
Performance Evaluation of a Dynamic Approach for Networked Servers
Distributed Virtual Environments

Christos Bouras1, 2, Eri Giannaka1, 2, Thrasyvoulos Tsiatsos3
1Research Academic Computer Technology Institute, Greece

2Computer Engineering and Informatics Department, University of Patras, Greece
3Department of Informatics, Aristotle University of Thessaloniki, Greece

bouras@cti.gr, giannaka@cti.gr, tsiatsos@csd.auth.gr

Keywords: Distributed virtual environments, networked
servers architecture, performance evaluation, resource
management, load balancing

Abstract
 Distributed Virtual Environment systems simulate the
behaviour and activities of a great number of concurrent
users interacting in a virtual world over a wide area
network. The advances both in computer technology and
networking infrastructures in combination to the advanced
applications and services developed, expanded the
popularity of DVEs and promoted their use in a wide range
of areas, such as learning and training, collaborative work,
military applications and multiplayer online games. The
sizes of the virtual worlds simulated and the tremendous
number of users that DVEs are called to support require
additional bandwidth and computational resources. For
handling these growing requirements a lot of work has been
done both to the direction of alternative architectural
solutions as well as to techniques and algorithms for
handling and overcoming the limitations of these
environments. However, recent research has shown that one
of the major limitations of networked servers DVE systems
is scalability. To this direction this paper presents on the one
hand a dynamic approach for DVEs, which exploits the
nature of these systems for the optimal resource
management and extended scalability support and on the
other hand, evaluates its performance through a series of
experiments and under various settings of the virtual world,
using Simul8 simulation tool.

1. INTRODUCTION
 Distributed Virtual Environments (DVEs) simulate real
or imaginary worlds by incorporating rich media and
graphics for achieving high level of realism and for
providing all required functionality and services to the end
users, such as text and audio chat, streaming media support,
application sharing, etc. Users are represented in the DVE
system by an entity, called avatar, which is controlled by the
user’s computer (client) and has the ability to navigate
within the virtual world and interact both with the other
users of the system as well as with the system itself. A basic

principle of all DVE systems is that all connected users,
which could be scattered around the globe, share the same
view of the virtual environment, as if they were physically
located in the virtual space. Thus, it is of critical importance
that consistency among users’ view is constantly and
efficiently maintained.
 DVEs became notably popular during the last decade,
which could be credited to the important and continuous
advances of both hardware and software, but mainly to the
wide expansion of high-speed internet access, which
constitutes the basic medium of these systems. Thereby,
many applications and platforms were developed for
supporting large-scale DVEs, which in turn, were gradually
adopted in a wide range of both research and industrial
areas, such as learning and training, collaborative work,
military applications and entertainment. It should be
mentioned that the term large-scale is two-fold and refers
both to the size of the virtual environment (in terms of rich
graphics and media) as well as to the tremendous number of
users it is called to support [1]. The characteristics of these
complex systems introduce a number of issues that need to
be addressed, such as resource management, control of
network traffic, awareness, heterogeneity and reliability [2].
 For handling these demanding applications, facing the
issues that arise and overcoming various limitations,
existing approaches fall usually into one of the following
architectures: a) networked servers architectures and b)
peer-to-peer architectures. To both directions they is lot of
work done, including algorithms for the partitioning
problem [3], [4], load balancing techniques [5], awareness
methods [6] and other techniques [7], [8], while a great
number of platforms has been designed and developed
([9][9], [10], [11]). Even though, many of the algorithms
and techniques implemented can achieve effective results,
current research has indicated that the main issue for
networked servers DVEs is the scalability. In particular, as
presented in [4], DVE systems reach saturation when any of
the servers reaches 100% of CPU utilization. In these cases,
the overall system performance greatly decreases.
 To this direction, this paper presents a dynamic
approach for networked servers DVEs for extending the
scalability and for achieving an optimal resource

management. In particular, the approach presented exploits
the dynamic nature of these systems for selecting and
assigning over time the resources necessary for the efficient
operation of the system. Thus, the main objectives of the
approach are, on the one hand, to ensure that the system will
not reach the saturation point, for a longer period of time
and, on the other hand, to optimally assign the necessary
resources according to the specific needs of the DVE for a
given period. Furthermore, the paper evaluates the
performance of the proposed dynamic approach through a
series of experiments and under different settings of the
virtual world. At this point it should be noted, that the
approach presented does not aim at guaranteeing that a
saturation point will never be reached, but rather at ensuring
that the system will be viable for a longer period of time.
 The rest of the paper is structured as follows: Section 2
presents the main characteristics and processes of dynamic
DVE system and describes the main principles of the
dynamic DVE approach in terms of the basic concepts and
the parameters measured. Section 3 describes the simulation
model in terms of its basic entities as well as their
“translation” to Simul8 simulation tool objects. Section 4
presents the experiments conducted for testing the model’s
accuracy and efficiency under different settings of the DVE
system and discusses the results. Finally, Section 6
concludes the paper and presents some planned next steps.

