock drift.

Keywords : Concurrency control, conflicts, performance, timestamp,
clock drifts, asynchrony, distributed databases

∗This research was partially supported by the Ministry of Education of Greece and by the
EEC RACE Project TELEMED

1 Introduction

Database concurrency control is concerned with the problems that arise when
several users access and update a database simultaneously. Concurrency control
algorithms try to maintain the consistency of the database. Since the semantics
of transactions are embedded in application programs, it is not easy to design
concurrency control algorithms that take advantage knowledge. Most techniques
therefore try to preserve (syntactic) serializability if it is produces the same effect
on the database as a serial execution of those same transactions. Since a serial
execution preserves consistency, a serializable execution also preserves it.

Research in the area of concurrency control for distributed database systems
has led to the development of many concurrency control algorithms. Most of these
algorithms are based on one of three basic mechanisms : locking, timestamps
and optimistic concurrency [BG81]. Given the ever–growing number of available
concurrency control algorithms, considerable research has recently been devoted
to evaluating the performance of concurrency control algorithms. The behav-
ior of locking has been investigated using both simulation and analytical models
[ACL87], [BBD82], [Tay84].

A qualitative study that discussed performance issues for a number of dis-
tributed locking and timestamp algorithms was presented in [BG81] and an em-
pirical comparison of several concurrency control schemes was given in [PR83].

Recently, the performance of different concurrency algorithms has been com-
pared in a number of studies. The performance of locking was compared with the
performance of basic timestamp ordering [Gal84]. Results of experiments compar-
ing locking to the optimistic method appeared in [Rob82] and the performance of
several variants of locking, basic timestamp ordering, and the optimistic method
was compared in [ACL87], [LN89]. These performance studies are informative,
but the results that have emerged, instead of being definitive, have been very con-
tradictory. This happens because of the different set of assumptions about the
models [ACL87].

Although performance models of timestamp–ordering concurrency control were
extensively studied [AR87], [BGP84], [BS90], [CGM88], [KBL82], [KKM81], [Li87],
[LN89], [SA86], [SG87], [WL86], all models up to now assume global time for times-
tamping.In contrast real physically distributed database systems use local clocks
which do not indicate the same time. However, aside from relatively consider-
ations, it usually holds that there is some bounded proportion between elapsed

1

local time spans [Vit84]. Techniques such as message passing [Lan78] can be used
to keep local clocks almost synchronized [LL84]. In this paper we do assume that
local clocks suffer a small bounded drift [KTZ88].

Since network delays relate to the actual transaction origination times but the
receiving site associates transaction arrivals to their (logical) timestamps, one has
to relate logical and global time in order to quantify the effect of non- synchronized
local clocks on the possibility of transaction conflicts noticed by the concurrency
control algorithm. In this paper, we analyze the conflicts between transactions.
We focus on the few important factors affecting conflicts and develop a simple
mathematical model to access their relative significance. Our approach is simpler
and slightly more general since it incorporates the effect of clock drifts into the
analysis for the first time.

2 Basic Architecture of Distributed Databases

A database is a collection of shared data items. In a database, certain relation-
ships hold among its data items. The set of these relationships for a database
is called the consistency assertions of the database. A database is in consistent
state if the current values of its data items satisfy all of its consistency assertions.
In such a system, a transaction is a program with read, write and other opera-
tions. A Distributed Database Managment System(DDBMS) may be viewed as
a collection of nodes connected to a network. Each node consists of a computer
running either a Transaction Manager(TM) or a Data Manager(DM) or both.
The nodes communicate by sending messages over the network. The network is
assumed to be completely reliable, i.e. , if node A sends a message to node B, it
is guaranteed that B will receive the message error–free. The architecture of the
system is shown in Fig. 1. A TM coordinates the execution of the transaction.
A DM manages a local database. From the viewpoint of a single transaction, the
system consists of a single TM and a number of DMs, Fig. 1. Neither TMs nor
DMs intercommunicate.

There are several reasons why DDBMS are developed. Many organizations
are decentralized and a DDBMS approach fits more naturally the structure of the
organization. DDBMS are the natural solution when several databases already
exit in an organization and the necessity of performing global applications arises.
The recent development of small computers, providing (at a lower cost) many of
the capabilities which were previously provided by large mainframes, constitutes

2

Figure 1: Architecture of the DDBMS model

Figure 2: DDBMS model for a single transaction

3

the necessary hardware support for the development of distributed information
systems. The technology of DDBMS is based on two other technologies which
have developed a sufficiently solid foundation during the last years, computer
networks technology and database technology. More details about DDBMS can
be found in [CP84].

