
7

1

Abstract—The majority of the systems and platforms developed

for supporting Distributed Virtual Environments are based on the
concept of distribution from the early beginning of their
development. In this paper we present the migration to a
distributed virtual environment from a traditional client-server
architecture. In particular, this paper describes the case of EVE,
a Networked Virtual Environment originally aimed to support
small-scale applications. EVE started as a standard client-multi
server architecture, which could support multiple concurrent
virtual worlds with a maximum number of seventeen
simultaneous participants in each of these worlds. However, the
need to support larger-scale applications revealed that the
traditional architecture, upon which EVE was based, is
insufficient to meet the needs of these applications, which are
large both in the sense of virtual space and graphics and in regard
to the number of concurrent participants. This paper discusses
the migration of EVE to a distributed platform, which will be
able to support large-scale networked virtual environments. In
particular, the paper describes the modifications realized in the
architectural model of the initial platform for supporting
effectively large-scale applications. The basic entities of the
distributed model are presented, their operations, as well as the
interconnection among them. In addition, the paper presents an
initial approach of the algorithm that will be adopted for the
efficient partitioning of the virtual world and the assignment of
the clients to the entities and resources of the distributed
platform. The approach presented is space-object driven, in the
sense that both the actual size of the virtual space along with the
number of objects with which the user can interact is taken into
account during the partitioning.

Index Terms—distributed virtual environments, distributed
architectural model, partitioning problem

Manuscript received February 8, 2006.
Christos Bouras is with the Research Academic Computer Technology

Institute, Patras, Greece (phone: +30-2610-960375, fax: +30-2610-960358, e-
mail: bouras@cti.gr) and the Computer Engineer and Informatics
Department, University of Patras, Greece (phone: +30-2610-996951, fax:
+30-2610-969016, e-mail: bouras@ceid.upatras.gr).

Eri Giannaka is with the Research Academic Computer Technology
Institute, Patras, Greece (phone: +30-2610-960380, fax: +30-2610-960358, e-
mail: giannaka@cti.gr) and the Computer Engineer and Informatics
Department, University of Patras, Greece.

Alexandros Panagopoulos is with the Computer Science Department,
Stony Brook University, New York, USA (e-mail: apanagop@cs.sunysb.edu).

 Thrasyvoulos Tsiatsos is with the Research Academic Computer
Technology Institute, Patras, Greece (phone: +30-2610-960316, fax: +30-
2610-960358, e-mail: tsiatsos@cti.gr).

I. INTRODUCTION

V IRTUAL Reality technology has been evolved from a

newborn trend for the achievement of a high sense of realism
to a technology that has been widely established and used for a
variety of applications and areas. The first Networked Virtual
Environments (NVEs) originally developed could support a
limited number of users and were defined as Small-Scale
NVEs. The maturation of the Internet, the familiarization of
the users with this means of communication but mainly the
improvement of this dynamic means led to the need for the
formation of larger NVEs. In particular, the last few years, the
research interest turns to the direction of NVEs that could
support efficiently a tremendous number of concurrent users.
However, the development of Large Scale Networked Virtual
Environments introduced a series of problems, which are
mainly related to the debility of the network to host and serve
the demanding recourses that these applications require. In
particular, these environments are accompanied by rich
graphics for the representation of the provided information as
well as a variety of provided services. These characteristics, in
combination to the tremendous number of users that are called
to support, result in the exponential increment of the resources
needed for their smooth, natural and efficient operation.

Traditional architectures and algorithms adopted for the
development and support of, the so-called, small-scale Virtual
Environments seem insufficient to be applied to environments
with an importantly larger number of users [13]. In particular,
small-scale approaches, from an architectural point of view,
fall usually into one of the following architectures: a) client-
server architectures, and b) peer-to-peer architectures. Both
approaches, when scaling into a larger number of users fail to
support the virtual environment efficiently as either, the
clients, the server, or both fail due to bandwidth deficiency.

The increased research interest on Distributed Virtual
Environments resulted in the development of a number of
protocols and platforms. In the area of protocols for
Distributed Virtual Environments, SIMNET (Simulator
Network) [5] constitutes the very first effort to this direction.
The protocols that followed were DIS (IEEE 1278) and the
SIMNET DIS that were developed for overcoming the
limitations that the former SIMNET protocol presented.
NPSNET-IV [20] extends the original DIS architecture to

Distribution and Partitioning Techniques for
NVEs: the case of EVE

Christos Bouras, Eri Giannaka, Alexandros Panagopoulos, Thrasyvoulos Tsiatsos

7

2

address many of these problems. Open Community (OC) is a
proposal of a standard for multi-user enabling technologies.
SPLINE is an OC compliant implementation that provides
development APIs. MASSIVE-2 (model, architecture and
system for spatial interaction in virtual environments) [11] is a
prototype developed in 1997 and its major contribution is the
introduction of the third-party objects, which allows a
hierarchical dynamic space-based embodiment of multicast
groups. SCORE was developed in 2000 and is based on the
division of the world in cells as suggested by [12]. Finally,
VELVET [4] is an adaptive hybrid architecture that allows a
greater number of users to interact through a CVE. This is
accomplished through an adaptive filtering scheme based on
multicasting.

