

Estimating and Eliminating Redundant Data Transfers Over the Web: A
Fragment Based Approach

 Christos Bouras Agisilaos Konidaris

1Computer Engineering and Informatics Department, University of Patras, 26500 Patras, Greece.
2Research Academic Computer Technology Institute – CTI, Riga Feraiou 61, 26221 Patras, Greece.

E-mail : {bouras, konidari}@cti.gr

Abstract

Redundant data transfers over the Web, can mainly be
attributed to repeated transfers of unchanged data. Web
caches and Web proxies are some of the solutions that
have been proposed, to deal with the issue of redundant
data transfers. In this paper we focus on the efficient
estimation and reduction of redundant data transfers over
the Web. We first prove that a vast amount of redundant
data is transferred in Web pages that are considered to
carry fresh data. We show this by following an approach
based on Web page fragmentation and manipulation.
Web pages are broken-down into fragments, based on
specific criteria. We then deal with these fragments as
independent constructors of the Web page and study their
change patterns independently and in the context of the
whole Web page. After the fragmentation process we
propose solutions for dealing with redundant data
transfers.
Keywords: Frequency of change estimation, Proxy
servers, Web Fragments, Client Side Includes

1. Introduction

Redundant data transfers have mostly been related to
the resource change estimation problem. Many
technologies and techniques have been adopted, in order
to reduce redundant data transfers. Client Caching, proxy
servers, specific HTTP headers, are only some of them.
Redundant data transfers are mainly attributed to re-
transmissions of unchanged Web pages. Only when a
proxy or a cache can efficiently estimate the change
frequency of a Web page, can it accurately decide
whether to request a new copy of a page or use a locally
cached copy.

In this paper we look at the Web page change
estimation problem in relation to Web data transfers.
Let’s assume that a Web client cache is able to accurately
compute the change frequency of a Web page. This
means that the client cache "knows" when to actually
request a “fresh” copy of the page from a Web server and

when to use a locally stored copy. We argue that even in
this case, the client causes the transfer of redundant (or
unchanged) data over the Web. This argument is based on
the observation, that even when Web pages actually
change, they do not change completely. In fact, as we will
show in our study, most of the data in a page does not
change, even when the page can be identified as
“changed”.

2. Related Work

A lot of related work can be found in the fields of Web
page change estimation and the reduction of Web data
transfers. The issue of statistical change estimation has
been a popular problem [1]. The fragment approach that
we present here is based on our previous work in [17].
The rate and frequency of change of Web resources has
also been a popular problem with many interesting and
significant studies such as [2,6,7]. The work in [4,6]
analyses the change frequency estimation problem very
efficiently and has been a very helpful basis for our
approach. We must also refer to the View and Dynamic
Web page materialization problem as a related field to
ours [14,10,18], since our approach can have applications
to dynamic page materialization policies. The work in
[16] refers to Web proxy cache replacement policies and
is related to our work since the experimental study in this
paper is carried out under a client/proxy/Web server
scheme. Finally the work in [9,8,15] analytically presents
the Web latency problem that we also attempt to
efficiently address in this paper through the reduction of
redundant data transfers. Some very important work on
fragments and their significance to Web performance has
been presented in [11,12,13]. A fragment approach has
also been proposed in the Edge Side Includes framework
[19].

3. Methodology and approach

In this paper we base our results on HTML files collected
from popular Greek and International Web sites. The sites
that we selected, were portals and news sites. The reason

for this selection was that we intended to monitor sites
with frequent changes on their pages. After collecting
HTML files, we measured several change parameters in
order to define the following:
• If a change had occurred in the Web page
• Where (topologically) the change occurred
• How changes were related in a Web page

In this paper we assume that the only material that we
have at our disposal in order to identify and "predict"
changes in a Web page is the HTML code of previous
occurrences of the whole page. Our methodology has two
steps:
• An experimental phase which is actually a content-

gathering and manipulation step and
• A computation phase where content processing is

carried out

4. Experimental phase

During the first step of our study we collected data.
Through a Java Web client/HTML parser that we
implemented, we issued repeated requests for the home
pages of 10 popular portal and news sites around the
world. The experiment lasted for 24 hours. The requests
to the home pages of the sites were executed at a rate of 1
request per 3 minutes. At every request, our client
requested the home page of the site under review and
saved the returned HTML to a text file. After collecting
all the HTML files we passed over to the second step of
this phase. The second step included HTML parsing,
analysis and manipulation. The specific analysis that we
performed relied on a HTML fragmentation algorithm.