3 The Model

We assume that the distributed database consists of S sites. The database is not
replicated . This mean that each data object exists at only one site. So, in each
site there exists a different Local Data Base. The number of data objects per site
(database size) is N . A perfectly reliable network is assumed to connect the S sites.
A key parameter in our model is the end–to–end delay which is the ellapsed time
from the sending of a transaction at its source to the delivery of the transaction at
its destination. As [Li87] points out, the distribution of the end–to–end delay is
not mathematically tractable in general due to strong dependencies between the
interarrival and service sequences at each channel and between the service times at
successive communication channels. We require the delay distribution as an input
to our model.

Transactions are generated at different sites as independent Poisson processes.
We assume that local processing times are negligible compared to communication
delays. We also assume that transaction generations and communication delays
are statistically independent. Each transaction is assumed to access M data ob-
jects (and we assume M << N), which belong in the same Local Data Base .
Transactions travel across the network as message packets of reads and writes (
one such packet per transaction). The data objects accessed by each transaction
are equilprobably selected among the N data objects (uniform access).

The clocks at differents sites are not perfectly synchronized. Instead we assume
an ε–bounded drift [KTZ88] among the clocks. More specifically, if t is the global
time and LC(j, t) the indicatin of the clock of site j at t , then there is an ε > 0
such that for all j:

|LC(j, t)− t| < ε (1)

It is obvious that the unique timestamp which receives each transaction is LC(j, t).
Furthermore, the values of LC(j, t) are assumed to be uniformly and independently
distributed in [t ± ε]. The constant ε is known from the specification of the un-
derlying hardware clocks. Typically ε is very small, in the order of 10−5 to 10−6.

4

Note that only perfectly synchronized clocks were considered by the research on
the performance of timestamps algorithms up to now.

4 The Essential Factors of Conflicts

4.1 Causes

It is known [BG81] that transaction conflicts (i.e. violations of the serializable
processing) arise due to the following two events in conjunction.

Event 1 Two or more transactions may access the same data object and
at least one of them is an attempt to write , and

Event 2 Intersite communication delays may cause transactions originat-
ing from different sites to arrive at one site in reverse order of
their timestamps.

Any timestamp ordering algorithm must either reorder the requests or reject
some transactions in order to preserve serializability.

4.2 The issue of pipelined delays

The requests originating from the same site are assumed to be pipelined i.e. they
will arrive at the same site in the order of their timestamps. This can be en-
sured by communication network protocols. The pipelined transmission require-
ment introduces resequencing delays. The distribution of such delays was analyzed
in [AR87],[BGP84],[KBL82],[KKM81],[SG87] , mostly by modelling the network
connecting two sites as an M/M/∞, an M/G/∞ or an M/M/k queueing system.
Even in such a case, the PDF of the pipelined transmission delay does not have a
convenient form. In our analysis, the PDF of this delay is an input parameter.

4.3 Static Conflicts

It is obvious that events 1, 2 of the conflict phenomenon are independent. Event
1 is a prerequisite for conflict. Without it event 2 would not matter. The per-
centage of potential conflicts (static conflicts) due to event 1 can be estimated by

5

combinatorial techniques based on assumptions about the creation of readsets and
writesets of transactions.

Let each transaction access M data objects, out of N , selected uniformly. Then
the probability of two transactions having at least one common data object is

pcd = 1−

(
N −M

M

)
(

N
M

) (2)

If we assume that M � N (which is usualaly the case in practice), then the
above equation gives

pcd =
M2

N
(3)

Furthermore, if RO is the fraction of READ operations per transaction and WO
the corresponding fraction of WRITE operations (0 < RO, WO and RO + WO =
1) then the probability of a static conflict psc between two particular transactions
is calculated as follows:

The probability that two particular transactions have x > 0 item in common
is

px
cd =

(
N −M
M − x

)(
M
x

)
(

N
M

) (4)

then the conditional probability of a static conflict provided that x items are in
common is

px
c = (1−ROx)2 (5)

and finally the probability of a static conflict is

psc =
M∑

x=1

px
cdp

x
c (6)

Note that in (5) we have ignored Thomas’s Rule [Tho79]. Note also that more
complicated assumptions about the way to select readsets and writesets can be
handled by modifying the combinatorics.