This paper presents the transformation of a NVE called
EVE, which was developed for supporting small-scale virtual
environments to a flexible and scalable distributed platform.
Platform EVE, as originally implemented, could be used for
applications with a limited number of concurrent users. Such
application was a virtual learning class, where students and
tutors could collaborate using the services of the platform (as
chat and audio) as well as interact both with the objects of the
virtual world and with the other for facilitating the learning
procedure. However, for applications with larger virtual
worlds and a much more high number of concurrent users the
client-server architecture was insufficient. Examples of such
applications that require very large virtual worlds for their
representation could be a virtual campus with different
departments, different classes and offices per department and
different number of users or a virtual city, where the users
could navigate around the buildings and public services and
interact with servants for realizing real-time transactions. The
adaptation of the client-server version of EVE for the above
examples would fail as the servers would be overloaded and
would constitute a bottleneck point for the network. Thus, the
challenges that arise for the transformation of the client-server
architecture to a distributed one are mainly related to the
effective partitioning of the virtual space as well as to the
assignment of the objects and clients of the system to the
servers available, so as to optimize the networking
performance and maintain the consistency of the applications.
To this direction, the paper describes the modifications
realized in the architectural model of the initial platform for
supporting effectively large-scale applications as well as the
partitioning approach that will be adopted for the effective
assignment of the workload to the available servers and
entities of the platform.

The paper is structured as follows: Section 2 presents
shortly the architectural model of EVE platform. Section 3
describes the main reasons that lead to the need of distribution.
Section 4 introduces the implementation issues for the first
steps realized for the transition of the platform. The Section
that follows presents the concept of the partitioning algorithm
that will be adopted for achieving and maintaining an
optimized performance. Section 6 presents some further

consideration that need to be taken into account for a
distributed virtual environment application as well as the ways
that the distributed version of EVE will handle these
considerations. Finally, Section 7 concludes the paper and
presents the planned next steps for the optimization of the
platform.

II. PLATFORM EVE

EVE’s architecture has been presented in a series of papers
[1]. However for the facilitation of the reader, which might not
be aware of EVE we shortly describe its architectural model.

EVE is based on a client-multiserver platform model. This
model offers scalability and flexibility to the EVE architecture,
because we can add more application servers in order to offer
more functionality and furthermore the processing load is
distributed among the above set of servers.

Fig. 1: EVE’s client-server architecture

A. Server Side

The servers on which the platform relies, is the message
server and two application servers, a chat and an audio server.
1) Message Server

The message server is responsible for the manipulation of
the virtual worlds that are visited by the users of the system. In
addition, this server creates and supports the illusion to the
users that they are participants in the above virtual worlds and
that they share a common space by updating the view of the
world every time that a shared object is modified. Two servers,
each of which is used for a specific sequence of operations,
constitute this message server. These servers are the
Connection Server and the VRML server.

Connection Server: this server maintains a database, which
the system accesses in order to authenticate the user and allow
him/her to enter the virtual space of EVE. In addition, the
connection server reports every entry or departure that takes
place in the platform to all other servers.

VRML server: this server monitors and records every
event that takes place in the virtual space and reports these
changes to all participant clients of the platform. Thus, by
performing these continuous updates the system assures that
the users will have the illusion of sharing a common space.

7

3

The VMRL server also maintains constantly an updated copy
of the world, which is sent to the clients when they enter the
system. That way, the new users have the same updated view
that the existing users already have.

2) Application Servers
The application servers are responsible for providing

specific functionality to the participants of the virtual world. In
the current form of EVE there are two application servers
available, a chat server and an audio server.

Chat Server: this server is responsible for the text chat
support. It allows group chat, which means text chatting
between multiple users, or whispering, which allows the one-
to-one communication between two users.

Audio Server: this server is responsible for the audio
communication between the users of the platform. The audio
server uses Η.323 as its main protocol.

B. Client Side

As depicted in Fig. 1, in order the users’ clients to
communicate with EVE’s servers and have access to the
provided functionalities they need a web browser, a VRML
browser, the main EVE client and the audio client.

Web Browser: The web browser is used for the
communication with the web server of the system, which
provides an initial interface and entry point between the user’s
client and EVE’s environment.