2. DYNAMIC APPROACH FOR DVE SYSTEMS
 This section presents, in brief, the basic entities and
characteristics of DVE systems and focuses on the
description of the dynamic approach in terms of its basic
concepts and primitives as well as of the workflow for the
processes and events that take place.

2.1. DVEs’ basic entities and characteristics
 A virtual environment could be considered as a
simulation generated by a computer, which can simulate
either an imaginary or real world. In DVEs the simulated
world runs not on one computer system but on several,
which are connected over a network. Users that connect to
these systems are able to interact in real time, sharing the
same virtual world. DVEs aim at supporting a tremendous
number of concurrent users, scattered around the globe. The
participants constitute active parts of the DVE, usually
represented by human-like entities, called avatars for
enhancing the awareness [12]. The state and behaviour of
each avatar is controlled by the user through the client
computer. Connected users can view the virtual world on
their computer (client), thus having their own local copy of
the virtual world.
 Apart from the users, DVEs, on their vast majority, are
also comprised by non-autonomous entities, called objects,
which constitute the graphical representation of entities that
are placed within the virtual world for supporting the

context of each simulated scenario (e.g. trees, books, chairs,
weapons, etc). According to the nature of the DVE and the
scenario it simulates, these objects could be static or
moving, interactive or not.
 In the majority of existing DVE systems users have the
ability to navigate in the virtual world, thus changing their
position coordinates, interact with the objects of the virtual
environment, thus changing some of their attributes (such as
location, shape, colour, etc), interact and communicate with
other participating users. For achieving high-sense of
realism and maintaining consistency, it is of critical
importance that all connected users are always aware both
of the presence of other users as well as of any actions
performed.
 In networked servers DVEs, when a user connects to
the system, s/he is assigned to one of the available servers.
This assignment is based on the algorithm and techniques
that each DVE adopts for handling its resources and for
achieving load balancing among the servers. Throughout the
users’ presence in the system, the responsible server accepts
the messages produced by all avatars that it handles,
processes these messages and updates the state of the virtual
world accordingly. Then, it sends those changes to all
avatars concerned, thus modifying and synchronizing their
view of the virtual world. In addition, for maintaining
consistency, synchronization messages are sent among the
connected servers. These messages introduce an additional
cost, usually called communication cost.
 The majority of existing techniques uses all servers
available for handling and supporting the DVE system. The
term dynamic DVE, as used in this paper, is twofold. On the
one hand it refers to virtual environments, which are
initialized once and run always, with users joining and
leaving the virtual space. At this point it should be
mentioned that this definition does not take into account the
cases of virtual environments, where users can dynamically
add or create objects within the virtual space. On the other
hand, the term “dynamic” is adopted for defining DVEs,
where the number of servers running changes and adapts to
the resources needed at a given period of time.

2.2. Basic Concepts
 Taking into account the results of [4], already
mentioned in the previous section, the dynamic scheme
defines certain boundaries within which an application can
operate efficiently. The efficiency of each application
depends on the focus of each simulated scenario. For
example, in a case of an educational DVE, the consistency
of the world would not be importantly affected if a number
of position messages were lost, while in a battlefield, where
soldiers move and run, any loss would significantly affect
the sense of realism and users’ awareness. Thus, the
boundaries defined for the DVE system are scenario driven.

 Furthermore, as mentioned above, the communication
cost among the connected server can importantly increase
the load and performance of the system. In the cases where
all available servers are used, regardless of the techniques
adopted, there are cases, where the communication cost is
importantly increased. In particular, in the cases of multiple
servers available, and a low number of connected users to
each server, the servers would still need to exchange
communication messages thus overloading the system.
Driven by this observation, the proposed approach defines
the concept of necessary resources for maintaining the
consistency of the system, while minimizing the
communication cost. In particular, the resources of the
system (which are the servers available) are relished
according to the demands generated by connected users.
 From the above, it could be stated that a networked
servers DVE system needs to locate the optimum solution
for the following problem:
“Given a certain number of servers, with defined processing
power, we need to find the optimal assignment of resources
for serving as many users as possible with guaranteed
efficiency, while minimizing the communication cost, based
on each application’s special characteristics”.
 This problem falls in the area of operational
management and linear algebra, where the efficiency is
defined by the boundaries set for the CPU utilization of each
of the available servers.