6

Figure 3: Local ordering of events

4.4 The Phenomenon of Order Reverses and its Probabil-
ity

A detailed modeling of this phenomenon would have to take into account the local
time intervals shown in Fig. 3. Times x, y, z are insignificant compared to network
delays. Thus, a simplified look to the phenomenon of order reverses may assume
that all those times are zero.

Let us consider a particular transaction T1 generated at site i which is then
transmitted to site k. Denote by aij the time we have to wait until we see the next
generation of a transaction T2 (say at site j). Due to the memoryless property
of Poisson processes, aij, is exponentially distributed with mean 1/λk (T1 and T2

go to site k).Let t1 and t2 be the actual generation times of T1, T2 and LC(i, ti),
LC(j, t2) the corresponding timestamps of T1 and T2. Clearly aij = t2− t1. In the
sequel we assume t1 < t2. If dik and djk denote the network delays (transmission
plus pipeling) for T1 and T2 to go to site k, then an order reverse will be found by
site k if and only if one of the following two sets of inequalities hold:

Either
LC(i, t1) < LC(i, t2) and t1 + dik > t2 + djk

or
LC(i, t1) > LC(i, t2) and t1 + dik < t2 + djk (7)

Let
Event E1 be the inequality LC(i, t1) < LC(j, t2)
Event E2 be the inequality t1 + dik > t2 + djk

7

Event G1 be the inequality LC(i, t1) > LC(j, t2)
Event G2 be the inequality t1 + dik < t2 + djk

We define event E as

E = (E1 ∧ E2) ∨ (G1 ∧G2) (8)

Note that all literature up to now considered event E1 just to be t1 < t2 (thus
ignoring the clock synchronization issue).

Also note that event E2 can be rewritten as

dik > djk + aij (9)

In the sequel we assume that dik and djk are exponentially distributed with means
µik and µjk.

The probability of order reverse from (8) is then

Rk
ij = Prob{E} (10)

Since events Ei exclude the Gi, (i = 1, 2) and since E1 is independent of E2

(also G1 independent of G2) we get

Lemma 1

Rk
ij = Prob{E1} ∗ Prob{E2}+ Prob{G1} ∗ Prob{G2} (11)

Note that assumption of total synchrony of local clocks would simplify Rk
ij to

just be Prob{E2}.

Also , due to our assumptions , we have

Prob{Gi} = 1− Prob{Ei}, i = 1, 2

Thus

Rk
ij = Prob{E1} ∗ Prob{E2}+ (1− Prob{E1}) ∗ (1− Prob{E2}) (12)

8

Figure 4: Case 1

4.5 Estimation of the probability of order reverse

The following two facts are true about exponentials

Fact 1 Given two independent exponential random variables x1 and x2

with rates 1
µ1

, 1
µ2

we have

Prob{x1 ≥ x2} =
µ2

µ1 + µ2

Fact 2 Given independent random variables x, y, z such that x is expo-
nential and y is positive, we have

Prob{x > y + z} = Prob{x > y}Prob{x > z}

Thus, as in [Li87] we get

Prob{E2} =

= Prob{aij < dik}Prob{djk < dik}

=
λj

µik + λj

µjk

µik + µjk

(13)

As far as Prob{E1} is concerned we have the following two Cases:

Case 1 (Fig. 4)

If t1 + ε ≤ t2 − ε, which means that aij = t2 − t1 ≥ 2ε, then event E1 holds
with conditional probability 1

9

Figure 5: Case 2

In this case

Prob{event E1 in Case 1} =

= Prob{LC(i, t1) ≤ LC(j, t2)}Prob{event E1 given Case 1}
= Prob{t2 − t1 ≥ 2ε} ∗ 1

= e−λj2ε (14)

Case 2 (Fig. 5)

If t1 + ε > t2 − ε then 2ε > aij = t2 − t1

In this case

Prob{event E1 in Case 2} =

= Prob{t2 − t1 < 2ε}Prob{event E1 given Case 2} (15)

After some algebra (Appendix 1) we get

Prob{event E1 in Case 2} =

=
1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

)
(16)

Thus, finally from Cases 1 and 2 we have that,

Prob{E1} =

=

(
e−λj2ε +

1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

))
(17)