VRML Browser: The 3D environment of EVE is
implemented using the VRML language. Therefore, a VRML
browser, a plug-in, is essential in order to allow the navigation
of the user’s avatar in the virtual training space.

Main Client: This client is responsible for (a) the primary
connection of the user to the Message Server, (b) the
interaction between the user’s avatar and the 3D virtual space
and (c) the text chat communication between the users of the
same virtual space. In particular, the main client, which is a
java applet, makes an initial connection to the connection
server, which allows it to present the current connection status
and when the user is authenticated, it passes on to the vrml
server.

III. TOWARDS DISTRIBUTION

Platform EVE was originally developed for supporting
simultaneous small-scale multi-user virtual environments, with
a small number of concurrent users (up to 17 for each virtual
space). On this version of the platform, which was based on
the architecture described in the previous section, a
performance monitoring was conducted for evaluating its
networking performance. The simulations, experiments and
results that were extracted have been presented in [2]. In short,
the results indicated that the above-mentioned platform could
efficiently support up to two concurrent virtual worlds.
However, the platform indicated some limitations in the
avatars’ movement within the virtual world, in the sense that a
small percentage of positioning messages were lost. This was

not an important limitation for the previous version of EVE, as
the avatars’ movement within the virtual space was limited.

The reasons that lead to the need for distribution fall into
two directions. The first one arises from the need to make a
platform of general use. This implies that the platform should
be able to support different kind of applications as games,
simulations, etc. In the case of the games and other similar
applications, where the probability of the users’ movement
within the virtual environment is high and based on the results
extracted by the performance evaluation conducted, EVE
would be unable to serve efficiently such types of applications.

The second reason is the need for a platform that could
support large-scale virtual environments. The essence of
“large” refers both to the size of the virtual worlds as well as to
the number of concurrent users that the platform can support.
If we decided to adopt the initial platform for this purpose, and
based on the fact that each server can efficiently support up to
thirty concurrent users, it becomes clear that the case of
thousand of users, where large-scale environments apply,
would be completely infeasible, since the centralized
components of the old architecture would not be able to handle
a large amount of users, no matter what the underlying
hardware is.

IV. DISTRIBUTED ARCHITECTURAL MODEL

Based on the fact that EVE started as a standard client-multi
server architecture, the modification and redesign of the
architectural model was the first step to be taken for the
process and purpose of distribution. To this direction it
became clear that the Message Server (Fig. 1), which was
responsible for the critical processes of the EVE platform,
could no longer exist with its traditional form. In the following
paragraphs we describe the basic components on which the
distributed version of our platform relies.

A. Main Entities of the Distributed Model

The main entities on which the distributed platform relies on
could be divided in two main categories: the “Kernels”, which
mainly handle the processes that take place within the virtual
environment and the “Kernel Managers”, which are mainly
related to managing the processes and distributing them over
the available machines.

B. Kernels

With the term “kernel” we refer to threads, which are
engaged with certain types of processes within the virtual
environment. The distributed version of the platform is based
on three types of kernels: a) the World Kernel, b) the User
Cluster Kernel and finally c) the Parser Kernel. Each kernel is
a process responsible for part of the book-keeping, processing
or communication load related to a virtual environment. The
operations and processes that each of these kernels manages
are described in the subsections that follow.
1) World Kernel

The state of each virtual world is stored and maintained by

7

4

one or more World Kernels. The World Kernel is a process
responsible for the maintenance of the state of the data
representing a portion of the virtual environment. These data
correspond to the current state of the virtual world and the
World Kernel is responsible of handling all state changes
related to the portion of the world that it handles, except for
the changes of user state, which are handled by the appropriate
user cluster.

In particular, this thread implements a simple computation
kernel to handle a single part of the virtual world. However, in
the current version of the platform, this thread handles an
entire world. In future versions of the platform world kernels
will handle parts of the virtual space. Furthermore, the World
Kernel stores locally the world data and allows for data/event
input/output. The basic operations related to this thread are: a)
load binary data into the database, b) send binary data
describing the whole world, c) send binary data describing a
single node, d) apply an event onto the data stored, e) clear the
entire database and f) output update events.

As mentioned above, this thread sends out the updates of
this world to the clients, while spatial filtering of the outgoing
events is also performed.

Fig. 2: World Kernel Operations

Clients, in this case, are the User Cluster Kernels, described

in the following subsection, which serve the corresponding
part of the world and are responsible for forwarding the events
received by the World Kernel to the user clients connected to
it. Also, spatial filtering can be applied to the outputted events,
to significantly reduce the traffic generated by the World
Kernel, so that each update is forwarded only to the User
Cluster Kernels that lie in its area of effect. This way, better
scalability is achieved, since the load on the World Kernel
does not depend on the total number of users but only on the
number of affected User Cluster Kernels.
2) User Cluster Kernel

For the manipulation of the users’ avatar movements within

each virtual world “User Cluster Kernels” are introduced.
Each User Cluster manages a group of users that participate in
the virtual environment. Thus a virtual world may consist of
many User Cluster Kernels.

