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Abstract—The majority of the systems and platforms developed 

for supporting Distributed Virtual Environments are based on the 
concept of distribution from the early beginning of their 
development. In this paper we present the migration to a 
distributed virtual environment from a traditional client-server 
architecture. In particular, this paper describes the case of EVE, 
a Networked Virtual Environment originally aimed to support 
small-scale applications. EVE started as a standard client-multi 
server architecture, which could support multiple concurrent 
virtual worlds with a maximum number of seventeen 
simultaneous participants in each of these worlds. However, the 
need to support larger-scale applications revealed that the 
traditional architecture, upon which EVE was based, is 
insufficient to meet the needs of these applications, which are 
large both in the sense of virtual space and graphics and in regard 
to the number of concurrent participants. This paper discusses 
the migration of EVE to a distributed platform, which will be 
able to support large-scale networked virtual environments. In 
particular, the paper describes the modifications realized in the 
architectural model of the initial platform for supporting 
effectively large-scale applications. The basic entities of the 
distributed model are presented, their operations, as well as the 
interconnection among them. In addition, the paper presents an 
initial approach of the algorithm that will be adopted for the 
efficient partitioning of the virtual world and the assignment of 
the clients to the entities and resources of the distributed 
platform. The approach presented is space-object driven, in the 
sense that both the actual size of the virtual space along with the 
number of objects with which the user can interact is taken into 
account during the partitioning.  
 

Index Terms—distributed virtual environments, distributed 
architectural model, partitioning problem 
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I. INTRODUCTION 

V IRTUAL Reality technology has been evolved from a 

newborn trend for the achievement of a high sense of realism 
to a technology that has been widely established and used for a 
variety of applications and areas. The first Networked Virtual 
Environments (NVEs) originally developed could support a 
limited number of users and were defined as Small-Scale 
NVEs. The maturation of the Internet, the familiarization of 
the users with this means of communication but mainly the 
improvement of this dynamic means led to the need for the 
formation of larger NVEs. In particular, the last few years, the 
research interest turns to the direction of NVEs that could 
support efficiently a tremendous number of concurrent users. 
However, the development of Large Scale Networked Virtual 
Environments introduced a series of problems, which are 
mainly related to the debility of the network to host and serve 
the demanding recourses that these applications require. In 
particular, these environments are accompanied by rich 
graphics for the representation of the provided information as 
well as a variety of provided services. These characteristics, in 
combination to the tremendous number of users that are called 
to support, result in the exponential increment of the resources 
needed for their smooth, natural and efficient operation. 

Traditional architectures and algorithms adopted for the 
development and support of, the so-called, small-scale Virtual 
Environments seem insufficient to be applied to environments 
with an importantly larger number of users [13]. In particular, 
small-scale approaches, from an architectural point of view, 
fall usually into one of the following architectures: a) client-
server architectures, and b) peer-to-peer architectures. Both 
approaches, when scaling into a larger number of users fail to 
support the virtual environment efficiently as either, the 
clients, the server, or both fail due to bandwidth deficiency. 

The increased research interest on Distributed Virtual 
Environments resulted in the development of a number of 
protocols and platforms. In the area of protocols for 
Distributed Virtual Environments, SIMNET (Simulator 
Network) [5] constitutes the very first effort to this direction. 
The protocols that followed were DIS (IEEE 1278) and the 
SIMNET DIS that were developed for overcoming the 
limitations that the former SIMNET protocol presented. 
NPSNET-IV [20] extends the original DIS architecture to 
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address many of these problems. Open Community (OC) is a 
proposal of a standard for multi-user enabling technologies. 
SPLINE is an OC compliant implementation that provides 
development APIs. MASSIVE-2 (model, architecture and 
system for spatial interaction in virtual environments) [11] is a 
prototype developed in 1997 and its major contribution is the 
introduction of the third-party objects, which allows a 
hierarchical dynamic space-based embodiment of multicast 
groups. SCORE was developed in 2000 and is based on the 
division of the world in cells as suggested by [12]. Finally, 
VELVET [4] is an adaptive hybrid architecture that allows a 
greater number of users to interact through a CVE. This is 
accomplished through an adaptive filtering scheme based on 
multicasting.  