The fragmentation algorithm can be viewed as an
HTML filter. This filter, fragmented every occurrence of
a Web page, based on the <BODY>, </BODY>, ,
<TABLE> and </TABLE> tags. The <TABLE> and
</TABLE> tags were selected as fragment delimiters
because they are the most popular data structuring tags
used in "contemporary" HTML pages. The filter was able
to break-down the HTML of the page, initially into two
parts:
• The HTML outside the <BODY> tag and
• The HTML inside the <BODY> and </BODY> tags.

Then, the HTML inside the <BODY> and </BODY>
tags was broken down recursively into all the tables that it
was made up of. The HTML inside the <BODY> and
</BODY> tags was also stripped of all the tags
and their contents. The results of this manipulation
technique were:
• The whole HTML file
• The contents of the < BODY > and </ BODY > tags

• The contents of the < BODY > and </ BODY > tags,
stripped of all tags and their contents

• All the individual tables contained in the < BODY >
and </ BODY > tags. These tables were called
fragments

All nested tables were treated as shown in Figure 1:

<TABLE>

</TABLE>

.......................

<TABLE>

</TABLE>

.......................

.......................
Fragment 1Fragment 2

Parent fragment
Nested (child) fragment

Figure 1. Example of fragment nesting identification

After the fragmentation of the HTML, an ascii
conversion process was carried out for every fragment of
every page. The ascii equivalents of every character in a
fragment were added and stored in a new text file (one for
every site), thus creating a numerical "signature" value
for every fragment.

5. Computation phase

In this paragraph we present the computation phase of our
methodology. The input of this phase are the fragment
"signature" values that were the output of the previous
phase. The text files will be used to extract results, related
to the change probability and change pattern of every
page. For space saving reasons we will use a specific
Web site home page from now on in this paper. The
selected home page was that found at europe.cnn.com.
This page was selected because the results that we will
extract from it are representative of all other Web site
home pages that we worked on.

5.1. The fragment change probability and relative
change probability matrixes

The fragment change probability matrix contains the
change probabilities for all the identified fragments of a
Web page. The relative change probability matrix
contains the relative change probabilities for all the
fragments. The change probability identifies the
probability with which a fragment changes according to
our experimental results. The notation F1, F2 … Fn is
used to identify the fragments in the matrix.

The change probabilities were derived with the use of
the following simple probability definition: The

probability of change for fragment FN observed NFn
times, during which KFn changes were observed is equal
to:

P(Fn) =
n

n

F

F

N
K

(1)

The relative change probability of the fragments, was
computed with the use of equation 2, that provides the
relative change probability of fragment FB, when
fragment FA changes:

P(FB/FA) =
)(

)(

A

BA

FP
FFP

(2)

With the use of equation 1 and 2 we constructed the
change probability and the relative change probability
matrixes shown in Tables 2 and 3 respectively, for the
home page of europe.cnn.com.

5.2. Page anatomy identification

The goal of this step was to identify the "anatomy" of a
Web page. This step intended to analyse the Web pages in
order to give us an idea of the fragments and their
placement inside the pages. In this paragraph we, once
more, use the home page of europe.cnn.com as an
example. During this step we measured the following
values:
• Number of fragments identified in the Web page
• Number of images
• Number of total fragments changing
• Percent of data outside the <BODY> and </BODY>

tags

Table 1. The page anatomy parameters for the home
page of europe.cnn.com

 Number

of
fragments

Number
of
images

Number
of total
fragments
changing

Percent
of data
not in
body
tags

europe.cnn.co
m

29 82-85 17 ~3%

The number of fragments remained the same during
the whole experiment for europe.cnn.com. This is a clear
indication of Web page structure stability. The same
indication comes from the number of images that only
vary from 82 to 85 during a whole day.