In particular, this kernel is responsible for the entire I/O
process with the users connected to it. It handles user
movement (without updating the database of the World
Kernel) and all other events by forwarding these events to the
World Kernel, if necessary, and receiving updates from the
World Kernel that are forwarded to the users.

User Cluster Kernels are arranged on a regular grid over the
virtual world and each of them undertakes an area which it
handles. At this point it should be mentioned that a User
Cluster Kernel can also serve users that are outside its area of
responsibility, but within some limited distance.

 Due to the fact that the distribution aims to support large
scale virtual environments, the platform selects a more
effective way for handling the events that update the virtual
environment. In particular, when an event modifies the state
of an object within the area of interest of a specific User
Cluster Kernel, this message is not forwarded to all other
existing User Cluster Kernels, as it would happen in the client-
server version of the platform. In particular, in the client-server
architecture an event message would have to be sent to all
participating users.

Fig. 3: User Cluster Kernel Operations

However, the distributed approach performs a two-layered

filtering: The World Kernel will send the message only to the
User Cluster Kernels it involves and the User Cluster Kernels
will forward this message to the clients they handle. For
example, in the case of a virtual environment with 1000
concurrent users, the World Kernel would have to send 1000
messages for these users. With the filtering adopted the World
Kernel will only send two messages (if we assume that there
are two User Cluster Kernels). If the User Cluster Kernels
serve about 50 users, they will only forward this message to
these 50 users. Thus the number of information exchanged is
tremendously decreased.

7

5

3) Parser Kernel
Each virtual world and all of the objects available in it are

saved under a VRML/X3D file format. These files are stored
on a server as well as on the platform’s database through a
reference link. The distributed version of EVE generates a
dedicated thread for manipulating these files. In particular, the
concept of Parser Kernel is introduced, which constitutes a
remote kernel dedicated to parsing VRML/X3D data, since
this can be a very time-consuming task.

The Parser Kernel parses the file containing the virtual
environment along with the objects contained and sends the
parsed data in binary form to the corresponding World
Kernels, which will store them. So, the heavy task of parsing
and preprocessing the VRML data is now moved away from
the potentially heavily loaded World Kernel that handles the
affected portion of the world. In fact, the remote kernel
manager will chose the less loaded machine in the supporting

network to send the parser process.

C. Kernel Managers

This section presents the Kernel Managers that the
distributed version of EVE adopts for managing the processes
of the platform. These processes are not created once and stay
static but instead they are created and intercepted dynamically
during the operation of the platform. The platform adopts two
kinds of kernel managers: (a) the Local Kernel Manager,
which accepts and executes the commands from the Remote
Kernel manager for the creation of new processes on the
machine it handles and the stopping of other processes and (b)
the Remote Kernel Manager, a nodal point of the architectural
model, which is responsible for the distribution of all
processes and makes the decisions during the operation. These
Kernel Managers are described in the following subsections.

Fig. 4: Distributed Scheme Entities and Interrelations

1) Local Kernel Manager

The entity of the Local Kernel Manager is used for
spawning kernels locally on a single machine, controlling their
execution and also keeping track of local resources and
computational load for the given machine. In particular, a
Local Kernel Manager runs in each of the machines that
participate in a session and performs the necessary
authentication that will allow to the World, Parser and User
Cluster Kernels (or: any kernels) to be able to connect to the

platform and perform their designated tasks on the world(s)
they serve. When the authentication of the Local Kernel
Manager is completed, this entity waits for instructions from
the Remote Kernel Manager. Sole responsibility of the Local
Kernel Manager, after the connection to the platform, is the
starting and stopping of processes on the host machine, as
designated by the commands received by the Remote Kernel
Manager, while also providing the Remote Kernel Manager

7

6

with feedback regarding the computational load and available
resources on this machine. This way, each local kernel
manager acts as a client to the Remote Kernel Manager, which
is responsible for the general coordination of kernels.
2) Remote Kernel Manager

The Remote Kernel Manager stands as the administration
entity of the platform as it is responsible of controlling all
processes that constitute the platform. In particular, the
Remote Kernel Manager maintains the information necessary
(ip address, port, type and state information) for all connected
Local Kernel Managers (which represent participating servers)
and all kernels currently executing. The Remote Kernel
Manager can remotely spawn new processes on remote
machines (by commanding the appropriate local kernel

manager to do so), terminate processes remotely and reply to
queries made by kernels, which try to find other kernels
connected to the platform based on certain criteria such as type
and world id. Furthermore, the Remote Kernel Manager acts as
the coordinating entity for the whole platform. In particular,
during a session, where users join the platform, new processes
need to be created for balancing the workload. Similarly, when
two processes can be merged (i.e. two User Cluster Kernels for
which the number of clients is importantly reduced). The
above decisions fall under the jurisdiction of the Remote
Kernel Manager. This thread could either run on separate
machine or in one of the machines that a Local Kernel
Manager runs.