This paper presents the transformation of a NVE called 
EVE, which was developed for supporting small-scale virtual 
environments to a flexible and scalable distributed platform. 
Platform EVE, as originally implemented, could be used for 
applications with a limited number of concurrent users. Such 
application was a virtual learning class, where students and 
tutors could collaborate using the services of the platform (as 
chat and audio) as well as interact both with the objects of the 
virtual world and with the other for facilitating the learning 
procedure. However, for applications with larger virtual 
worlds and a much more high number of concurrent users the 
client-server architecture was insufficient. Examples of such 
applications that require very large virtual worlds for their 
representation could be a virtual campus with different 
departments, different classes and offices per department and 
different number of users or a virtual city, where the users 
could navigate around the buildings and public services and 
interact with servants for realizing real-time transactions. The 
adaptation of the client-server version of EVE for the above 
examples would fail as the servers would be overloaded and 
would constitute a bottleneck point for the network. Thus, the 
challenges that arise for the transformation of the client-server 
architecture to a distributed one are mainly related to the 
effective partitioning of the virtual space as well as to the 
assignment of the objects and clients of the system to the 
servers available, so as to optimize the networking 
performance and maintain the consistency of the applications. 
To this direction, the paper describes the modifications 
realized in the architectural model of the initial platform for 
supporting effectively large-scale applications as well as the 
partitioning approach that will be adopted for the effective 
assignment of the workload to the available servers and 
entities of the platform.    

The paper is structured as follows: Section 2 presents 
shortly the architectural model of EVE platform. Section 3 
describes the main reasons that lead to the need of distribution.  
Section 4 introduces the implementation issues for the first 
steps realized for the transition of the platform. The Section 
that follows presents the concept of the partitioning algorithm 
that will be adopted for achieving and maintaining an 
optimized performance. Section 6 presents some further 

consideration that need to be taken into account for a 
distributed virtual environment application as well as the ways 
that the distributed version of EVE will handle these 
considerations. Finally, Section 7 concludes the paper and 
presents the planned next steps for the optimization of the 
platform.  

 

II.  PLATFORM EVE 

EVE’s architecture has been presented in a series of papers 
[1]. However for the facilitation of the reader, which might not 
be aware of EVE we shortly describe its architectural model. 

EVE is based on a client-multiserver platform model. This 
model offers scalability and flexibility to the EVE architecture, 
because we can add more application servers in order to offer 
more functionality and furthermore the processing load is 
distributed among the above set of servers. 

 
Fig. 1: EVE’s client-server architecture 

A. Server Side 

The servers on which the platform relies, is the message 
server and two application servers, a chat and an audio server. 
1) Message Server 

The message server is responsible for the manipulation of 
the virtual worlds that are visited by the users of the system. In 
addition, this server creates and supports the illusion to the 
users that they are participants in the above virtual worlds and 
that they share a common space by updating the view of the 
world every time that a shared object is modified. Two servers, 
each of which is used for a specific sequence of operations, 
constitute this message server. These servers are the 
Connection Server and the VRML server. 

Connection Server: this server maintains a database, which 
the system accesses in order to authenticate the user and allow 
him/her to enter the virtual space of EVE. In addition, the 
connection server reports every entry or departure that takes 
place in the platform to all other servers. 

VRML server: this server monitors and records every 
event that takes place in the virtual space and reports these 
changes to all participant clients of the platform. Thus, by 
performing these continuous updates the system assures that 
the users will have the illusion of sharing a common space. 
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The VMRL server also maintains constantly an updated copy 
of the world, which is sent to the clients when they enter the 
system. That way, the new users have the same updated view 
that the existing users already have. 

2) Application Servers 
The application servers are responsible for providing 

specific functionality to the participants of the virtual world. In 
the current form of EVE there are two application servers 
available, a chat server and an audio server. 

Chat Server: this server is responsible for the text chat 
support. It allows group chat, which means text chatting 
between multiple users, or whispering, which allows the one-
to-one communication between two users. 

Audio Server: this server is responsible for the audio 
communication between the users of the platform. The audio 
server uses Η.323 as its main protocol. 

B. Client Side 

As depicted in Fig. 1, in order the users’ clients to 
communicate with EVE’s servers and have access to the 
provided functionalities they need a web browser, a VRML 
browser, the main EVE client and the audio client. 

Web Browser: The web browser is used for the 
communication with the web server of the system, which 
provides an initial interface and entry point between the user’s 
client and EVE’s environment. 