Out of 29 total fragments, changes were observed in
17. This number included fragment nestings. This means
that a change to a nested fragment was also recorded as a
change to the parent fragment. By taking a closer look to
the structure of Figure 2 we intuitively expect that the
fragments that actually change will be less than 17. We
will prove this in following paragraphs. Finally, only 3%

of the total data of the page was data that could be found
outside the <BODY> and </BODY> tags. This indicates
the page is data rich and that data outside the body tags
can not cause significant redundant transfers even if it
changes frequently (it was actually never observed to
change).

5.3. The "reason of change" identification

This step aimed at identifying the "reason of change"
of a Web page. We look at every request that was
identified as "changed" from the previous request. The
goal was to identify why the page was identified as
"changed" (meaning what actually changed in the page).
The delimited file that holds the results of the
experimental phase also holds the fragment dependencies.
The fragment dependencies represent table nestings and
helped us construct the fragment tree for the Web page
under consideration. The fragment tree for the
europe.cnn.com site is shown in Figure 2.

After creating the fragment tree we, first eliminate all
fragments that have not changed at all during our
experimental phase. These are: F1, F2, F10, F6, F7, F14,
F16, F24, F29. All fragments nested in fragments that
never change (e.g. F28 in F29) are also eliminated. We
then follow a "conservative" approach in the detection of
totally dependent fragments. A totally dependent
fragment is one whose changes can be safely attributed to
a fragment nested in a lower level in the fragment tree.
Our conservative approach states that a parent fragment
can be eliminated as totally dependent on a nested
fragment(s), only when, after removing the nested
fragment(s), no HTML remains inside the parent
fragment. In any other case we eliminate the nested
fragment and keep the parent fragment, that is a data
super-set in every case. For example in our study F20,
F19 and F18 have shown 6 changes, in total, each. After a
closer examination we found that after removing F18 and
F19 HTML actually remained in F20. This means that a
change in F20 could be attributed to:
• A change inside F18 or F19
• A change in the HTML outside F18 and F19 but

inside F20
Thus, changes to F20 could not be explicitly attributed

to either F19 or F18. In this case we eliminated F18 and
F19 and kept F20 as their "representative" fragment.
After this second step we ended up with the smallest
possible sub-set of fragments that could change when a
change was observed in the Web page. These fragments
are: F3, F12, F9, F26, F25, F22, F21, F20 and F17. (They
are less than 12 because of child fragment elimination, as
described in this section)

F3

F1 F2

F13

F12

F10 F11

F6

F5

F4

F7 F9

F8

F27

F21 F17 F13 F20 F22 F25 F26

F24F15 F16 F23F19

F18

F29

F28
Figure 2. The fragment tree of the home page of

europe.cnn.com and the corresponding visual
representations. It is clear that the page is constructed

with the header, main body, footer approach

Our goal here is to identify the redundant data
transferred, as part of the unchanged fragments and the
static HTML parts, inside the Web page, every time a
change was observed. The following equation provides
this percentage:

Datared = Dataall – (Datafnc+ Datafcc) (3)
In equation 3 Datared is the percent of the redundant

data transferred, Dataall is all the data in the page (100%),
Datafnc is the data contained in data fragments that never
change and Datafcc is the data in fragments that have been
observed to change but have not changed in the current
change.

Equation 3 was used for every occurrence of a change
in the page and the results are shown in Figure 3.