Fig. 5: UML sequence diagram showing world initialization, user connection and updates

D. Deployment Example

We assume that we have two different machines, on which
the platform will operate. Each of these machines runs a Local
Kernel Manager, while in one of these machines, or even on a
separate machine a Remote Kernel Manager maintains the
information necessary for all connected Local Kernel
Managers.

When a Virtual World is to be loaded, the machine requests
from the Remote Kernel Manager to start a World Kernel for
this virtual world. The Remote Kernel Manager selects one of
the available machines and sends a command to the
corresponding Local Kernel Manager to spawn the

corresponding process, sending at the same moment a series of
information that are related to it, such as the name of the
world. When this process is completed, we ask from the
Remote Kernel Manager to run a Parser Kernel, which is
supplied with the url where the world data reside (.wrl file) and
the id of the world that shall be built by these data.

The Parser Kernel parses the file and through the Remote
Kernel Manager finds the corresponding World Kernel and
sends it the binary data that were parsed. The World Kernel
stores this data in the database.

 With the same process we create a User Cluster Kernel by
making a request to the Remote Kernel Manager. When the

7

7

User Cluster is running, users can enter the virtual world. Each
client asks the Remote Kernel Manager to which User Cluster
it should connect. The data during the loading of the virtual
world are sent to the client directly from the World Kernel.

V. PARTITIONING ALGORITHM

As Distributed Virtual Environments tend to become a de-
facto solution for large-scale application a number of problems
need to be taken into account for achieving an effective
performance. One of these problems is the partitioning of the
virtual space. To this direction both heuristic and on-heuristic
approaches have been proposed [14]. At this point it should be
mentioned that partitioning, as presented in [15] constitutes a
NP-complete problem. Lui and Chan [15] have described the
importance of finding a good assignment of the participating
clients to the available servers for managing the workload and
the communication cost and for achieving a better networking
performance. This partitioning algorithm currently achieves
the best results for DVEs [16].

As the partitioning algorithm that EVE will adopt will be
based on the approach of Lui and Chan, we will describe
briefly the solution they proposed and we will then present the
modifications that will be performed for improving the
performance.

The partitioning algorithm, as presented in [15] has three
basic steps:

(a) A Recursive Bisection Partitioning algorithm (RBP),
which, based on the concept of divide and conquer, creates the
initial partitions of the virtual world.

(b) A Layering Partitioning algorithm, which, based on the
computing workload reassigns the clients to the servers so as
to reduce the overall cost.

(c) A Communication Refinement Partitioning algorithm
(CRP), which reassigns some clients to other partitions
(servers) so as to reduce the server-to-server communication
cost.

 They also propose a quality function (denoted as Cp), for

evaluating each assignment of clients to servers. This quality
function takes into account two parameters, a) the computing
workload generated by clients in the DVE system, which
should be shared among the available servers in regard to their
computing resources and b) the overall inter-server
communication requirements.

The approach of the partitioning algorithm presented in this
section takes into account some additional parameters, which
can further improve the performance of the algorithm
proposed in [15]. These parameters are the following:
• Nob =The number of active multi-user objects, which are

the objects that the user can interact with. These active
objects could either be (a) static, in the sense that cannot
be transferred from one location to another and (b)
moveable, which are the active objects that can be moved
from one location of the virtual world to another.

• Nst = The number of inactive objects, which are the

objects that the user cannot interact with but are placed
within the virtual environment.

• ,iOs =The size of each multi-user object, where

i =1,.., Nob .
• ,iOns =The size of each inactive object, where

i =1,.., Nst .
• VS =The total size of the virtual space.
• As =The average size of the participating avatars.
•),(ji oaL =The amount of information generated by the

interaction of an avatar with an active object of the virtual
world.

• iSP =The available (free) space of a given partition iP

Our approach is based on the observation that there is an
upper limit on the number of clients that each virtual world
can support, which is not related only to the available
resources of the system but also to the actual space of this
world. In particular, let us assume a server that handles one

small virtual world with dimensions 22 × units and also
comprises some objects. Let us also assume that we have a
powerful system with enough computer resources to server
up to 30 concurrent users. If the average size of the avatars

that participate in this virtual world is As then the actual
number of concurrent users that this space can support
equals

to AsOscOnscVSNA
Nob

i
i

Nst

i
i ÷+−= ∑∑

==

)))*()*(((max
00

,

where c is a constant, which is related to the collision
bound value set for the virtual environment.
Based on the above, we extend the partitioning algorithm of
Lui and Chan [15] for improving the general performance.