2.3. Dynamic Scheme Presentation
 We consider a DVE system, which is comprised by a
fixed number of servers (computers). Each computer has a
certain amount of resources and can serve
requests/messages from the users. We consider as resources
the capacity of the Central Processing Unit (CPU). Each
time that a user enters the DVE system a request is sent to a
central server, which is denoted as ConMan Server. This
server performs two main tasks: (a) accepts and authorizes
the connection requests from the users and redirects them to
the appropriate server, (b) monitors the performance of the
working servers over a period of time and acts when it is
identified that one or more servers need to be unloaded. For
the monitoring task, the ConMan Server performs network
management operations using the SNMP [13] protocol. At
this point it should be mentioned that the ConMan Server
communicates with the users only during the connection
process and the assignment of the user to the appropriate
server.
 When users’ avatars enter the virtual world, and from
the moment they are assigned to a server, they start to
navigate, interact and perform actions, thus sending
messages/requests to the servers. Each of the servers of the
DVE system is responsible for processing and serving these
requests/messages initialized by the users, perform all the
necessary updates to the virtual scene and notify all

concerned users about the updates. The events that take
place and their processing, based on their number and
resources they require, affect the servers’ performance.
Therefore, the performance of each server is constantly
checked (after a fixed period of time) by the ConMan
Server. However, for ensuring higher reliability, each server
has a self-monitoring mechanism. In particular, each server
runs an SNMP agent, which monitors the CPU usage. When
the defined threshold/boundary is reached, the SNMP agent
sends a “trap” to the ConMan Server, which notifies it that
the specific machine reaches the point of saturation. When
the trap message is received by the ConMan Server, the
unloading process of the saturated server is initialized.
 In particular, when a “trap” is received, either within
the standard checks of the system or by the active servers,
the ConMan Server performs all the necessary actions for
re-balancing existing workload among the servers of the
system. It should be mentioned that the technique for
workload re-balance is DVE specific.

//Checking Server Status
FOR (i=1, i<num_servers, i++)

IF (cpui > cpu_max)
 Send SNMP trap
 Mark serveri->overloaded
//First Check Among Idle Servers the candidate
to activate
 FOR (j=i+1; j<num_servers; j++;)
 IF (serverj IS idle)
 SET serverj->active
 Move avatars & workload serveri->serverj
 MODIFY routing scheme
//If all servers are active find among them a
candidate for undertaking additional workload
 FOR (j=i+1; j<num_servers; j++;)
 IF (cpuj <= cpu_capable)
 Move avatars & workload serveri->serverj
 MODIFY routing scheme

Table 1: Activation mechanism of idle servers

 Upon the receipt of the trap message, ConMan Server
first checks among the list of available servers to trace the
idle ones. The first idle server traced is activated and
workload is balanced among the two servers. If all available
servers are active, ConMan performs a check for tracing
candidate servers for undertaking part of the closely
saturated server. An active server is considered to being able
to handle additional workload when it has resources
available. For defining this ability of an active server, the
approach sets another threshold, denoted as CPU capable
(cpu_capable). When the utilization of a server falls below
this threshold and stays there for a defined period of time,
the Server is considered as candidate for undertaking
additional workload.

 As mentioned above, in a DVE system, users enter and
leave the environment. When the number of users is
decreased, or in cases that the connected users are not very
active, in terms of low request rate, then the CPU utilization
on one or more of the connected servers could be

importantly decreased. However, given the fact that this
server is active increases the communication cost of the
system, despite of the fact that it is being underused. This
under-usage of a server is triggered by the proposed
framework with the definition of another boundary, denoted
as minimum CPU threshold (cpu_min). When the utilization
of a server falls below this threshold and stays there for a
defined period of time, the ConMan Server performs a
process for deactivating this server.

