
ARCHITECTURES AND PROTOCOLS FOR
EDUCATIONAL VIRTUAL ENVIRONMENTS

Ch. Bouras 1,2, Th. Tsiatsos 1,2

1Computer Technology Institute, Greece
2Computer Engineering and Informatics Dept., Univ. of Patras, Greece

ABSTRACT
Shared or networked virtual environments are one of the most
promising uses of the virtual reality technology. While a lot of
research has been done in the area of multi-user virtual
environments corresponding to the sharing of events very few
research has been done on specific services and functionality.
However both the requirements and the kind of the offered
services affect significantly the design of a system. In this paper
we present the main issues in the design of a platform to support
the distant education process using networked virtual
environments. We also introduce the term Educational Virtual
Environments and their basic requirements. According to these
requirements of the educational virtual environments we propose
both a suitable architecture and a protocol for the interaction
between the components of this architecture.

1. INTRODUCTION

A simple Virtual Environment (VE) is a computer-generated
simulation, which aims to provide its users with a sense of
realism. More specifically a VE is a computer system, which
generates a 3-dimensional (3D) virtual environment, with which
the user can interact, in such a way that he receives real time
feedback [8]. If multiple users use the same VE and they are able
to interact to each other the above definition would extend to
multi-user, shared, or networked VE (SVE or NVE). An extension
of an SVE would be a Collaborative VE-system (CVE) which is
an SVE aimed at a collaborative task.

According to the above definitions a simple definition of an
Educational Virtual Environment (EVE) is a CVE aimed not only
at a collaborative task but also at additional educational tasks such
as synchronous and asynchronous learning. An EVE is a set of
virtual worlds or a virtual world, which offers educational
functionality to its users. The avatars (the graphical
representation) of these users populate the EVE and they are
provided with additional behavior such as gestures, interaction,
movements and sound. In order to implement an integrated EVE,
it should satisfy some basic requirements. These requirements are
listed below:

• High level of presence: The user should be represented by an
avatar of his choice, which can simulate some basic realistic
actions of the users, such as gestures and movement, giving
them a shared sense of space, presence and time [10].

• Interaction: The EVEs should support two types of
interaction: (a) Multi-modal user-to-user interaction via
chat, voice communication and gestures. (b) User-system
interaction, which would be based on navigational aid and

commands that the system should provide to the user for a
specific function as well as the manipulation of 3D objects.

• Scalability: The EVE must be scalable to a large number of
users in order to support large virtual educational
communities.

• Consistency: Consistency of the EVE should be realized by
distributing and synchronizing user input as well as user
independent behavior in order to achieve the impression of a
single shared world.

• Coherence: Coherence with the sense of a uniform structure
of the provided services, concerning mainly the functional
and operational characteristics rather than its visual
representation in the EVE.

• Quality of Services: an EVE should ensure the quality of the
provided service

To achieve these goals, we need to develop a platform for
educational virtual environments in order to offer educational
services to the users in a sufficient way. The main steps in order to
realize this are to specify both an architecture for educational
virtual environments and a suitable protocol. In this paper we
present such an architecture and a protocol.

The remainder of this paper is structured as follows. In the next
section we present the design rationale of a platform for
educational virtual environments. We then present a suitable
communication model and the components of an architecture for
this platform. Following this, we present main issues in the design
of a protocol for the interaction between the components of this
architecture. Finally we present some concluding remarks and our
vision for the next steps.

2. DESIGN RATIONALE

In order to provide educational services in an effective way using
shared virtual environments we need to satisfy the previous
described requirements of an educational virtual environment, as
well as to provide specific functionality:

• Transmission of the VE to the users

• Synchronization of the VE

• Transmission of both a user's avatar and users' profile to the
rest of the users

• Capability for transmission of educational material (audio,
video, pictures, text etc.)

• Support of users with different network characteristics

• Reliable transmission of data in order to ensure QoS

• Effective management of system failure

These reasons guide us to design and implement both an
architecture and a protocol for the interaction between the
components of this architecture, in order to support educational
virtual environments. Many solutions have been proposed, and
described in [9], for the network topology of the components of
the networked virtual environments, such as peer-to-peer,
multicast, client/server, and multiple servers. Each solution has its
own advantages and drawbacks, which are presented at [3].