It is obvious that
lim
ε→0

Prob{E1} = 1

10

This result agrees with all previous works [BS90]. However the clock phe-
nomenon is not taken into account. So from (14), (17) and Lemma 1 we have
that

Rk
ij =

=
[

e
−λj2ε

+
1− e

−λj2ε

4ε2

(
2ε

2
+

2ε

λj

+

(
1

λ2
j

− 4ε
2

)
e
−λj2ε −

1

λ2
j

)](
λj

λj + µik

µjk

µik + µjk

)
+[

1−

(
e
−λj2ε

+
1− e

−λj2ε

4ε2

(
2ε

2
+

2ε

λj

+

(
1

λ2
j

− 4ε
2

)
e
−λj2ε −

1

λ2
j

))](
1−
(

λj

λj + µik

µjk

µik + µjk

))
(18)

Note that (18) express Rk
ij as a function of λj, µik,µjk and ε only.If we assume

that transactions are generated at any sites as independent Poisson process of rate
λ and the network delay for each transaction is exponentially distributed of rate
µ, then

Rk
ij =

=
[
e−λ2ε +

1− e−λ2ε

4ε2

(
2ε2 +

2ε

λ
+
(

1
λ2
− 4ε2

)
e−λ2ε − 1

λ2

)](
λ

2(λ + µ)

)
+[

1−
(

e−λ2ε +
1− e−λ2ε

4ε2

(
2ε2 +

2ε

λ
+
(

1
λ2
− 4ε2

)
e−λ2ε − 1

λ2

))](
1− λ

2(λ + µ)

)
(19)

The above probability under our assumotions is the same for each pair of
transactions at any site.From now on we will call it R for simplicity.

It is easy to see that

lim
ε→0

R =
λ

2(λ + µ)
(20)

Also (Appendix 2)

lim
ε→∞

R = lim
ε→∞

Prob{E1} =
1

2
(21)

The curves in Fig. 6 show how R varies as a function of ε. We note that the
probability of order–reverse is an increasing function of ε. So, that the overhead
to keep site clocks almost synchronized should be traded–off with the increased
percentage of transaction restarts(or delays) caused by clock drifts.

For small ε, which is usually the case in practice (Appendix 3), (18) gives that

Rapr = (1− 3λε + 4ε2λ2)
λ

2(µ + λ)
+ (3λε− 4ε2λ2)

2µ + λ

2(µ + λ)
(22)

11

The following table gives some numerical results, for λ = 1 and ε = 10−2.

µ R Rapr Prob{E2}
2.00000E+00 1.79651E-01 1.86400E-01 1.66667E-01
1.00000E+00 2.59738E-01 2.64800E-01 2.50000E-01
6.66667E-01 3.07791E-01 3.11840E-01 3.00000E-01
5.00000E-01 3.39826E-01 3.43200E-01 3.33333E-01
4.00000E-01 3.62708E-01 3.65600E-01 3.57143E-01
3.33333E-01 3.79869E-01 3.82400E-01 3.75000E-01
2.85714E-01 3.93217E-01 3.95467E-01 3.88889E-01
2.50000E-01 4.03895E-01 4.05920E-01 4.00000E-01
2.22222E-01 4.12632E-01 4.14473E-01 4.09091E-01
2.00000E-01 4.19913E-01 4.21600E-01 4.16667E-01

5 The Probability of Conflict

The probability that a transaction is rejected if only three sites are present, is
clearly from (6) and (19).

r = Prob{of conflict in case of three sites}
= Prob{of static conflict}Prob{out of order}
= psc ∗R

(23)

6 Conclusions and Future Work

We have shown that the probability of order–reverses is an increasing function of
the clock drift parameter ε and the network delay 1/µ. The phenomenon of order–
reverses is the main cause of either delays or restarts in any timestamp–ordering
based concurrency control algorithm. Therefore, the additional effort needed in
order to keep local clocks almost synchronized is well justified since it improves
the overall performance of the scheduler.

Our analysis can be genaralized to take into account non–exponential delays
and non–uniform drifts. In fact, one can superimpose a distribution on ε, making
it a random variable and thus parametrizing the quality of clock syncronization
protocols. The effect of the degree of asynchrony on DDB protocol performance
seems to be an important topic for future research. In this setting, protocols such
as two–phase locking, that seem immune to clock drifts, are of particular interest.