VRML Browser: The 3D environment of EVE is 
implemented using the VRML language. Therefore, a VRML 
browser, a plug-in, is essential in order to allow the navigation 
of the user’s avatar in the virtual training space. 

Main Client: This client is responsible for (a) the primary 
connection of the user to the Message Server, (b) the 
interaction between the user’s avatar and the 3D virtual space 
and (c) the text chat communication between the users of the 
same virtual space. In particular, the main client, which is a 
java applet, makes an initial connection to the connection 
server, which allows it to present the current connection status 
and when the user is authenticated, it passes on to the vrml 
server. 

 

III. TOWARDS DISTRIBUTION 

Platform EVE was originally developed for supporting 
simultaneous small-scale multi-user virtual environments, with 
a small number of concurrent users (up to 17 for each virtual 
space).  On this version of the platform, which was based on 
the architecture described in the previous section, a 
performance monitoring was conducted for evaluating its 
networking performance. The simulations, experiments and 
results that were extracted have been presented in [2]. In short, 
the results indicated that the above-mentioned platform could 
efficiently support up to two concurrent virtual worlds. 
However, the platform indicated some limitations in the 
avatars’ movement within the virtual world, in the sense that a 
small percentage of positioning messages were lost. This was 

not an important limitation for the previous version of EVE, as 
the avatars’ movement within the virtual space was limited. 

The reasons that lead to the need for distribution fall into 
two directions. The first one arises from the need to make a 
platform of general use. This implies that the platform should 
be able to support different kind of applications as games, 
simulations, etc. In the case of the games and other similar 
applications, where the probability of the users’ movement 
within the virtual environment is high and based on the results 
extracted by the performance evaluation conducted, EVE 
would be unable to serve efficiently such types of applications. 

The second reason is the need for a platform that could 
support large-scale virtual environments. The essence of 
“large” refers both to the size of the virtual worlds as well as to 
the number of concurrent users that the platform can support. 
If we decided to adopt the initial platform for this purpose, and 
based on the fact that each server can efficiently support up to 
thirty concurrent users, it becomes clear that the case of 
thousand of users, where large-scale environments apply, 
would be completely infeasible, since the centralized 
components of the old architecture would not be able to handle 
a large amount of users, no matter what the underlying 
hardware is. 

 

IV. DISTRIBUTED ARCHITECTURAL MODEL 

Based on the fact that EVE started as a standard client-multi 
server architecture, the modification and redesign of the 
architectural model was the first step to be taken for the 
process and purpose of distribution. To this direction it 
became clear that the Message Server (Fig. 1), which was 
responsible for the critical processes of the EVE platform, 
could no longer exist with its traditional form. In the following 
paragraphs we describe the basic components on which the 
distributed version of our platform relies. 

A. Main Entities of the Distributed Model 

The main entities on which the distributed platform relies on 
could be divided in two main categories: the “Kernels”, which 
mainly handle the processes that take place within the virtual 
environment and the “Kernel Managers”, which are mainly 
related to managing the processes and distributing them over 
the available machines. 

B. Kernels 

With the term “kernel” we refer to threads, which are 
engaged with certain types of processes within the virtual 
environment. The distributed version of the platform is based 
on three types of kernels: a) the World Kernel, b) the User 
Cluster Kernel and finally c) the Parser Kernel. Each kernel is 
a process responsible for part of the book-keeping, processing 
or communication load related to a virtual environment. The 
operations and processes that each of these kernels manages 
are described in the subsections that follow. 
1) World Kernel 

The state of each virtual world is stored and maintained by 
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one or more World Kernels. The World Kernel is a process 
responsible for the maintenance of the state of the data 
representing a portion of the virtual environment. These data 
correspond to the current state of the virtual world and the 
World Kernel is responsible of handling all state changes 
related to the portion of the world that it handles, except for 
the changes of user state, which are handled by the appropriate 
user cluster. 

In particular, this thread implements a simple computation 
kernel to handle a single part of the virtual world. However, in 
the current version of the platform, this thread handles an 
entire world. In future versions of the platform world kernels 
will handle parts of the virtual space. Furthermore, the World 
Kernel stores locally the world data and allows for data/event 
input/output. The basic operations related to this thread are: a) 
load binary data into the database, b) send binary data 
describing the whole world, c) send binary data describing a 
single node, d) apply an event onto the data stored, e) clear the 
entire database and f) output update events. 

