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Abstract. This paper studies Predictive Prefetching on a Web system that pro-
vides two levels of caching before information reaches the clients. We analyze
prefetching on a Wide Area Network with the above mentioned characteristics.
First, we provide a structured overview of predictive prefetching and show its
wide applicability to various computer systems. The WAN that we refer to is
the GRNET academic network in Greece. We rely on log files collected at the
network’s Transparent cache (primary caching point), located at GRNET’s edge
connection to the Internet. We present the parameters that are most important
for prefetching on GRNET’s architecture and provide preliminary results of an
experimental study, quantifying the benefits of prefetching on the WAN.

1   Introduction

Prefetching is a technique used to enhance several computer system functions [3, 4, 5,
6, 9, 11, 13]. It has been used to enhance operating systems, file systems and of
course Web based systems. It is always useful to be able to foresee a request in such
systems, in order to be able to service it before it is actually placed, since this would
boost system performance. Prefetching systems always run the risk of misusing or
even abusing system resources in order to execute their functions.

The ultimate goal of Web prefetching is to reduce what is called User Perceived
Latency(UPL) on the Web [1, 2, 7, 8, 12]. UPL is the delay that an end user (client)
actually experiences when requesting a Web resource. The reduction of UPL does not
imply the reduction of actual network latency or the reduction of network traffic. On
the contrary in most cases even when UPL is reduced, network traffic increases. The
basic effect of prefetching on a Web system is to “separate” the time when a resource
is actually requested by a client from the time that the client (user in general) chooses
to see the resource.
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2   Caching in the Wide Area

Local Area Networks (LANs) usually include several clients configured to use a sin-
gle Proxy/cache server, which in turn is connected and provides access to the Internet.
In this work we look at the case of several LANs inter-connected with the use of a
broadband backbone that provides access to the Internet through one main access
point. This is the case of the Greek Research Network, GRNET [10]. In the case of
the GRNET WAN we find 3 levels of caching. The first is the simple client browser
caching mechanism, the second is the LAN Proxy server caching mechanism and the
third is a Transparent caching mechanism implemented at the Athens edge router
node, where the WAN is connected to the Internet. The simplified Prefetching archi-
tecture (without network equipment such as switches, routers etc) that we will study
in this paper is presented in Figure 1. The Transparent cache initiates demand requests
to Web servers represented by normal directed lines but also prefetching requests rep-
resented by the dotted directed lines between the Transparent cache and the Internet.

3   The n Most Popular Approach

In the following sections we present the two approaches that we followed for pre-
fetching at the Transparent cache. First, we present the “Most popular” document ap-
proach and then the Prediction by Partial Matching (PPM) approach.
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Fig. 1. The Prefetching architecture used in this paper

3.1   Popularity Ranking

Page popularity ranking is a process of log data analysis used to determine pages that
are likely to be requested next. This process is applied for each user separately (in
case predictions are based on user log data only) and overall (in case predictions are
based on log data by all users). As mentioned in previous sections, user log data is
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separated into session files. Therefore, page popularity ranking is first carried out at a
session level. For any page in a user’s session, all instances of it in that session are
found and a popularity list is created, on the top of which exists the page that has been
requested most by the user in the current session. Adding up page popularity data
from all user sessions, we create a new popularity list that represents user’s navigation
habits in general (user-based page popularity ranking). In the same way, another page
ranking is performed, which takes data from all users into account (overall page
popularity ranking).

However, the basic process of log data analysis is that of finding for every web
page those requested more frequently after it. We look for pages that were accessed
within n accesses after a specified page. The parameter n is called lookahead window
size. We choose the lookahead window size to be equal to 5. Any page requested
within n accesses after a specified page was requested is considered to be a n-next
page of it. For every page in the log data we find the frequency of visits within the
lookahead window size, of all other pages found to be a n-next page to it.