Table 2: Deactivation mechanism of active servers
//Checking Server Status
FOR (i=1, i<num_servers, i++)
//If a server’s utilization falls below the
minimum threshold then set this server as
underused
 IF (cpui < cpu_min)
 Mark serveri->underused
//Check Among Active Servers to find a Candidate

 FOR (j=1; j<num_servers; j++; && j!=i)
 IF (cpuj <= cpu_capable)
 Move all avatar and workload serveri->serverj
 Set serveri->idle
 Modify routing scheme

 The deactivation of the server can be completed if and
only if at least one of the rest active servers is able to
process the additional workload, which will be assigned to it
by the under-used one, which means that at least one of the
active servers’ CPU utilization must be below the
cpu_capable threshold. The deactivation process is
presented in the pseudo code of Table 2.

2.4. Parameters
 This sub-section presents the main parameters used for
setting up the performance and assessment results of the
DVE system.
CPU_Utilization(t): the actual CPU usage of the server at
time t. This parameter is used for indicating the state of a
server. This utilization parameter represents the CPU usage
of each server and is calculated as follows:

T

B
U i

i  (1)

where iB is the busy time of server i over a T time interval.

The busy time iB is defined as follows:

timeprocesssservedreqB ii ___  (2)

with servedreq _ the number of requests served by server i
and timeprocesssi __ the time for processing each request.

Cpu_max: the maximum value used for indicating that a
server tends to be overloaded and the SNMP “trap” is sent
to the ConMan Server.
Cpu_capable: the value that indicates whether an already
active server can accept additional workload from another
either nearly saturated or underused server.

Cpu_min: the value which indicates that a server could be
considered as under-used and its workload and tasks could
be assigned to another already working server.
Routing technique: this parameter defines the way that
workload will be balanced among the servers of the system.
This parameter is strongly related to the partitioning and
load balancing approach adopted by each type of application
and should be carefully implemented for valid results. Some
of the most common techniques implemented in DVEs are
the following:

 Circular: avatars are forwarded in a circular way to
the available servers of the system

 Equal Probability: avatars are forwarded with an
equal probability profile to the servers of the
system

 Spatial: in cases where each server manages certain
part of the virtual world, avatars, according to their
initial position would need to be forwarded to the
appropriate server, which handled the
corresponding partition.

System performance Check: this parameter defines the time
interval that is used by the ConMan Server for checking the
servers’ status.

3. SIMULATION MODEL
 As mentioned above, the approach presented faces the
problem stated as an operational management one. To this
direction, for testing the framework’s efficiency and for
studying the workflow process of the networked servers
DVE, a discrete event simulation model is developed using
SIMUL8 (version 12). SIMUL8 [14] is an integrated
environment for working with simulation models and is one
of the most popular and widely used tools, both in the
industrial and academic area of operational management. It
has a powerful language and visualization capabilities that
allow the creation of accurate, flexible, and detailed
simulations in a reasonable time. It also has several features
(trials, warm-up period, random sampling, etc) allowing one
to conduct statistical analysis of the simulation output.
 The simulation model is developed to provide insights
into the workflow process and to estimate the system
performance measures. The simulation model is made of
several interconnected simulation objects (input node,
queues, and work centres). These objects as well as the
simulation parameters are described in the sub-sections that
follow.

3.1. Simul8 Objects
 This section presents briefly some of the basic objects
that Simul8 provides for designing and creating models
whose behaviour can be simulated.
Work Centres: A Work Centre is a place where work takes
place on Work Items. Work done at work centres usually

takes up time and sometimes requires the availability of
resources.
Storage Bins (Queues): A storage bin is a place where work
to be done can wait until appropriate resources or work
centres are available.
Work Entry Points: A work entry point is a place where
work to be done appears in the model for the first time.
Work Exit Points: A Work Exit Point is a place where work
that is complete (or otherwise "finished") leaves the model.
Work Items: A Work Item is the work which is done in the
organization being simulated. Work Items flow through the
simulation, being stored in Storage Areas, and acted upon
by work Centres.
Components: Components consist of one or more existing
objects (either the standards or other Components) that are
tailored in some way then saved as a single new object for
future use.

3.2. DVE Simulation Entities
 This section presents the main entities of the simulation
model. At this point it should be mentioned that the entities
of the DVE system are mapped to the simulation objects
provided by Simul8 tool, as presented in Table 3.