A. Recursive Bisection Partitioning (RBP) Algorithm

This algorithm creates the initial partitions of the virtual world
and for each of the created partitions calculates their size

1. Divide the virtual world into N disjoint cells of area
2D , where D is the average diameter of the Area of

Interest (AOI) of the avatars
/* Create a graph for the virtual environment*/
2. For each cell i create a node and calculate:

o the number of avatars that reside in this cell iNa

o the number of active
iNob and inactive

iNst objects that reside in this cell

o the size of the active iOs and inactive

iOns objects that reside in this cell

o Calculate the free space of the cell iSP

3. For neighboring cells create an edge
4. Assign all cells into one server
5. Based on the graph created reassign cells from one

server to another so as to minimize the total
communication cost among the servers

7

8

6. Select the partition with the largest cost and apply the
algorithm again until all servers are assigned with a
partition

B. Layering Partitioning (LP) Algorithm

The main objective of this algorithm is to find a new
partition based on the results of the Recursive Bisection
Partitioning algorithm. The basic steps of this algorithm are
the following:

1. For all created partitions iP , where i=1,2,…,n check

the available free space /* the free space is known from
the RBP algorithm */ {

2. If (iP has available free space) then { /* we start with

the creation of a graph /*

3. For each avatar ia and object io in partition iP create

a node iva (representing the avatar) and a node ivo

(representing the object)

4. { For each node iva find all avatars (jva) and

objects (jvo) within its AOI which reside in different

partitions jP ,)(ji ≠ /*these avatars are denoted as

border avatars */
5. while (0_ >jvaNum or 0_ >jvoNum) /*in case

there are avatars or objects within the AOI of ia /*

6. { create an edge ijea between iva and jva

7. assign a weight to edge ijea , which equals to the

communication cost),(ji aaI /*),(ji aaI represents

the amount of information exchanged among avatar

ia and ja

8. create an edge ijeo between iva and jvo

9. assign a weight to ijeo which equals to the interaction

cost),(ji oaL

10. calculate the overall cost for iva :

)),(),((jijiva oaLaaIOC
i

+= ∑ }

11. Find partition number for which:
{ })),(),((max)),(),((cos jijijiji oaLaaIoaLaaItO +=+= ∑∑

 and assign a label with this partition number to iva }

12. For all other nodes in iP create edges between these

nodes and the newly labeled border nodes /*these
“other” nodes are the ones for which both

0_ =jvaNum and 0_ =jvoNum */

13. calculate the overall cost
14. label them with the partition number which maximizes

tO cos /*in this case the avatar and object nodes reside
in the same partition*/ }

15. calculate the total number ijmt of nodes that can be

moved from iP to jP /*we refer to these nodes as

candidate nodes*/ }
16. else { /*this is the case that there is no available free

space in partition iP , which means that the number of

nodes that can be moved from other partitions to this

node 0=jimt , for)(ji ≠ }

17. We define ijt as the final number of the candidate

nodes that can be moved from partition iP to jP .

18. Based on the available space in partitions, estimate the
maximum number of avatars that can be reassigned.

19. For all the neighboring partitions try to

minimize ∑
≤≠≤ nji

ijt
1

, where n is the number of partitions

(servers), trying to approach an ideal workload
balanced situation of server i .

C. Communication Refinement Partitioning (CRP) Algorithm

The Communication Refinement Partitioning algorithm is
applied for reducing the communication cost among the
partitions produced by the Layering partitioning algorithm.
The concept of this algorithm is very similar to that of the
layering algorithm. In particular, the graph produced by the
layering algorithm is used and the following steps are
performed:

1. For all border nodes iva calculate the overall

communication cost /*these are the nodes for which

there is an edge connecting iva to either an

avatar jva or object node jvo in a different partition

)(ji ≠ */

2. Compare the overall communication cost and label

node iva with the server number for which the

maximum cost is achieved.

3. Calculate the total number ijz of nodes that can be

reassigned from partition iP

4. We define ijb as the final number of the candidate

nodes that can be moved from partition iP to jP .

5. For all the neighboring partitions try to maximize

∑
≤≠≤ nji

ijb
1

, where n is the number of partitions

(servers), keeping in mind that the number of nodes
that are assigned to server i equals the number of
nodes withdrawn from this server, so as to maintain the
workload balancing.

VI. FURTHER CONSIDERATIONS

As mentioned in [3], DVEs need to address more serious
problems than the ones of single user virtual reality systems.