��
��
��
��
��

Redundant data transferred in changed Web pages

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7

Requests where change was observed

Pe
rc

en
t o

f r
ed

un
da

nt
 d

at
a

Figure 3. Redundant data transferred in Web pages that

have changed

It is clear from Figure 3 that the data transferred inside
a Web page of europe.cnn.com when the page actually
changes, has not changed on average more than 43%.
This means that the amount of redundant (or useless, or
unchanged) data transferred together with the changed
data inside a changed page, amounts to 57% of the total
data on the page. This fact confirms our intuitive
approach and provided us with enough motivation to find
a solution that could prevent this phenomenon.

6. Proposed solution based on Client Side
Includes

In this section we propose techniques that could help
solve the problem of redundant data transfers over the
Web. The basic cause of redundant transfers is the
absolute binding of redundant data to useful (changed)
data, in the context of Web pages. The problem can be
solved if all portions of data (fragments) could, in some
way, be treated (and requested) independently, and not
under a unified page request scheme. The proposed
solution is a straightforward one, and can be immediately
put to work, since it utilises current Web techniques and
practices. Our solution consists of two techniques and is
based on the concept of Client Side Includes. The basic
idea is that a client requests a page that is actually a page
template. This template consists of many Client Side
Includes that represent fragments. Each time the client
requests the page a fragment change determination
algorithm is executed. With the use of these techniques,
the client will be able after a "slow-start" period, possibly
caused by insufficient initialisation data, to accurately
identify the Client Side Includes that should be requested
because they have changed. The rest will be requested by
local cache since they won't have changed. The basic
problem of this approach is that all pages must be coded
with the Client Side Includes format. This would require
major changes to current Web page design techniques and
is totally unacceptable. But this is true only for pages on
Web servers. Let’s consider the case of an intermediate
server (e.g. a proxy server) that is able to fragment and re-
build Web pages originating from different Web servers.

The clients would request pages from different Web
servers through a proxy server. The proxy server has the
ability to fragmentize each page (in the way that we have
described in this paper). The fragmented page is then re-
constructed with the use of Client Side Includes at the
proxy server and sent to the requesting clients together
with the change probability or the relative change
probability matrixes. The whole procedure is transparent
to the client. There are several approaches and
client/proxy/web server architectures that could be
followed under the scenario described here. Some of them
are:

• The fragment change determination algorithms are
executed on the proxy servers and the clients receive
HTML files with Client Side Includes in the place of
fragments that have been determined as "changed" by
the proxies. This way the clients immediately request
the included Client Side Includes upon the reception
of the templated response from the Proxy servers

• The fragment determination algorithms are executed
on the proxy servers and the proxy servers request
the fragments that are determined as "changed". This
way, the clients receive the final HTML document
and do not have to further request any Client Side
Includes.

The techniques that we will describe in the following
paragraphs are alternative to the two approaches
described above and can be implemented at the clients
and at the proxy server. Both techniques are based on a
matrix (change probability matrix or relative change
probability matrix). These matrixes are initially
constructed at the proxy server. If the techniques are
implemented at the clients, the appropriate matrix must be
transferred to the client before execution. Both techniques
presented is this paper are implemented at the clients after
the transfer of the matrixes from the proxy servers. This
approach does not exploit the maximum potential of the
Client Side Includes technique, since the proxy server
itself must request the whole page from the originating
server when needed with the use of the if-modified-since
header. The actual gain is in the transfers between the
proxy server and the clients. In the following paragraphs
we will thoroughly explain and quantify the procedure.

In order to show the efficiency of our approach we
will work on a real example. The site that we will use in
the example will be europe.cnn.com. We will be using the
home page of the site as sample data. The first problem
that we will work on is the transformation of the home
page HTML to an equivalent that uses Client Side
Includes. In order to achieve this we recursively replace
every table in the HTML with a Client Side Include. The
procedure is clearly shown in Figure 4.