12

Figure 6: R as a function of ε, for different λ and µ
13

REFERENCES

[ACL87] Agrawal R., Carey M., Linvy M., ”Concurrency Control Performance
modelling: Alternatives and Implications”, ACM Transactions on
Database Systems, Vol. 12, No 4, Dec. 1987, pp. 609-654

[AR87] Agrawal S., Ramaswamy R., ”Analysis of the Resequencing Delay for
M/M/∞ systems”, ACM SIGMETRICS 1987, pp. 27-35

[BGP84] Bacelli F., Gelenbe E., Plateau B., ”An end to end approach to the
resequencing problem”, JACM Vol. 31, No 3, July 1984

[BBD82] Balter R., Berard P., Decitre P., ”Why control of the concurrency level
in distributed systems is more fundamental than deadlock manage-
ment”, Proceedings of the 1st ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Ottawa, Ontario, Aug. 18-20,
1982, pp. 183-193

[BG81] Bernstein A., Goodman M., ”Concurrency Control in Distributed
Database Systems”, Computing Survey, Vol. 13, No. 2, June 1981

[BS90] Bouras C., Spirakis P., ”Simplified Performance Models of the Re-
ordering Issue in Timestamp Ordering Concurrency Control in Dis-
tributed Databases”, ISCIS V, Cappadocia, Turkey, 1990

[CS84] Carey M., Stonebraker M., ”The performance of concurrency con-
trol algorithns for database management systems”, Proceedings of the
10th International Conference on Very Large Data Bases, Singapore,
Aug 1984, pp. 107-118

[CGM88] Cellary W., Gelenbe E., Morzy T., ”Concurrency Control in Dis-
tributed Databases Systems”, Studies in Computer Science and Arti-
ficial Intelligence, Ed. Kobayashi H., Nivat M., North-Holland, 1988

[CP84] Ceri S., Pelagatti G., ”Distributed Databases.Principles and Sys-
tems”, McGraw-Hill, 1984

[Gal84] Galler B.I., ”Concurrency Control Performance Issues”, Report
CSRG-147 Ph.D Thesis University of Toronto, Toronto Canada, 1984

[KBL82] Kamoun F., Ben Djerad M., LeLann G., ”Queueing Analysis of the
Ordering Issue in a Distributed Database Concurrency Control: A

14

General Case”, Proceedings of the 3rd International Conference on
Distributed Computing Systems, 1982, pp. 447-452

[KKM81] Kamoun F., Kleinrock L., Muntz R., ”Queueing Analysis of the Or-
dering Issue in a Distributed Database Concurrency Control Mech-
anism”, Proceedings of the 2nd International Conference on Dis-
tributed Computing Systems, 1981, pp.13-23

[KTZ88] Korach E., Tel G., Zaks S., ”Optimal Synchronization of ABD Net-
works”, Tech. Rep. RUU CS-88-23, Ultrect

[Lan78] Le Lann G., ”Algorithms for Distributed Data Sharing Systems which
Use Tickets”,Proceedings of the 3rd Berkeley Workshop on Dis-
tributed Data Management and Computer Networks, San Francisco,
1978

[Li87] Li V., ”Performance Models of Timestamp-Ordering Concurrency
Control Algorithms in Distributed Databases”,IEEE Transactions on
Computers, Vol. C-36, No. 9, September 1987, pp. 1041-1051

[LN89] Lin W.K., Nolte J., ”Distributed Database Control and Allocation”,
Final Tech. Rept. Vol. II, Computer Corporation of America 1989

[LL84] Lundelins J., Lynch N., ”An upper and lower bound for clock syn-
chronization”,Information and Control 62(2-3) 190-204, 1984

[PR83] Peinl P., Renter A., ”Empirical comparison of database concurrency
control schemes”, Proceedings of the 9th International Conference on
Very Large Data Bases, Florence, Oct. 1983, pp. 97-108

[Ree78] Reed D., ”Naming and Synchronization in a decentralized computer
systems”, Ph.D. Dissertation, Dept. Elec. Eng. Comp. Sc., MIT
Sept. 1978

[Rob82] Robinson J., ”Design of concurrency control for transactions process-
ing systems”, Ph.D. Dissertation , Dept. Comp. Sc. , Carnegie-
Mellon University, Pittsburg, 1982

[Sil82] Silberschatz A., ”A multiversion concurrency control scheme with no
rollbacks”, Proc. ACM Symposium on Principles Distributed Com-
puting, Aug. 1982, pp. 216-223