As mentioned above, this thread sends out the updates of 
this world to the clients, while spatial filtering of the outgoing 
events is also performed. 

 
Fig. 2: World Kernel Operations 

 
Clients, in this case, are the User Cluster Kernels, described 

in the following subsection, which serve the corresponding 
part of the world and are responsible for forwarding the events 
received by the World Kernel to the user clients connected to 
it. Also, spatial filtering can be applied to the outputted events, 
to significantly reduce the traffic generated by the World 
Kernel, so that each update is forwarded only to the User 
Cluster Kernels that lie in its area of effect. This way, better 
scalability is achieved, since the load on the World Kernel 
does not depend on the total number of users but only on the 
number of affected User Cluster Kernels. 
2) User Cluster Kernel 

For the manipulation of the users’ avatar movements within 

each virtual world “User Cluster Kernels” are introduced. 
Each User Cluster manages a group of users that participate in 
the virtual environment. Thus a virtual world may consist of 
many User Cluster Kernels. 

In particular, this kernel is responsible for the entire I/O 
process with the users connected to it. It handles user 
movement (without updating the database of the World 
Kernel) and all other events by forwarding these events to the 
World Kernel, if necessary, and receiving updates from the 
World Kernel that are forwarded to the users. 

User Cluster Kernels are arranged on a regular grid over the 
virtual world and each of them undertakes an area which it 
handles. At this point it should be mentioned that a User 
Cluster Kernel can also serve users that are outside its area of 
responsibility, but within some limited distance. 

 Due to the fact that the distribution aims to support large 
scale virtual environments, the platform selects a more 
effective way for handling the events that update the virtual 
environment.  In particular, when an event modifies the state 
of an object within the area of interest of a specific User 
Cluster Kernel, this message is not forwarded to all other 
existing User Cluster Kernels, as it would happen in the client-
server version of the platform. In particular, in the client-server 
architecture an event message would have to be sent to all 
participating users.  

 

 
Fig. 3: User Cluster Kernel Operations 

 
However, the distributed approach performs a two-layered 

filtering: The World Kernel will send the message only to the 
User Cluster Kernels it involves and the User Cluster Kernels 
will forward this message to the clients they handle. For 
example, in the case of a virtual environment with 1000 
concurrent users, the World Kernel would have to send 1000 
messages for these users. With the filtering adopted the World 
Kernel will only send two messages (if we assume that there 
are two User Cluster Kernels). If the User Cluster Kernels 
serve about 50 users, they will only forward this message to 
these 50 users. Thus the number of information exchanged is 
tremendously decreased. 
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3) Parser Kernel 
Each virtual world and all of the objects available in it are 

saved under a VRML/X3D file format. These files are stored 
on a server as well as on the platform’s database through a 
reference link. The distributed version of EVE generates a 
dedicated thread for manipulating these files. In particular, the 
concept of Parser Kernel is introduced, which constitutes a 
remote kernel dedicated to parsing VRML/X3D data, since 
this can be a very time-consuming task. 

The Parser Kernel parses the file containing the virtual 
environment along with the objects contained and sends the 
parsed data in binary form to the corresponding World 
Kernels, which will store them. So, the heavy task of parsing 
and preprocessing the VRML data is now moved away from 
the potentially heavily loaded World Kernel that handles the 
affected portion of the world. In fact, the remote kernel 
manager will chose the less loaded machine in the supporting 

network to send the parser process. 

C. Kernel Managers 

This section presents the Kernel Managers that the 
distributed version of EVE adopts for managing the processes 
of the platform. These processes are not created once and stay 
static but instead they are created and intercepted dynamically 
during the operation of the platform.  The platform adopts two 
kinds of kernel managers: (a) the Local Kernel Manager, 
which accepts and executes the commands from the Remote 
Kernel manager for the creation of new processes on the 
machine it handles and the stopping of other processes and (b) 
the Remote Kernel Manager, a nodal point of the architectural 
model, which is responsible for the distribution of all 
processes and makes the decisions during the operation. These 
Kernel Managers are described in the following subsections. 