In the design of our platform we also take into account the
Networked Virtual Environment Information Principle:
"The resource utilization of a NVE is directly related to the
amount of information that must be sent and received by each
host and how quickly that information must be delivered by the
network" [10].
This principle is described in [10] as follows:

Resources = M*H*B*T*P (A)
where
M = number of messages transmitted in the NVE
H = average number of destination hosts for each message
B = average amount of network bandwidth required for a message
to each destination
T = timeliness with which the network must deliver packets to
each destination
P = number of processor cycles required to receive and process
each message

Therefore, in order to reduce the resource utilization we must
lower some of the above variables. The problem here is that
improving one of the variables we impact another aspect of the
system worsening another variable. In order to improve the system
performance we propose a new communication model between the
components of the system. This model is presented in the
following paragraph.

3. REFERENCE ARCHITECTURE

Our basic idea is to divide the processing load for the necessary
services of an EVE (such as shared objects, chat and audio
communication, etc.) to a set of servers aside from the
communication of the users or the management of the virtual
worlds as described in other models [3]. In addition, the whole
system will serve as a virtual representation of the relevant theme
and a presentation mean for the available material. This implies
that the 3D community that will be supported by this
communication model will consist of a number of smaller VEs.
This offers a "segmentation" of the virtual community and led us
to design a communication model that consists of a number of
message servers. Each message server hosts some specific VEs
and it is back-up server for the rest of VEs. The set of message
servers constitutes a locus of control of the whole system. More
specifically the proposed architecture is based on the following
different components:

• Message Server (MS): The message server has three main
tasks: (a) to transmit virtual world contents, (b) to offer
scalability to the system and (c) to keep the 3D world
consistent.

• Application Server: In order to provide specific applications,
we use dedicated application servers. According to the
previous described requirements the main applications that
should be offered are chat and audio communication as well
as shared objects to support the educational process and to

represent the educational material. For these reasons we use
three types of application servers: (a) Audio server, which is
responsible to provide real-time streaming audio capabilities
to the whole system. (b) Chat server, which is responsible
for the chat capability. (c) Shared object server, which
contains all the specific objects that are shared in the 3D
virtual environment.

• The clients: The client of the system interacts only with the
message server and the shared object server.

The interaction between the components of the architecture can be
seen in Fig.1.

Figure 1. Reference Architecture

The main advantage of this communication model is that the
variable P of the equation (A) is reduced, examining each message
server separately. This occurs because each MS is responsible
only for a number of the whole VE and the main processing
power for specific applications is divided in the corresponding
application servers.
The drawbacks of this solution are (a) that the variable T is
increased due to the fact that we are using many servers, and (b)
that the variable M is increased due to the fact that the servers
should change additional messages for their synchronization.
In order to deal with the above problems we propose to use
multicast communication between the message servers and the
user groups that participate in the same VE. With the use of
multicast communication we reduce the variable H reducing the
network traffic.
We believe that this model is well suited for an educational
environment for the following reasons: (a) it offers scalability due
to the fact that the load is divided, and servers for additional
services can be added, without to affect the end user (b) it offers
concerted management and authentication procedure, (c) the
clients have not excessive system and network requirements, (d)
there is no central point of failure, and (e) it is flexible, because if
the number of users is small, some of the dedicated servers to one
service can be consolidate in a message server.

4. PROTOCOL FOR EDUCATIONAL
VIRTUAL ENVIRONMENTS (pLVE)

In order to support the above architecture a suitable protocol
should be designed and implemented. Many protocols for shared

virtual environments is presented such as Distributed Interactive
Protocol (DIS) [6], [7], Distributed Worlds Transfer and
communication Protocol (DWTP) [2], Interactive Sharing
Transfer Protocol (ISTP) [10], VS Server Client Protocol (VSCP)
[5], VRML Interchange Protocol (VIP) [11] and Virtual Reality
Transfer Protocol (VRTP) [4]. The most of the above protocols
are well suited for shared virtual environments, however in order
to support educational virtual environments we should be able to
manipulate special data types, which corresponds to the previous
described requirements of the EVEs. These data types are the
following: (a) Triggers: triggers are messages, which need little
bandwidth to be transmitted, (b) Streams: streams are used for the
transmission of audio and video data. (c) State update messages:
these messages are responsible for the consistency of the virtual
world and it includes, among others, the avatar movement and the
non-predefined object manipulation. (d) Files: files are the 3D
virtual worlds, the users’ avatars and the additional educational
material (3D objects, texts, pictures, etc) provided by the users.

The need of supporting the above data types guides us to design
and implement a protocol for the interaction between the
components of the previous described architecture. This protocol,
which is named pLVE, is presented in [1], however some
advanced issues in its the operation is presented in this paper.
These issues are concerning the scalability of the system, the
reliability of the communication, the connection of a new user and
the consistency of the virtual environment.