<HTML>

<BODY>

</BODY>

</HTML>

<TABLE>

<TR>

<TD>

</TR>

</TD>

............. html code

This is a parent table

<TR>

<TD>
<TABLE>

<TR>
<TD>

This is a nested table
</TD>

</TR>
</TABLE>

</TD>
</TR>

</TABLE>

............. html code

<HTML>

<BODY>

</BODY>

</HTML>

<TABLE>

<TR>

<TD>

</TR>

</TD>

............. html code

This is a parent table

<TR>

<TD>

</TD>
</TR>

</TABLE>

............. html code

<include file nested_table.inc>

<HTML>

<BODY>

</BODY>

</HTML>

............. html code

............. html code

<include file parent_table.inc>

Figure 4. The recursive table replacement process

It is clear that the nested table structure will be
replaced by a Client Side Include structure, but the
content will remain unchanged. Having the new page
structure in mind we present two techniques that can
significantly improve data transfer over the Web.

6.1. Technique 1: Dependent on the change
probability matrix

This first technique depends on the fragment change
probability matrix. This matrix holds the change
probabilities of every fragment and the standard deviation
of every fragment change probability. The standard
deviation is computed with the use of equation 4.

σ=)]([FnPVar

(4)

Equation 4 computes the standard deviation of the
change probability of fragment Fn as the square root of
the variance of the change probability.

As shown in previous paragraphs, after the fragment
elimination phase we have come-up with 9 fragments that
are responsible for all changes observed at the
europe.cnn.com site home page and can be considered
independent. These are the fragments that we will use in
the change probability matrix. This technique uses the
change probability matrix to “discover” if a fragment has
changed or not, at every client request.

The fragment probability matrix for europe.cnn.com is
shown in Table 2.

Table 2. The fragment probability matrix for the home
page of europe.cnn.com

 F3 F9 F12 F17 F20
Change Probability
- PFn

0.033 0.033 0.019 0.024 0.029

Standard deviation
- σPFn

0.013 0.013 0.085 0.012 0.012

PFn+ σPFn 0.046 0.046 0.104 0.036 0.041

 F21 F22 F25 F26
Change Probability
- PFn

0.019 0.014 0.005 0.005

Standard deviation-
σPFn

0.012 0.090 0.006 0.009

PFn+ σPFn 0.031 0.104 0.011 0.014

In this paper we will set the request threshold
probability to 1 (we can also use another threshold value.
This is part of our future work). Intuitively the request
threshold probability is the flag that initiates a fresh
fragment request. What we are actually stating when
setting it to 1 is that a fragment must be requested when
its change probability is at least equal to the request
threshold probability. Thus:
P(Fn) ≥ PThresh in order for P(Fn) to be requested. (5)

The fragment probability matrix holds the current
values of the fragment change probabilities. Each time the
page is requested, the fragment probability matrix is
updated with a new value for all the fragments in the
page. The update of the fragment probability matrix is
executed according to the following equation:
P(Fn)new = (P(Fn)old+P(Fn)current+Var[P(Fn)])/2 (6)

Equation 6 represents a totally conservative approach.
The approach is conservative because fragment
“freshness” has been valued higher than redundant data
transfer reduction. What’s the meaning of reducing
redundant data transfers over the Web if clients keep
getting stale data? Equation 6 initially adds the
probability variance to the value of the fragment change
probability. By doing this we maximize the fragment
change probability. This, intuitively maximizes the times
that a fragment will be computed as "changed" and thus,
maximizes the times that it is requested. The current value
of the fragment probability is added in order to capture
the current “trend” of change for the fragment. It is
obvious that according to the time of day, fragments
change in different intervals. For example a stock quote
changes frequently when the stock market is open but
stops changing when it closes. Our technique adopts an
initialization phase that computes fragment change
probabilities over a big period of time. It is clear that the
overall change probability of the stock quote would not
provide accurate results for all times of a day. In order to
avoid this as much as possible we averaged the value of
the fragment change probability with the current change
probability in order to be consistent.