 
Fig. 4: Distributed Scheme Entities and Interrelations 

 
1) Local Kernel Manager 

The entity of the Local Kernel Manager is used for 
spawning kernels locally on a single machine, controlling their 
execution and also keeping track of local resources and 
computational load for the given machine. In particular, a 
Local Kernel Manager runs in each of the machines that 
participate in a session and performs the necessary 
authentication that will allow to the World, Parser and User 
Cluster Kernels (or: any kernels) to be able to connect to the 

platform and perform their designated tasks on the world(s) 
they serve. When the authentication of the Local Kernel 
Manager is completed, this entity waits for instructions from 
the Remote Kernel Manager. Sole responsibility of the Local 
Kernel Manager, after the connection to the platform, is the 
starting and stopping of processes on the host machine, as 
designated by the commands received by the Remote Kernel 
Manager, while also providing the Remote Kernel Manager 
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with feedback regarding the computational load and available 
resources on this machine. This way, each local kernel 
manager acts as a client to the Remote Kernel Manager, which 
is responsible for the general coordination of kernels. 
2) Remote Kernel Manager 

The Remote Kernel Manager stands as the administration 
entity of the platform as it is responsible of controlling all 
processes that constitute the platform. In particular, the 
Remote Kernel Manager maintains the information necessary 
(ip address, port, type and state information) for all connected 
Local Kernel Managers (which represent participating servers) 
and all kernels currently executing. The Remote Kernel 
Manager can remotely spawn new processes on remote 
machines (by commanding the appropriate local kernel 

manager to do so), terminate processes remotely and reply to 
queries made by kernels, which try to find other kernels 
connected to the platform based on certain criteria such as type 
and world id. Furthermore, the Remote Kernel Manager acts as 
the coordinating entity for the whole platform. In particular, 
during a session, where users join the platform, new processes 
need to be created for balancing the workload. Similarly, when 
two processes can be merged (i.e. two User Cluster Kernels for 
which the number of clients is importantly reduced). The 
above decisions fall under the jurisdiction of the Remote 
Kernel Manager. This thread could either run on separate 
machine or in one of the machines that a Local Kernel 
Manager runs.  

 

 
  

Fig. 5: UML sequence diagram showing world initialization, user connection and updates 
 

D. Deployment Example 

We assume that we have two different machines, on which 
the platform will operate. Each of these machines runs a Local 
Kernel Manager, while in one of these machines, or even on a 
separate machine a Remote Kernel Manager maintains the 
information necessary for all connected Local Kernel 
Managers.  

When a Virtual World is to be loaded, the machine requests 
from the Remote Kernel Manager to start a World Kernel for 
this virtual world. The Remote Kernel Manager selects one of 
the available machines and sends a command to the 
corresponding Local Kernel Manager to spawn the 

corresponding process, sending at the same moment a series of 
information that are related to it, such as the name of the 
world. When this process is completed, we ask from the 
Remote Kernel Manager to run a Parser Kernel, which is 
supplied with the url where the world data reside (.wrl file) and 
the id of the world that shall be built by these data. 

The Parser Kernel parses the file and through the Remote 
Kernel Manager finds the corresponding World Kernel and 
sends it the binary data that were parsed. The World Kernel 
stores this data in the database. 

 With the same process we create a User Cluster Kernel by 
making a request to the Remote Kernel Manager. When the 
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User Cluster is running, users can enter the virtual world. Each 
client asks the Remote Kernel Manager to which User Cluster 
it should connect. The data during the loading of the virtual 
world are sent to the client directly from the World Kernel. 
 

V. PARTITIONING ALGORITHM 

As Distributed Virtual Environments tend to become a de-
facto solution for large-scale application a number of problems 
need to be taken into account for achieving an effective 
performance. One of these problems is the partitioning of the 
virtual space. To this direction both heuristic and on-heuristic 
approaches have been proposed [14]. At this point it should be 
mentioned that partitioning, as presented in [15] constitutes a 
NP-complete problem. Lui and Chan [15] have described the 
importance of finding a good assignment of the participating 
clients to the available servers for managing the workload and 
the communication cost and for achieving a better networking 
performance. This partitioning algorithm currently achieves 
the best results for DVEs [16].   

As the partitioning algorithm that EVE will adopt will be 
based on the approach of Lui and Chan, we will describe 
briefly the solution they proposed and we will then present the 
modifications that will be performed for improving the 
performance. 

The partitioning algorithm, as presented in [15] has three 
basic steps:  

(a) A Recursive Bisection Partitioning algorithm (RBP), 
which, based on the concept of divide and conquer, creates the 
initial partitions of the virtual world.  