Table 3: Mapping of DVE entities to Simul8 objects

DVE Entity Simul8 Objects
Avatar Work Item

Virtual World Entry Point Work Entry Point
Avatar Messages Work Item
ConMan Server Component

DVE Servers Components
Inter-Server Messages Work Items

Virtual World Entry Point: This entity corresponds to the
Work Entry Point of Simul8. For the DVEs simulation, the
Work Entry Point represents the point, where users’ avatars
enter the system. Each Entry Point is characterized by the
distribution used for initializing and sending the messages
as well as the inter-arrival times between messages.
Messages: In the DVE simulation model there are three
types of messages taken into account and are presented as
Work Items. The first type is called “avatar”, the second one
is called “request” and the third one “synchronization”. The
avatar processes represent the actual avatars that enter the
system, which means that for each avatar there is an avatar
message initialized. The request process represents the
messages sent by each avatar and are labelled with their
parent id (that is the avatar id which sent the message). For
simplification purposes, we consider that all messages sent
by the users’ avatar are of the same type and require the
same resources. This simplification is mainly related to the
fact that in the simulation model we consider a general
approach of a DVE system, where message types (e.g.
position messages, object modification messages, chat

messages) and attributes are not distinguished. However, it
should be mentioned, that the simulation tool provides the
necessary functionality for tailoring the messages
exchanged by using additional labels attached to each
message type. Finally, the synchronization messages
represent the messages exchanged among the servers of the
system for maintaining consistency and awareness.
ConMan Entity: The ConMan Server entity used in the
DVE model is a combination of a Work Centre and a
storage bin object (of Simul8 library). The ConMan Server
is connected to the Virtual World Entry Point and the
messages that arrive, which represent avatars first move to
the ConMan Queue and then to the ConMan Work Centre,
where they are processed. The processing implies that
ConMan first labels the messages with a unique identifier
and sets the life of each of these messages.

Figure 1: Dynamic DVE Simulation Model

Server Entity: The Server entity used in the DVE model is a
Component of Simul8, and constitutes a combination of
three Queues and Work Centres and two Work Exit Points.
Each of these objects serves different tasks within the
model. Work done at work centres usually takes up time and
sometimes requires the availability of resources. For the
DVE simulation, we consider that the time it takes for
processing each message depends on the server’s processing
capabilities and this parameter could be adjusted by the
system designers based on the infrastructure they plan to
use.

Figure 2: Simulation Model Server Entity

 The simulation model for the DVE system is presented
in Figure 1, while Figure 2 depicts the server entity, in terms
of its functional blocks.

4. EXPERIMENTS
 This section describes the experiments conducted for
evaluating the behaviour and performance of the dynamic
architectural DVE model under different setups of the
virtual environments. In particular, for testing the proposed
approach, a series of experiments were realized, where
different values for critical parameters were taken into
account.
 Furthermore, the behaviour and performance of the
proposed dynamic approach were also compared to the
linear partitioning approach [5], which provides good results
for large-scale DVEs. In particular, the linear approach first
divides the virtual environment to the available servers of
the system using a Divide and Conquer technique. The step
that follows is that every defined period of time an
algorithm checks for the workload on the servers and
performs all the necessary re-assignments of entities so that
a nearly balanced workload can be achieved. The last step of
the approach encounters the exchange of some avatars
among the servers so as to minimize the communication
cost. For measuring the communication cost in the
experiments conducted, some of the avatars that entered the
virtual world were labelled as ‘border” ones. For these
avatars, the number of messages sent, should be
communicated to the appropriate servers of the system so
that consistency could be maintained.

4.1. Scenarios’ Setup
 The experiments conducted consider a DVE system
comprised by 8 available servers. All of the servers
available have the same computing power and are dedicated
in serving the DVE system requests (that is that no other
programs or applications are running). The general
parameters for the two approaches are presented in Table 4.

Table 4: General Parameters

Dynamic Approach Parameters
CPU Max Threshold 80%

CPU Capable Threshold 40%
CPU Min Threshold 10%

CPU check time (SNMP) 1sec
Routing Technique Spatial

Linear Approach Parameters
Rebalancing Time 5 min

General Parameters
Servers Number 8

Average avatar life 50 min
Experiments’ Time 180 min

Avatar Enter Distribution Exponential
 Two of the defining parameters for the scalability and
effectiveness of the system’s behaviour is the rate that users
join the virtual world as well as their activity profile. By
activity profile, we refer to the rate of movements and
interactions that users perform in a virtual environment. For

evaluating the systems’ behaviour and for assessing the
impact of both avatars’ incoming rate and activity profile,
different virtual worlds’ setups were selected and the
corresponding scenarios were designed and tested. These
scenarios are presented in Table 5.