7

9

These problems are related, among others, to the control of
network traffic, latency, and reliability. In addition, DVEs
mainly aim at supporting Large-Scale applications. The term
“large” refers both to the size of the virtual environment,
including the size of the graphics, as well as to the number of
concurrent participants. These characteristics introduce a
series of situations and problems that need to be solved for
achieving sustainability and for optimizing the performance.
The main considerations that need to be taken into account
when designing and developing a DVE are: a) the scalability
and b) the heterogeneity. In particular, regarding scalability,
there is a certain limit on the number of users that each system

can support. When the number of users exceeds this limit
malfunctions might occur, which are related with the limited
computing resources. Thus methods and mechanisms are
needed for avoiding undesirable effects in the interactivity and
rendering [3]. The other main consideration is the
heterogeneity of equipment of the participants. For facing this
problem, there are two solutions which either deploys the
simulation based on the slowest and weakest system or setting
up a minimum requirement and simply denying access to
nonconforming systems [3],[4].

Fig. 6: 3D Space representation in a graph

A. Scalability

As mentioned above, scalability is one of the main
considerations for a DVE. As pointed out in [6], the key
design issue for achieving scalability is to reduce the number
of exchanged messages, which might burden the system,
without, however, affecting the consistency of the virtual
environment. This section describes the issues that could be
addressed as well as the efforts and mechanisms that have been
developed for each of them.

Interest management: This issue is related to the notation
that users that participate in a virtual environment could only
be notified of changes and events in their area of interest, for
reducing the number of exchanged messages and for relieving
network resources. The interest management could be
divided, based on [7], into two methods according to the
fidelity of capability of message filtering: a) division of the
virtual space into regions and b) localization of the area of
interest of the participants. In the distributed version of EVE,
the interest management will be handled with a combination of
the above two solutions.

Communication Architecture: This issue is related to the
model adopted for the exchange of the messages among the
participating nodes. The models available are client/server,
which however fails for large-scale applications, the peer-to-
peer model, where each peer assumes all the responsibility of

message filtering and synchronization and the peer/server
model. In this case the communication among the participants
is achieved using multicast through peer connections, while the
server maintains the consistency [6]. In the distributed version
of EVE the communication architecture exploits the primitives
of the client-server architecture, with the main difference that
there is no server, in a physical sense, but instead there are
dedicated kernels, thread responsible for the exchanging of the
messages.

Data replication: This issue is related to the initial loading
and updates of the virtual environment. The most common
approach to this is the replication of the data to the client at the
beginning of a session and the continuous update of the
changes that take place during the session. However, an
important problem with this approach is the replication of
large-scale environments, especially at the beginning of the
session. In these cases the most common solution is to
replicate only the objects of interest for the user [6]. As
mentioned in [8], for the data replication there are two
techniques mainly used: a) the prioritized transfer of objects,
and b) a caching and prefetching techniques. In the distributed
version of EVE, the data replication is handled as follows: at
the initial transmission of the virtual environment, only the
area, including the objects, of interest for the user is
transmitted. Also, a streaming algorithm, with a level of detail

7

10

view is applied that allows the gradual transmission of data.
Thus, the user obtains a wider overview of the environment,
without large waiting times.

Concurrency control: This issue is related to the need for the
maintenance of the consistency of the users’ view within a
virtual environment. In particular, in multi-user environments,
where the number of users is large, which also increases the
probability of the interactions and consequently of the events
that need to be updated, it becomes clear that concurrency is a
major issue for the achievement and maintenance of realism.
As mentioned in [6], as communication delay increases, the
probability of conflicts between operations does as much. For
this reason the concurrency control is of vital importance for
the synchronization and the effectiveness of the application.
The concurrency control schemes have been broadly
categorized into pessimistic, optimistic and prediction scheme
[9]. The distributed version of EVE adopts the pessimistic
scheme for ensuring that the update messages will be delivered
in the order the actions were realized for maintaining the
consistency among the connected users’ views.

B. Heterogeneity

Another limitation that should be taken into account when
implementing a Distributed Virtual Environment is the
heterogeneity. To this direction, there are basically two
approaches commonly used by existing architectures. On the
one hand, for facing heterogeneity problems, the systems
either need to meet a minimum performance or all systems
have to reduce data transmitted so that the weakest of the
systems could support the load. Both solutions are somewhat
inadequate because the first prevents some users from joining
the CVE session, and the second would under-use resource
[4], [10].

VII. CONCLUSION-FUTURE WORK

Large-scale virtual environments are large both on the size
of the virtual space as well as on the number of the concurrent
users that aim to support. Traditional architectures, either
client-server or peer-to-peer, seem unable to support such
application. A solution to this comes from Distributed Virtual
Environments.