4.1 Achievement of scalability

One of the main problems in the Networked Virtual Environments
is the fact that they are not able to support large number of
simultaneous users and/or provided services. For this reason
pLVE uses various mechanisms for the achievement of scalability
of the overall system. These mechanisms are the following:

• Both multicast and unicast communication is supported. If a
client does not support multicast communication, it would
connect to the corresponding message server using unicast
communication.

• Each message server is back-up server of the rest of message
servers.

• Application servers are used in order to reduce the processing
load of the message servers.

• Each message server can be "client" of another message
server, if the second message server has exhaustive
processing load. For the achievement of the load balancing
the processing and network load of each message server is
computed (according to the shared objects in each VE, the
active unicast and multicast connections, etc.) and each new
unicast connection is assigned at another message server. If
the processing and network load of all message servers is the
same, then the new connection will be assigned to the
message servers in a round robin way.

4.2 Achievement of reliability

Another problem that the protocol can solve is the packet loss due
to network problems. The problem is bigger with the use of UDP
multicasting, which does not guarantee reliable transmission of
data. The generally used solutions are the following: (a) Usage of

ACK message by the sender for the receiving-back of a data
packet. (b) Usage of NACK message for the not receiving back of
the data packet. In this case there is the problem that the receiver
should have a mechanism in order to be aware of a packet loss.

In our case the transmission and receiving of a message is realized
as follows:

• Transmission of a message: A client sends the message to a
message server using unicast communication. Then, the
message server forwards the message to the responsible
multicast group or to the rest of clients (that does not support
multicast communication).

• Receiving of a message: The participating clients in a
multicast group receive the message using the multicast
group, and the rest of clients (that does not support multicast
communication) receive the message using unicast
connection.

Therefore, our protocol uses the following mechanism in order to
ensure reliability in each multicast group: only the responsible
message server in a specific multicast group can transmit ACK.
This ACK should be arrived in the clients in a predefined time. If
the sender of a message does not receive this ACK, then this client
re-transmits the message to the message server, who should
forward this to the multicast group.

4.3 Achievement of connection

When a new client requests a connection with a specific virtual
environment, the responsible message server transmits the content
of the virtual environment along with the necessary information to
achieve the connection: the corresponding multicast group or the
unicast address for the specific environment. In addition the
message server stores a copy of the virtual environment along with
the last changes in the shared objects in the world. The initial
connection is a reliable TCP/IP connection for the transmission of
the initial necessary data, such as the file of the virtual
environment and the avatars of the other users. The message
server sends the necessary variables, for the multicast group and
port and assigns a unique ID number to the client of the new
participant. If the new client is no multicast capable it uses a
unicast address to communicate with the message server. If the
message server is not able to serve the new client due to excessive
network and communicative load, another message server can be
used in order to serve the new client. In this case the unicast
address of the alternative message server is one of the parameters
that they are sending to the new client. As long as the new client
has been connected to the multicast group or to (a unicast
connection) informs the message server for the connection (and it
sends the port that it uses for the communication). Then the
message server sends the contents of the virtual environment
together with the last changes in the shared object of the
environment. Afterwards the client sends to the message server
data for the graphical representation of the user in the virtual
environment (avatar). After this the TCP/IP connection is used
only for reliability reasons and the rest of communication (sharing
events, chat, etc.) is executed by the way that the client has chosen
(UDP unicast or UDP multicast).

4.4 Achievement of consistency

In order to keep the VE consistent we should send both the shared
events (events that concern shared objects) generated by a client
to the others and the avatars’ movement. For this reason we use
triggers and state update messages.

For the realization of the transmission of events we exploit the
capabilities of External Authoring Interface (EAI) [13] and
VRML 97 [12] specifications. We use the getEventIn() method of
the shared object node to send events created by a user in the VE,
and updating the VEs of the other users (via the message server).
Also we use the getEventOut() method of the shared object node,
to read a shared event. Furthermore EAI provides a mechanism
(the EventOut Observer and the callback() function) in order to be
notified when an Event Out is generated from the scene. With this
way we can send and receive triggers to activate scripts.

In order to serve the next participants of the VE, they should be
notified for the last changes of the shared objects in the VE. We
deal with this problem storing the last state of the shared objects
in the message server and sending it to the new participants when
they are connecting to the VE.

The avatar of a user can be added to the VE using both the
createVrmlFromURL and createVrmlFromString functions of
EAI. The avatar of each user is a VRML node that has a unique
name plus the ID of the client that uses it. Therefore, in order to
update the avatars’ movement in the VE we use a proximity
sensor in the VRML file to catch the avatar’s position and
orientation. Using the same functions of EAI as for the shared
events we send the values of the position and orientation of the
avatar plus the ID of the responsible client. These values are
sending to the other clients (by the message server) in order for
the other clients to update the position of the avatar, which
corresponds to the specific ID in their local VE.