15

[SA86] Singal M. , Agrawala A., ”Performance Analysis of an Algorithm for
Concurrency Control in Replicated Database Systems”, ACM SIG-
METRICS 1986, pp. 216-223

[SG87] Stafylopatis A., Gelenbe E., ”Delay Analysis of Resequencing Systems
with Partial Ordering”, PERFORMANCE ’87 , pp. 433-445

[SR81] Stearns R., Rosenkrantz D., ”Distributed database concurrency con-
trol using before values”, Proceedings SIGMOD Conf. Management
Data, 1981, pp. 74-83

[Tay84] Tay Y.C., ”A Mean Value Performance Model for Locking in
Databases”, Ph.D. Dissertation, Harvard University TR-04-84

[Tho79] Thomas R., ”A majority consensus approach to concurrency control
for multiple copy databases”, ACM Tranasactions on Database Sys-
tems, Vol. 4, 1979, pp. 180-209

[Vit84] Vitanyi P., ”Distributed in an Archimedean Ring of Processors”,
ACM STOC 1984, pp. 542-547

[WL86] Wang C., Li V., ”Queueing analysis of the conservative timestamp
ordering concurrency control algorithm”, Proceeding IEEE Interna-
tional Computing Symposium 1986, pp. 1450-1455

Appendix 1

It is straightforward to observe that

Prob{t2 − t1 < 2ε} = 1− e−λj2ε

Also (Fig. 7), conditioning on t2 − t1 = x, 0 ≤ x ≤ 2ε

Prob{E1/Case 2} = Prob{A}Prob{E1/A}+ Prob{B}Prob{E1/B}
+ Prob{C}Prob{E1/C}+ Prob{D}Prob{E1/D}

It is easy to see that

Prob{E1/A} = Prob{t1+ε < LC(j, t2) < t2+ε and t2−ε < LC(i, t1) < t1+ε} = 1

16

Similarly
Prob{E1/B} = 1

Prob{E1/C} =
1

2

Prob{E1/D} = 1

In Fig. 7, the horizontal axis indicates the possible values of LC(j, t2) and the
vertical the possible values of LC(i, t1).

Also, by counting areas in Fig. 7, we get that

Prob{A} =
(t2 − t1)(t1 − t2 + 2ε)

4ε2

Prob{B} =
(t2 − t1)

2

4ε2

Prob{C} =
(t1 − t2 + 2ε)2

4ε2

Prob{D} =
(t2 − t1)(t1 − t2 + 2ε)

4ε2

After this we get that

Prob{E1/Case 2} =

=
[
(t2 − t1)(t1 − t2 + 2ε) + (t2 − t1)

2
(t1 − t2 + 2ε)

2
+

(t1 − t2 + 2ε)2

2
+ (t2 − t1)(t1 − t2 + 2ε)

]
1

4ε2

Thus, by conditioning on t2 − t1 = x we have that

Prob{E1in Case 2} =
1− eλj2ε

4ε2

∫ 2ε

x=0

[
2x(2ε− x) + x2 +

(2ε− x)2

2

]
λjε

−λjx

After some calculations we get that

Prob{event E1 in Case 2} =

=
1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

)

17

Figure 7: The four subcases of Case 2

18

Appendix 2

First of all we shall examine, what happens for Prob{E1} when ε →∞ We know
that

Prob{E1} =

(
e−λj2ε +

1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

))
From the above equation we get that

limε→∞Prob{E1} =

= limε→∞

(
e−λj2ε + limε→∞

[
1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

))]
The first term converges to 0. So

limε→∞Prob{E1} =

= limε→∞
1− e−λj2ε

4ε2

(
2ε2 +

2ε

λj

+

(
1

λ2
j

− 4ε2

)
e−λj2ε − 1

λ2
j

)

It is obvious now that

lim
ε→∞

Prob{E1} =
1

2

We have that

R = Prob{E1} ∗
λ

2(λ + µ)
+ (1− Prob{E1}) ∗ (1− λ

2(λ + µ)
)

We observe that

lim
ε→∞

R = lim
ε→∞

Prob{E1} =
1

2

Appendix 3

It is known that for small x
ε−x ≈ 1− x

So, in that case
Prob{E1} ≈ (1− 3λε + 4λ2ε2)

Thus

Rapr = (1− 3λε + 4ε2λ2)
λ

2(µ + λ)
+ (3λε− 4ε2λ2)

2µ + λ

2(µ + λ)

19