(b) A Layering Partitioning algorithm, which, based on the 
computing workload reassigns the clients to the servers so as 
to reduce the overall cost. 

(c) A Communication Refinement Partitioning algorithm 
(CRP), which reassigns some clients to other partitions 
(servers) so as to reduce the server-to-server communication 
cost.  

 They also propose a quality function (denoted as Cp ), for 

evaluating each assignment of clients to servers. This quality 
function takes into account two parameters, a) the computing 
workload generated by clients in the DVE system, which 
should be shared among the available servers in regard to their 
computing resources and b) the overall inter-server 
communication requirements.   

The approach of the partitioning algorithm presented in this 
section takes into account some additional parameters, which 
can further improve the performance of the algorithm 
proposed in [15]. These parameters are the following:  
• Nob  =The number of active multi-user objects, which are 

the objects that the user can interact with. These active 
objects could either be (a) static, in the sense that cannot 
be transferred from one location to another and (b) 
moveable, which are the active objects that can be moved 
from one location of the virtual world to another.  

• Nst = The number of inactive objects, which are the 

objects that the user cannot interact with but are placed 
within the virtual environment.  

• ,iOs =The size of each multi-user object, where 

i =1,.., Nob . 
• ,iOns =The size of each inactive object, where 

i =1,.., Nst . 
• VS =The total size of the virtual space. 
• As =The average size of the participating avatars.  
• ),( ji oaL =The amount of information generated by the 

interaction of an avatar with an active object of the virtual 
world. 

• iSP =The available (free) space of a given partition iP  

Our approach is based on the observation that there is an 
upper limit on the number of clients that each virtual world 
can support, which is not related only to the available 
resources of the system but also to the actual space of this 
world. In particular, let us assume a server that handles one 

small virtual world with dimensions 22 × units and also 
comprises some objects. Let us also assume that we have a 
powerful system with enough computer resources to server 
up to 30 concurrent users.  If the average size of the avatars 

that participate in this virtual world is As  then the actual 
number of concurrent users that this space can support 
equals 

to AsOscOnscVSNA
Nob

i
i

Nst

i
i ÷+−= ∑∑

==

)))*()*(((max
00

, 

where c is a constant, which is related to the collision 
bound value set for the virtual environment. 
Based on the above, we extend the partitioning algorithm of 
Lui and Chan [15] for improving the general performance. 

A. Recursive Bisection Partitioning (RBP) Algorithm  

This algorithm creates the initial partitions of the virtual world 
and for each of the created partitions calculates their size 

1. Divide the virtual world into N  disjoint cells of area 
2D , where D  is the average diameter of the Area of 

Interest (AOI) of the avatars 
/* Create a graph for the virtual environment*/ 
2. For each cell i create a node and calculate: 

o the number of avatars that reside in this cell iNa  

o the number of active 
iNob and inactive 

iNst objects that reside in this cell  

o the  size of the active iOs and inactive 

iOns objects that reside in this cell  

o Calculate the free space of the cell iSP  

3. For neighboring cells create an edge 
4. Assign all cells into one server 
5. Based on the graph created reassign cells from one 

server to another so as to minimize the total 
communication cost among the servers 
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6. Select the partition with the largest cost and apply the 
algorithm again until all servers are assigned with a 
partition 

B.  Layering Partitioning (LP) Algorithm  

The main objective of this algorithm is to find a new 
partition based on the results of the Recursive Bisection 
Partitioning algorithm. The basic steps of this algorithm are 
the following:  

1. For all created partitions iP , where i=1,2,…,n check 

the available free space /* the free space is known from 
the RBP algorithm */ { 

2. If ( iP  has available free space) then { /* we start with 

the creation of a graph /* 

3. For each avatar ia and object io in partition iP  create 

a node iva (representing the avatar) and a node ivo  

(representing the object) 

4. { For each node iva  find all avatars ( jva ) and 

objects ( jvo ) within its AOI which reside in different 

partitions jP , )( ji ≠  /*these avatars are denoted as 

border avatars */ 
5. while ( 0_ >jvaNum or 0_ >jvoNum ) /*in case 

there are avatars or objects within the AOI of ia /* 

6. { create an edge ijea  between iva  and jva   

7. assign a weight to edge ijea , which equals to the 

communication cost ),( ji aaI  /* ),( ji aaI  represents 

the amount of information exchanged among avatar 

ia and ja  

8. create an edge ijeo  between iva  and jvo  

9. assign a weight to ijeo which equals to the interaction 

cost ),( ji oaL  

10. calculate the overall cost for iva : 