5. SUMMARY

In this paper we introduce the term educational virtual
environment and we propose a suitable architecture and a protocol
to support this environments. Furthermore we describe some
advanced issues concerning the nature of this environments and
the way that we deal with them. Currently we are in the
implementation phase of our platform In order to realize this
platform we use open standards and technologies such as VRML
97 for the VEs, Java for the implementation of the servers and the
multi-user clients and H-Anim (Humanoid Animation) [14] for
the construction of the avatars.

Our next steps after the implementation of the system are to
integrate audio communication (using the RTP protocol and the
JMF tools) and to implement a virtual community for testing and
measurements.

6. REFERENCES
[1] Bouras C. and Tsiatsos T. "pLVE: Suitable Network Protocol

Supporting Multi-User Virtual Environments in Education".
International Conference on Information and
Communication Technologies for Education, Vienna,
Austria, December 6-9 2000

[2] Broll W. "DWTP - An Internet Protocol For Shared Virtual
Environments". Proceedings of International Symposium on
the Virtual Reality Modelling Language 1998 (VRML’98),
ACM, ACM SIGGRAPH, pages. 49/56.

[3] Broll W. "Bringing People Together - An Infrastructure for
Shared Virtual Worlds on the Internet". Proceedings of the
IEEE WE-TICE ‘97 (Sixth International Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises). Cambridge, Massachusetts, USA, IEEE
Computer Society Press, Las Alamitos, June 18th - 20th
1997.

[4] Brutzman D., Zyda M. and Watsen K, Macedonia M. "virtual
reality transfer protocol (vrtp) Design Rationale". Workshops
on Enabling Technology: Infrastructure for Collaborative
Enterprises (WET ICE): Sharing a Distributed Virtual
Reality. Massachusetts Institute of Technology, Cambridge
Massachusetts, June 18-20 1997,
http://www.stl.nps.navy.mil/~brutzman/vrtp/vrtp_design.ps.

[5] Honda Y., Matsuda K. and Rekimoto J. and Lea, R. "Virtual
society: extending the WWW to support a multi-user
interactive shared 3D environment". Proceedings of
VRML'95. San Diego, CA. Aug 1995. Also as SCSL-TR-95-
035, http://www.csl.sony.co.jp/project/VS/VRML95.ps.Z.

[6] Locke J. "An Introduction to the Internet Networking
Environment and SIMNET/DIS”. http://www-nps-
net.cs.nps.navy.mil/npsnet/publications/DISIntro.ps.Z.

[7] Macedonia M. R., Zyda M. J. and Pratt D. R. "Exploiting
Reality with Multicast Groups: A Network Architecture for
Large-Scale Virtual Environments". Proceedings of the IEEE
VRAIS’95. IEEE Computer Society Press, Las Alamitos, CA,
March 1995, pages 2-10.

[8] Normand V., Babski C., Benford S., Bullock A., Carion S.,
Farcet N., Frecon E., Harvey J., Kuijpers N., Magnenat-
Thalmann N., Raupp-Musse S., Rodden T., Slater M., Smith
G., Steed A., Thalmann D., Tromp J., Usoh M., Van Liempd
G. and Kladias, N. "The COVEN project: exploring
applicative, technical and usage dimensions of collaborative
virtual environments". Presence: teleoperators and virtual
environments, MIT Press, Vol.8, No2, 1999, pages218-236.

[9] Pandzic I. S., Joslin Ch. and Magnenat-Thalmann N. "Trends
in a Collaborative Virtual Environment". International
Conference on Software, Telecommunications and Computer
Networks-SoftCOM 2000. Split, Rijeka, Dubrovnik (Croatia),
Trieste, Venice (Italy), October 11-14 2000, pages 893-901.

[10] Singhal S. and Zyda M. Networked Virtual Environments:
Design and Implementation. ISBN 0-201-32557-8, ACM
Press, 1999.

[11] VRML Interchange Protocol - Specification, web page:
http://www.csclub.uwaterloo.ca/~sfwhite/vnet/VIP.html.

[12] Web 3D Consortium. "The Virtual Reality Modeling
Language (VRML) - Part 1: Functional specification and
UTF-8 encoding". 1997,
http://www.web3d.org/technicalinfo/specifications/vrml97/in
dex.htm

[13] Web 3D Consortium. "The Virtual Reality Modeling
Language (VRML) - Part 2: External authoring interface".
1999 http://www.vrml.org/WorkingGroups/vrml-
eai/Specification/

[14] Web 3D Consortium - Humanoid Animation Working Group
"H-Anim 1.1 specification". 1999, http://h-anim.org/spec1.1/