Table 5: Scenarios’ setups

User Inter-arrival
Times

User Requests’ Rate

9 sec
0.5 sec
0.2 sec
0.1 sec

6 sec

0.5 sec
0.2 sec
0.1 sec

3 sec

0.5 sec
0.2 sec
0.1 sec

 At this point it should be mentioned that for each of the
scenarios presented, multiple runs where executed and the
results presented in the section that follows correspond to
the average values obtained from these runs.

4.2. Results
 From the experiments conducted it could be said that
both the tested approaches behave well in all three scenarios
examined. In particular, both of them achieve a relative
balanced workload among participating servers, while none
of them reaches the 100% of CPU usage, which would
downgrade the overall system’s performance.

4.2.1. Communication Cost
 From all the experiments conducted, it became obvious
that one of the major advantages of the dynamic approach,
when compared to the linear one, was the tremendous
reduction of the communication cost among the
participating servers.

Figure 3: Number of active servers over time for the

dynamic approach

 In particular, in all cases examined the communication
cost for the dynamic approach was significantly lower,
which can be easily explained by the fact that in most of the
cases the number of servers, which needed to be updated,
was smaller, as it can be seen in Figure 3. Also, in the
dynamic approach presented, when a new server needs to be
activated, the communication cost that border avatars
introduce is limited between the parent server (that is the
server which reached the CPU max threshold) and the child
server (that is the one that undertook workload from the
parent server).

Figure 4: Communication Cost over time for the linear

approach

 Thus, even for the most demanding case, which is the
one that avatars enter the virtual environment every 3 sec
and send requests every 0.1 sec, the communication cost of
the dynamic approach is lower than the one of the linear
approach, even though the number of servers used is the
same.

Figure 5: Communication cost over time for the dynamic

approach

 Figure 4 and Figure 5 present the communication cost
for the linear and the dynamic approach respectively, for the
most demanding (3sec avatar inter-arrival time and 0.1sec
requests inter-arrival time), an average (6sec avatar inter-
arrival time and 0.2sec requests inter-arrival time) and an
optimistic (6sec avatar inter-arrival time and 0.5sec requests
inter-arrival time) scenario.

4.2.2. CPU Usage
 As mentioned above, in all experiments conducted, for
both approaches, the CPU usage in all of the servers did not
reach the saturation point of 100% utilization. The results of
the CPU utilization of all connected servers for all cases
examined are presented in Table 6. Columns 1 and 2 of the
table present the users’ inter-arrival time and requests’ rate
respectively, while the rest of the columns present the CPU
utilization for the servers of the DVE system.

Table 6: Servers’ CPU usage under different virtual
world setups

Dynamic Approach

S
ce

n
ar

io
s

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

9
s

0.5 40

0.2 52 48

0.1 55 46 42 59

6
s

0.5 60

0.2 38 39.5 36 36

0.1 41 39 39 35 31.5 30 44 40

3
s

0.5 62 54.8

0.2 42 36.5 35.5 36 30.5 38.5 37.5 35

0.1 85 74 71 69 73 71 71 71

Linear Approach

9
s

0.5 5.6 4.4 5.6 5 5.2 4.8 5 5.4
0.2 14 11 14 12 12.5 12 12.5 13.5
0.1 28 25 28 26 21 23 27 26

6
s

0.5 6.8 7.2 8 6.9 7.4 7.4 7.6 9
0.2 17 18.5 21 18 17.5 19 18.5 21

0.1 33 36 37 39 39 38 37 43

3
s

0.5 17 14.2 13.2 15 14 11.6 17 15.2
0.2 41 36.5 33.5 36 37 29 43 37.5
0.1 75 71 74 72 77 71 75 72

 For the less demanding scenarios (9sec inter-arrival
times) the linear approach presents very low CPU utilization
for all connected servers.

Figure 6: CPU usage zone

 When compared to the results of the dynamic approach,
where one to four servers are used, it could be observed that

the activation of all servers available not only leads to their
under-usage but also introduces unnecessary communication
cost.
 Furthermore, for the most demanding cases of 3sec
with high request rate, the dynamic approach achieves a
relatively balanced workload among servers, which even if
it exceeds in one of the cases the 80% threshold, it does not
lead to the saturation of the system. From the results
presented in Figure 6, it can be observed that the CPU usage
zone is within the boundaries set for preventing the DVE
system from reaching a saturation point, thus affecting the
overall performance.