)),(),(( jijiva oaLaaIOC
i

+= ∑  } 

11. Find partition number for which: 
{ })),(),((max)),(),((cos jijijiji oaLaaIoaLaaItO +=+= ∑∑

 and assign a label with this partition number to iva  } 

12. For all other nodes in iP create edges between these 

nodes and the newly labeled border nodes /*these 
“other” nodes are the ones for which both 

0_ =jvaNum  and 0_ =jvoNum */ 

13. calculate the overall cost  
14. label them with the partition number which maximizes 

tO cos /*in this case the avatar and object nodes reside 
in the same partition*/ } 

15. calculate the total number ijmt of nodes that can be 

moved from iP  to jP  /*we refer to these nodes as 

candidate nodes*/ } 
16. else { /*this is the case that there is no available free 

space in partition iP , which means that the number of 

nodes that can be moved from other partitions to this 

node 0=jimt , for )( ji ≠ } 

17. We define ijt as the final number of the candidate 

nodes that can be moved from partition iP to jP . 

18. Based on the available space in partitions, estimate the 
maximum number of avatars that can be reassigned. 

19. For all the neighboring partitions try to 

minimize ∑
≤≠≤ nji

ijt
1

, where n  is the number of partitions 

(servers), trying to approach an ideal workload 
balanced situation of server i .  

C. Communication Refinement Partitioning (CRP) Algorithm  

The Communication Refinement Partitioning algorithm is 
applied for reducing the communication cost among the 
partitions produced by the Layering partitioning algorithm. 
The concept of this algorithm is very similar to that of the 
layering algorithm. In particular, the graph produced by the 
layering algorithm is used and the following steps are 
performed:  

1. For all border nodes iva  calculate the overall 

communication cost /*these are the nodes for which 

there is an edge connecting iva  to either an 

avatar jva or object node jvo in a different partition 

)( ji ≠ */ 

2. Compare the overall communication cost and label 

node iva  with the server number for which the 

maximum cost is achieved.  

3. Calculate the total number ijz  of nodes that can be 

reassigned from partition iP  

4. We define ijb as the final number of the candidate 

nodes that can be moved from partition iP  to jP . 

5. For all the neighboring partitions try to maximize 

∑
≤≠≤ nji

ijb
1

, where n  is the number of partitions 

(servers), keeping in mind that the number of nodes 
that are assigned to server i  equals the number of 
nodes withdrawn from this server, so as to maintain the 
workload balancing.  

VI. FURTHER CONSIDERATIONS 

As mentioned in [3], DVEs need to address more serious 
problems than the ones of single user virtual reality systems. 
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These problems are related, among others, to the control of 
network traffic, latency, and reliability. In addition, DVEs 
mainly aim at supporting Large-Scale applications. The term 
“large” refers both to the size of the virtual environment, 
including the size of the graphics, as well as to the number of 
concurrent participants.  These characteristics introduce a 
series of situations and problems that need to be solved for 
achieving sustainability and for optimizing the performance. 
The main considerations that need to be taken into account 
when designing and developing a DVE are: a) the scalability 
and b) the heterogeneity. In particular, regarding scalability, 
there is a certain limit on the number of users that each system 

can support. When the number of users exceeds this limit 
malfunctions might occur, which are related with the limited 
computing resources. Thus methods and mechanisms are 
needed for avoiding undesirable effects in the interactivity and 
rendering [3]. The other main consideration is the 
heterogeneity of equipment of the participants. For facing this 
problem, there are two solutions which either deploys the 
simulation based on the slowest and weakest system or setting 
up a minimum requirement and simply denying access to 
nonconforming systems [3],[4]. 
 

 
Fig. 6: 3D Space representation in a graph 

 

A. Scalability 

As mentioned above, scalability is one of the main 
considerations for a DVE. As pointed out in [6], the key 
design issue for achieving scalability is to reduce the number 
of exchanged messages, which might burden the system, 
without, however, affecting the consistency of the virtual 
environment. This section describes the issues that could be 
addressed as well as the efforts and mechanisms that have been 
developed for each of them. 