Algorithm 1. Building the prediction model for the user-based “most popular” approach

Input: Prediction model constructed so far, user’s training log data
Output: Updated prediction model

For every request in user’s training log data:
Set user’s current request as active

For each user’s request within n requests after active:
If request not in active request’s n-next popularity list:

Insert request in active request’s n-next popularity list
Request popularity = 1

If request in active request’s n-next popularity list:
Request popularity++

Sort active request’s n-next popularity list by popularity

3.2   Decision Algorithm

In a simple form of the decision algorithm, prefetching is decided for any page sug-
gested by the prediction algorithm. We characterize this decision policy as an aggres-
sive prefetching policy. However, when available bandwidth is limited we need to re-
strict our model and perform prefetching only for those predicted pages that appear to
have a high chance of being requested. Those are the pages with high dependency to
the currently displayed page or pages whose content does not seem to change fre-
quently. This decision policy is called strict prefetching policy. The whole prediction
process for the case of the user-based prediction is shown in Algorithm 2.

Algorithm 2. Predicting a user’s next request given the prediction model, the current (last) re-
quest, the dependency threshold and the frequency of change threshold

Input: Prediction model, user’s current request, dependency threshold, frequency
of change threshold
Output: A set of predicted pages
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For every request in user’s simulation data:
Set user’s current request as active

For each of m most popular requests in active request’s n-next popularity
list:

Check request as prefetching candidate
If policy == aggressive:

Add request in set of predicted pages
If (policy == strict) && (size > average size):

If (dependency > dependency threshold) && (frequency of change <
frequency of change threshold):

Add request in set of predicted pages

4   The Prediction by Partial Matching Approach

Prediction by Partial Matching (PPM) is a context modeling algorithm which keeps
track of the occurrence of events and their sequence. It then provides (and always
keeps track of) a probability for the occurrence of the next event based on previous
event occurrence and sequence. In our case an event is a request to a URL. We keep
track of the URLs being requested by users (through traces) and build an m context
trie, representing their occurrence and their sequence. Next, we describe all algo-
rithms used to evaluate prefetching at the Transparent cache with the use of PPM as
the prefetcher. It is not in the scope of this work to elaborate on PPM due to space
limitations. The procedure we follow can be found in [14].

The algorithms used to evaluate PPM at the Transparent cache are presented next.

Algorithm 3. Building prediction model from users’ access patterns (training process)

Input: Structure representing prediction model of order m constructed so far,
user’s training log data
Output: Updated prediction model

Current context [0] = root node of structure
For every request in user’s training log data:

For length m down to 0:
If request not appearing as child node of current context [length] in struc-
ture:

Add child node for request to current context [length]
request occurrence = 1
current context [length+1] = node of request

if request appearing as child node of current context [length] in structure:
request occurrence ++
current context [length+1] = node of request

current context [0] = root node of structure
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Algorithm 4. Prediction Process (predicting user’s next request given the prediction model, the
previous requests and  the confidence threshold for each order of model)

Input: Structure representing prediction model of order m, previous k requests,
confidence threshold for each order of  prediction model
Output: A set of predicted pages

For length 1 to k:
Current context [length] = node representing access sequence of previous
length requests

For length k down to 1:
For each child node of current context [length]:

If (request occurrence for child node / request occurrence for parent) >=
confidence threshold for order length:

Add request of child node in set of predicted pages
Remove duplicates from set of predicted pages

5   Experimental Study

In order to evaluate the performance benefits of the two prefetching schemes intro-
duced in the previous paragraphs, we use trace-driven simulation. As mentioned ac-
cess logs of GRNET Transparent cache are used to drive the simulations. The results
presented in this paper are based on logs of web page requests recorded over a 7-day
period. In each execution, simulation is driven on requests of a different group of us-
ers. In all experiments, 80% of the log data is used for training (training data) and
20% for testing (testing data) to evaluate predictions. Furthermore, all traces are pre-
processed, following the five filtering steps described in a previous section.

The basic performance metrics used in our experimental study are Prefetching Hit
Ratio, Usefulness of Predictions and Network Traffic Increase.

The three evaluation metrics mentioned above are used for both the “Most popu-
lar” approach and the PPM approach. However, two additional metrics are used to
evaluate the performance of the “Most popular” prefetching model. These are Aver-
age Rank and “Most popular” prefetch effectiveness.