This paper discusses the migration of a networked virtual
environment, called EVE, which was based on client-multi
server architecture and aimed to support small-scale
applications to a distributed platform, which will be able to
support large-scale networked virtual environments. The
reasons that led to this migration and the problems that need to
be faced are presented. Since the platform we adopted was
based on client-server architecture, the first step to be taken
was to modify the model to a distributed one. The entities of
the distributed model, the operations they perform and tasks
they undertake as well as the communication among them are
described. In addition the papers describes briefly a
partitioning algorithm, which based on [15], takes additional
space-based parameters as input for improving the overall

performance of the partitioning.
Some preliminary results of the algorithm show that the

introduction of the objects in the algorithm plays an important
role on the initial assignment of the virtual world to the
available servers. Our future steps include extensive
experiments for monitoring the performance of the partitioning
algorithm in regard to the size of the virtual space and the
distribution both of the avatars and objects.

REFERENCES

[1] C. Bouras, E. Giannaka, A. Panagopoulos, T. Tsiatsos, "A Platform for
Virtual Collaboration Spaces and Educational Communities: The case
of EVE", Multimedia Systems Journal, Special Issue on Multimedia
System Technologies for Educational Tools, Springer Verlang, 2006, (to
appear)

[2] C. Bouras, E. Giannaka, “Performance Monitoring on Networked
Virtual Environments”, 5th International Conference on Internet
Computing(IC 04) Las Vegas, Nevada, USA, June 21 - 24 2004, pp.
302 - 308

[3] N. Pryce, “Group Management and Quality of Service Adaptation in
Distributed Virtual Environments”, 4th UK VR-SIG Conference, Brunel
University, Uxbridge, UK, November 1997

[4] J.C. Oliveira, N.D. Georganas, "VELVET: An Adaptive Hybrid
Architecture for VEry Large Virtual EnvironmenTs", Journal of
PRESENCE: Teleoperators and Virtual Environments (MIT Press), Vol.
12, Issue 6, pp. 555-580, December 2003

[5] Calvin, J., Dickens, A., Gaines, R., Metzger, P., Miller, D. and Owen,
D., “The SIMNET Virtual World Architecture”, IEEE VRAIS,
September 18-22 1993, Seattle, Washington

[6] D. Lee, M. Lim, and S. Han, “ATLAS – a scalable network framework
for distributed virtual environments”, ACM International Conference on
Collaborative Virtual Environments (CVE’02), pages 47–54,
September-October 2002

[7] Lim, M. and Lee, D., “Improving Scalability Using Sub-Regions in
Distributed Virtual Environments”, International Conference on
Artificial Reality and Telexistence, Tokyo, Japan, December 1999, 179-
184.

[8] Park, S., Lee, D., Lim, M. and Yu, C., “Scalable Data Management
Using User-Based Caching and Prefetching in Distributed Virtual
Environments” ACM Symposium on Virtual Reality Software and
Technology, Canada, November 2001, 221-226

[9] Yang, J. and Lee, D., “Scalable Prediction Based Concurrency Control
for Distributed Virtual Environments”, IEEE Virtual Reality 2000, New
Brunswick NJ USA, March 2000, 151-158

[10] Singhal S., Zyda M., “Networked Virtual Environments: Design and
Implementation”, ISBN 0-201-32557, ACM Press, 1999

[11] Greenhalgh, C., Purbrick, J., & Snowdon, D., “Inside MASSIVE-3:
Flexible support for data consistency and world structuring. ACM
Collaborative Virtual Environments”, 2000 (CVE 2000), 119–127

[12] Hook, D. J. V., Rak, S. J., & Calvin, J. O., “Approaches to relevance
filtering”, Proceedings of the 11th DIS Workshop on Standards for the
Interoperability of Distributed Simulation, 367–369

[13] Don McGregor, Andrzej Kapolka, Michael Zyda and Don Brutzman
“Requirements for Large-Scale Networked Virtual Environments,”
Proceedings of the 7th International Conference on Telecommunications
ConTel 2003, Zagreb, Croatia, 11-13 June 2003, pp. 353-358

[14] P. Morillo, J.M. Orduña, M. Fernández, J. Duato, “A Comparison Study
of Metaheuristic Techniques for Providing QoS to Avatars in DVE
Systems”, Lecture Notes in Computer Science, Volume 3044, Jan 2004,
pp. 661 – 670

[15] John C.S. Lui, M.F. Chan, “An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems”, IEEE Transactions on
Parallel and Distributed Systems, Volume 13, No. 1, Jan 2002

[16] P. Morillo, J.M. Orduna, J. Duato, “On the Characterization of
Distributed Virtual Environment Systems”, Proceedings of European
Conference on Parallel Processing (Euro-Par’2003), Klagenfurt, Austria.
August, 2003