Interest management: This issue is related to the notation 
that users that participate in a virtual environment could only 
be notified of changes and events in their area of interest, for 
reducing the number of exchanged messages and for relieving 
network resources.  The interest management could be 
divided, based on [7], into two methods according to the 
fidelity of capability of message filtering: a) division of the 
virtual space into regions and b) localization of the area of 
interest of the participants. In the distributed version of EVE, 
the interest management will be handled with a combination of 
the above two solutions. 

Communication Architecture: This issue is related to the 
model adopted for the exchange of the messages among the 
participating nodes. The models available are client/server, 
which however fails for large-scale applications, the peer-to-
peer model, where each peer assumes all the responsibility of 

message filtering and synchronization and the peer/server 
model. In this case the communication among the participants 
is achieved using multicast through peer connections, while the 
server maintains the consistency [6]. In the distributed version 
of EVE the communication architecture exploits the primitives 
of the client-server architecture, with the main difference that 
there is no server, in a physical sense, but instead there are 
dedicated kernels, thread responsible for the exchanging of the 
messages. 

Data replication: This issue is related to the initial loading 
and updates of the virtual environment. The most common 
approach to this is the replication of the data to the client at the 
beginning of a session and the continuous update of the 
changes that take place during the session. However, an 
important problem with this approach is the replication of 
large-scale environments, especially at the beginning of the 
session. In these cases the most common solution is to 
replicate only the objects of interest for the user [6]. As 
mentioned in [8], for the data replication there are two 
techniques mainly used: a) the prioritized transfer of objects, 
and b) a caching and prefetching techniques. In the distributed 
version of EVE, the data replication is handled as follows: at 
the initial transmission of the virtual environment, only the 
area, including the objects, of interest for the user is 
transmitted. Also, a streaming algorithm, with a level of detail 
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view is applied that allows the gradual transmission of data. 
Thus, the user obtains a wider overview of the environment, 
without large waiting times. 

Concurrency control: This issue is related to the need for the 
maintenance of the consistency of the users’ view within a 
virtual environment. In particular, in multi-user environments, 
where the number of users is large, which also increases the 
probability of the interactions and consequently of the events 
that need to be updated, it becomes clear that concurrency is a 
major issue for the achievement and maintenance of realism. 
As mentioned in [6], as communication delay increases, the 
probability of conflicts between operations does as much. For 
this reason the concurrency control is of vital importance for 
the synchronization and the effectiveness of the application. 
The concurrency control schemes have been broadly 
categorized into pessimistic, optimistic and prediction scheme 
[9]. The distributed version of EVE adopts the pessimistic 
scheme for ensuring that the update messages will be delivered 
in the order the actions were realized for maintaining the 
consistency among the connected users’ views.  

B. Heterogeneity 

Another limitation that should be taken into account when 
implementing a Distributed Virtual Environment is the 
heterogeneity. To this direction, there are basically two 
approaches commonly used by existing architectures. On the 
one hand, for facing heterogeneity problems, the systems 
either need to meet a minimum performance or all systems 
have to reduce data transmitted so that the weakest of the 
systems could support the load. Both solutions are somewhat 
inadequate because the first prevents some users from joining 
the CVE session, and the second would under-use resource 
[4], [10].  

 

VII. CONCLUSION-FUTURE WORK 

Large-scale virtual environments are large both on the size 
of the virtual space as well as on the number of the concurrent 
users that aim to support. Traditional architectures, either 
client-server or peer-to-peer, seem unable to support such 
application. A solution to this comes from Distributed Virtual 
Environments.  

This paper discusses the migration of a networked virtual 
environment, called EVE, which was based on client-multi 
server architecture and aimed to support small-scale 
applications to a distributed platform, which will be able to 
support large-scale networked virtual environments. The 
reasons that led to this migration and the problems that need to 
be faced are presented. Since the platform we adopted was 
based on client-server architecture, the first step to be taken 
was to modify the model to a distributed one. The entities of 
the distributed model, the operations they perform and tasks 
they undertake as well as the communication among them are 
described. In addition the papers describes briefly a 
partitioning algorithm, which based on [15], takes additional 
space-based parameters as input for improving the overall 

performance of the partitioning.  
Some preliminary results of the algorithm show that the 

introduction of the objects in the algorithm plays an important 
role on the initial assignment of the virtual world to the 
available servers. Our future steps include extensive 
experiments for monitoring the performance of the partitioning 
algorithm in regard to the size of the virtual space and the 
distribution both of the avatars and objects.  
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