The basic idea of this technique is to use the fragment
change probability matrix to determine if a fragment has
changed or not. Let’s assume that clients are connected to
a proxy server. The proxy server has passed the
initialization phase and has already constructed a
fragment change probability matrix for the
europe.cnn.com home page. The clients start requesting
the page. As a response, the clients receive a templated
page consisting of client sided includes and the change
probability matrix of the requested page. At the first
request, the clients do not have the includes in their cache
and must request them. After the first request, the clients
receive the same templated Web page. Only this time, the
clients use the change probability matrix to determine
whether to request a fragment from the proxy or use the
locally cached copies. This technique requires a
substantial period of time in the initialization phase in
order to provide consistent results. In our experiments we
have used only 20 hours as the initialization phase. The
redundancy and staleness graphs are shown in Figures 5
and 6 respectively.

Redundant data sent to user per request

0
10
20
30
40
50
60
70
80

0 50 100 150 200

Requests

Pe
rc

en
t o

f r
ed

un
da

nt
 d

at
a

se
nt

 to
 u

se
r

Figure 5. The amount of redundant data sent to clients

Technique 1 attempts to statistically map the results of
the initialization phase to current requests. The
initialization phase is used as the “history of change” and
is constanly updated by current findings. In our
experiments we used an initialization phase of 20 hours
and tested it with 210 requests. The results showed that
redundant data was still transferred to the clients. On the
other hand the technique is much better than the transfer
of a new copy of a Web page every time it is requested,
that would cause the total (100%) transfer of fragments.
We expect that this technique will show much better
results under real conditions with an initialization period
of more than a week, since the fragment change
probabilities will be much closer to their true values.

As shown in Figure 6 certain requests initiate the
transfer of stale data. The amount of stale data is small
and confined to specific requests. We also expect the
amount of stale data to drop for larger initialization
phases.

Stale data sent to user per request

0

5

10

15

20

25

30

0 50 100 150 200

Requests

Pe
rc

en
t o

f s
ta

le
 d

at
a

se
nt

Figure 6. The amount of stale data sent to clients

6.2. Technique 2: Dependent on the fragment
relative change matrix

This technique implements the same scenario as the
previous, but decides to request a fragment or not, based
on the fragment relative change matrix. The fragment
relative change probability matrix for the home page of
europe.cnn.com is shown in Table 3.

In this technique we assume that the if-modified-since
header is available for every Web page. After requesting

the header, the client knows whether the whole page has
changed or not. If it has not changed it uses the local
copy. If the page has changed, the client uses the
fragment relative change probability matrix to determine
the fragments that have changed.

Table 3. The fragment relative change matrix for the home
page of europe.cnn.com

Europe.cnn.com F3 F9 F12 F17 F20
Whole page 1 1 0.57 0.71 0.86
When F3 changes 1 1 0.57 0.71 0.86
When F9 changes 1 1 0.57 0.71 0.86
When F12 changes 1 1 1 0.75 1
When F17 changes 1 1 0.60 1 0.80
When F20 changes 1 1 0.67 0.67 1
When F21 changes 1 1 0.67 0.67 1
When F22 changes 1 1 0.67 1 1
When F25 changes 1 1 0 1 1
When F26 changes 1 1 0 0 1

Europe.cnn.com F21 F22 F25 F26
Whole page 0.86 0.43 0.14 0.14
When F3 changes 0.86 0.43 0.14 0.14
When F9 changes 0.86 0.43 0.14 0.14
When F12 changes 1 0.50 0 0
When F17 changes 0.80 0.60 0.20 0
When F20 changes 1 0.50 0.16 0.16
When F21 changes 1 0.50 0.16 0.16
When F22 changes 1 1 0.33 0
When F25 changes 1 1 1 0
When F26 changes 1 0 0 1