4.2.3. Additional Observations
 From the results extracted by the experiments
conducted, it could be noticed that even though avatars’
incoming rate is of high importance for the system’s
behaviour, it is the avatars’ activity profile, which is more
indicative of how demanding an application could be. Thus,
application designers and developers based on the scenario
that each virtual world simulates, could select the techniques
and algorithms that fit best to the predicted workload of
their applications.

5. CONCLUSION AND FUTURE WORK
 This paper presented a dynamic approach for handing
DVE systems, which exploits the nature of these demanding
applications for optimal resource management and extended
scalability support and evaluated its performance under
various different settings of the virtual world. The basic
concept of the approach lies in finding an optimal resource
assignment, which is driven from the application
requirements, as they change over time.
 For illustrating the effectiveness of the proposed
approach experiments were carried out and were compared
to a linear approach, which achieves good results for DVEs.
The experiments were conducted under various settings of
the virtual world using Simul8 simulation tool. The results
showed that the proposed approach achieves a notable
decrement to the communication cost among the servers of
the system, while even in highly demanding cases achieves
a balanced workload among the servers, without reaching
the saturation point of 100% of CPU utilization for any of
them.
 Finally, some of the planned next steps include the
simulation and evaluation of additional scenarios, the
experimentation with other existing techniques, used widely
for DVE systems as well as the assessment of the effect that
different parameters and factors have on DVE systems.

6. REFERENCES
[1] C. Bouras, E. Giannaka, T. Tsiatsos, “Exploiting Virtual

Objects Attributes and Avatars Behavior in DVEs
Partitioning”, The 17th International Conference on

Artificial Reality and Telexistence - ICAT 2007,
Esbjerg, Denmark, 28 - 30 November 2007, pp. 157 –
163

[2] N. Pryce: Group Management and Quality of Service
Adaptation in Distributed Virtual Environments, 4th UK
VR-SIG Conference, Brunel University, Uxbridge, UK,
(November 1997).A.B. Smith, C.D. Jones, and E.F.
Roberts, “Article Title”, Journal, Publisher, Location,
Date, pp. 1-10

[3] C. Bouras, E. Giannaka, T. Tsiatsos, “Partitioning of
Distributed Virtual Environments Based on Objects'
Attributes”, 11th IEEE International Symposium on
Distributed Simulation and Real Time Applications,
Chania, Crete, Greece, , 22 - 24 October 2007, pp. 72 –
75

[4] P. Morillo, J.M. Orduña, M. Fernández and J. Duato,
“Improving the performance of Distributed Virtual
Environment Systems”, in IEEE Transactions on Parallel
and Distributed Systems (TPDS), volume 16, number 7,
pp. 637-649, July 2005. IEEE Computer Society Press,
2005

[5] Jonh C.S. Lui, M.F. Chan, “An Efficient Partitioning
Algorithm for Distributed Virtual Environment
Systems”, IEEE Trans. Parallel and Distributed Systems,
Vol. 13, March 2002

[6] P. Morillo, S. Rueda, J.M. Orduna and J.Duato, “A
Latency-Aware Partitioning Method for Distributed
Virtual Environment Systems” , in IEEE Transactions
on Parallel and Distributed Systems (TPDS), volume 18,
number 9, pp. 1215-1226, September 2007. IEEE
Computer Society Press, 2007

[7] T.A. Funkhouser, “Network Topologies for Scalable
Multi-User Virtual Environments”, IEEE VRAIS ‘96,
San Jose, CA, April, 1996

[8] Macedonia, Michael R., Zyda, Michael J., Pratt, David
R., Brutzman, Donald P., Barham P. T. ”Exploiting
Reality with Multicast Groups,” IEEE Computer
Graphics & Applications, September 1995, pp.38-45

[9] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick. A
multiserver architecture for distributed virtual
walkthrough, In Proceedings of ACM VRST’02, pages
163–170, 2002

[10] Anarchy Online: http://www.anarchy-online.com
[11] Everquest: http://everquest.station.sony.com/
[12] Joslin, Pandzic & Thalmann, “Trends in networked

collaborative virtual environments”, Computer
Communications, Volume 26, Number 5, 20 March
2003 , pp. 430-437

[13] SNMP v2: http://tools.ietf.org/html/rfc1908
[14] Simul8 Simulation Software: http://

www.simul8.com