The fragments, whose relative change probabilities are
equal to 1, when the whole page changes, are
immediately requested. These are always F3 and F9.
After these requests the client must decide which
fragment to request next, since all other fragments may or
may not have changed since their relative probabilities are
less than one. Obviously the client must rank the rest of
the fragments in a “smart” way. The ranking must be
executed in a way that the best-ranked fragments can give
a lot of information about the rest of the fragments. The
ranking can be done in various ways. In this paper we
examine two fragment-ranking algorithms:
The fragment probability and information based
ranking. This ranking uses the fragment probability
matrix described in technique 1 to rank the fragments and
then, re-ranks the fragments according to the information
that can be extracted by their relative change
probabilities. The fragment with the greater probability
value is ranked first and so on. Intuitively this can be
justified by the fact that we want the next fragment that
we request to have a large change probability in order for
it to be useful. If the fragment has not changed we can not
use its information from the fragment relative change
probability matrix, and we must go on to the next ranked

fragment. This ranking provides the following order for
the rest of the fragments: F20, F17, F21, F12, F22, F25,
F26. If we look closer at the fragment relative change
probability matrix we will find that F20 and F21 do not
provide any information for any other fragment except
themselves. Thus, we eliminate them. Also, F17 provides
information for only one fragment. We also eliminate it.
Our final fragment ranking is F12, F22, F25, F26, F17,
F20, F21.
The information based ranking. This ranking only
considers the possible information given by a fragment
change for other fragments through the relative change
probability matrix. In other words in ranks the fragments
according to the ones (they are valued higher) and zeros
(0) they contain in their row in the fragment relative
change probability matrix. According to this ranking the
fragments are ranked as follows: F25, F22, F26, F12.

After ranking the fragments (other rankings may be
applied) the client requests the fragment ranked first.
After receiving it, it checks if it has actually changed. If it
has, then its corresponding line in the fragment relative
change probability matrix is used to extract information
about other fragments. When this is over and a decision
has not been reached on how to treat all fragments, the
client requests the next ranked fragment. This goes on
until a decision has been reached for all fragments in the
fragment relative change probability matrix.

Redundant data sent to user on page change occurence

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Page Change occurence

Pe
rc

en
t o

f s
ta

le
 d

at
a Fragment scheme using

probability and information
based ranking
Fragment scheme using
information based ranking

Classic Proxy server
scheme

Figure 7. The redundant data sent to the user when the

page changes

It is obvious that this technique also values “freshness”
more than the reduction of redundant data transfers. This
technique actually guaranties 100% fresh data and at the
same time reduces Web data transfers. Since the if-
modified-since header is provided, no data transfers are
initiated when the page has not changed. The only
interesting requests to look at, are those that lead to a new
version of the page. In Figure 7 we show the percent of
redundant data transfers, in cases that the page has
changed. The reduction in redundant transfers is clear
compared to the classic if-modified-since proxy server
approach. It is also clear that information based ranking
gives better results than the combined approach of
probability and information based ranking.

7. Future work

Future work can be carried out in all aspects of the
problem that we have presented in this paper. The HTTP
protocol inherently treats Web pages as entities. We are
already working on a scheme [20] that proposes minor
changes to HTML and HTTP, in order to be able to apply
our fragment framework directly to the client/server
model with or without the intervention of a properly
tuned proxy server.

8. Conclusions

In this paper we have proved that redundant data transfers
are carried out on the Web, together with required data
transfers, in the context of Web pages. Our research was
mainly triggered by the observation that only some
portions of Web pages change every time we request
them. We have quantified the amount of redundant data
transferred, through a specific example, and have showed
that it is substantial. The solutions that we have proposed,
have shown that proxy servers, Web servers and Web
crawlers can benefit from treating pages, through a
fragment approach. The techniques proposed in this paper
show that by applying a purely statistical approach under
a fragment scheme, a proxy server can efficiently deal
with Web page changes and at the same time substantially
reduce the amount of redundant data transferred over the
Web.

References

[1] Howard M. Taylor and Samuel Karlin, "An Introduction

To Stochastic Modeling", Academic press, 3rd edition,
1998

[2] Craig E. Wills and Mikhail Mikhailov, "Towards a better
understanding of Web resources and server responses for
improved caching" In Proceedings of the Eighth World-
Wide Web Conference, 1999

[3] Brian E. Brewington and George Cybenko, "How Dynamic
is the Web?", In Proceedings of the Ninth Worls-Wide
Web Conference, 2000

[4] Junghoo Cho and Hector Garcia-Molina, "Synchronizing a
database to improve freshness", In Proceedings of the 2000
ACM SIGMOD, 2000

[5] Fred Douglis, Anja Feldman, and Balachander
Krishnamurthy "Rate of change and other metrics: a live
study of the World Wide Web", In USENIX Symposium
on Internetworking Technologies and Systems, 1999

[6] Junghoo Cho and Hector Garcia-Molina, "Estimating
frequency of change", Technical report, Stanford Database
Group, 2001-09-22

[7] Brian E. Brewington and George Cybenko, "Keeping Up
with the Changing Web", IEEE Computer Magazine May
2000

[8] Md Ahsan Habib and Marc Abrams, "Analysis of Sources
of Latency in Downloading Web Pages", WebNet 2000,
October 30 - November 4, 2000 San Antonio, Texas, USA

[9] S. L. Tong and V. Bharghavan, "Alleviating the Latency
and Bandwidth Problems in WWW browsing", Usenix
Symposium on Internet Technologies and Systems '97,
Monterey, CA. December 1997.

[10] Jim Challenger, Paul Dantzig, Daniel Dias, and Nathaniel
Mills, "Engineering Highly Accessed Web Sites for
Performance ", Web Engineering, Y. Deshpande and S.
Murugesan editors, Springer-Verlag.

[11] J. Challenger, A. Iyengar and K. Witting., "A Publishing
System for Efficiently Creating Dynamic Web Content", In
INFOCOM 2000, March 26-30, 2000 Tel Aviv, Israel

[12] Jim Challenger, Arun Iyengar and Paul Dantzig, "A
Scalable System for Consistently Caching Dynamic Web
Data ", In Proceedings of IEEE INFOCOM'99, New York,
New York, March 1999.

[13] Craig E. Wills and Mikhail Mikhailov, "Studying the
impact of more complete server information on Web
caching", 5th International Web caching and Content
delivery Workshop, Lisbon, Portugal, 22-24 May 2000

[14] Alexandros Lambrinidis and Nick Roussopoulos "On the
Materialization of WebViews", In proceedings of the ACM
SIGMOD Workshop on the Web and Databases (WebDB
'99), Philadelphia, Pensylvania, USA, June 1999

[15] Themistoklis Palpanas and Balachander Krishnamurthy,
"Reducing Retrieval Latencies in the Web: the Past, the
Present, and the Future", Graduate Department of
Computer Science, University of Toronto, Technical
Report CSRG-378

[16] Martin Arlitt, Richard Friedrich and Tai Jin, "Performance
Evaluation of Web Proxy Cache Replacement Policies" HP
Technical Report HPL-98-97R1, 991122, External,
Available at http://www.hpl.hp.com/techreports/98/HPL-
98-97R1.pdf

[17] C. Bouras and A. Konidaris, "Web Components: A
Concept for Improving Personalization and Reducing User
Perceived Latency on the World Wide Web", The 2nd
International Conference on Internet Computing (IC2001),
Las Vegas, Nevada, USA, June 25th - 28th 2001

[18] C. Bouras and A. Konidaris, "Run-time Management
Policies for Data Intensive Web sites" International
Workshop on Web Dynamics (In conjunction with the 8th
International Conference on Database Theory), London,
UK, 3 January 2001, pp. 1-10

[19] ESI technical specification found at
http://www.esi.org/language_spec_1-0.html

[20] C. Bouras and A. Konidaris, "Improving Web Performance
and Web Resource Mining through the Dynamic Resource
Identification Protocol", Work in Progress.

http://www.hpl.hp.com/techreports/98/HPL-98-97R1.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-97R1.pdf