5.1   Most Popular Approach Evaluation

If user-based prediction is performed and all pages suggested by the prediction algo-
rithm are prefetched, the prefetching hit ratio appears to be equal to 48%, for pre-
fetching window size equal to 5. Usability of predictions is equal to 27,5% and traffic
increase per request is found to be 6%. Moreover, the average rank of successfully
prefetched documents is 2 and the prefetch effectiveness equals 52%. If we use n-next
popularity data obtained from the general population in our predictions, instead of
user log data, prefetch effectiveness is a bit higher (54%). However, this requires an
18% traffic increase. This is expected, since in the case of overall prediction there is
greater availability of n-next popularity data. Therefore, prefetching is performed for
more requests and more documents are prefetched. As a result, the cost in bandwidth
is greater, but prefetch effectiveness is higher. If traffic increase is limited to 8%, then
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prefetch effectiveness will be equal to 50%. It is clear that for the same traffic in-
crease the performance results of user-based prediction are better than those of overall
prediction since user data implies more accurately the user’s future web behavior.

It is obvious that a small value of the prefetching window size provides better ac-
curacy of predictions. Actually, the less documents a client is allowed to prefetch, the
higher its prefetching hit ratio will be, as only highly probable objects are going to be
prefetched. Practicing simulation for a prefetching window size equal to 3 and user-
based prediction, we experience a significant increase of hit ratio (58%) compared to
the case of a prefetching window size equal to 5 (48%). In addition, less bandwidth is
required to apply the prefetching method (4% traffic increase). However, usability of
predictions is lower (25%) compared to the case of a prefetching window size equal
to 5 (27,5%), as less prefetching actions are performed. The results of overall predic-
tion for m equal to 3 are similar to those taken for m equal to 5.

Generally, results of applying prefetching are good when: (i) a lot of prefetching is
being done and (ii) prefetching is successful. In the first case, substantial traffic in-
crease is required. Therefore, if we want to keep bandwidth cost low, we need to im-
prove the prediction ability of our prefetching model. This can be done either by im-
proving the prediction algorithm, so as to increase its accuracy of predictions, or by
applying prefetching only for those cases that predictions seem to be secure. Since no
prediction process can ensure success, we try prefetching those documents that appear
as prefetching candidates and have good chances of being requested. A web page has
a greater chance of being requested next, if its dependency to the currently displayed
page is high. Furthermore, we need to avoid prefetching for pages that change regu-
larly. Therefore, security thresholds are used. In our experiments, if a document has a
greater size than the average, it is prefetched only if its dependency is greater than 0.5
and its frequency of change is not greater than 0.5. In this case, the prefetching win-
dow size refers to the maximum number of prefetched pages.

For user-based prediction and a prefetching window size equal to 5, the prefetch
effectiveness of a strict policy is almost as high as that of the aggressive policy (51%),
while traffic increase is limited to 4%. It is clear that by using such a policy we man-
age high performance with lower cost in bandwidth, as the number of prefetched ob-
jects is limited. Actually, comparing these results (m = 5) to those of the aggressive
policy (m = 5 and m = 3), we see that we experience prefetch effectiveness almost
equal to that of the aggressive algorithm for m = 5, but with traffic increase equal to
that of the m = 3 case. Moreover, hit ratio is higher (51%) for the same prefetching
window size, with little cost in usefulness of predictions. Table 1 shows results taken
for all three cases of user-based prediction. Figure 5 compares performance results of
user-based and overall prefetching.

Table 1. Performance results for user-based “most popular” prediction

Hit
Ratio

Usefulness
of

predictions

Prefetch
Effec-

tiveness

Network
Traffic

Increase

Average
Rank

Aggressive policy, m = 5 48% 27,5% 52% 6% 2
Aggressive policy, m = 3 58% 25% 42% 4% 1
Strict policy, m =5 51% 27% 51% 4% 2
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Fig. 2. Comparison of user-based and overall prediction scenarios for all policies (graphs
should be read in pairs of bar charts)

5.2   Prediction by Partial Matching Approach Evaluation

Large values of confidence cause fewer predictions to be made, thus, reducing the
network traffic. Additionally, the accuracy of predictions increases since only the
highly probable pages are prefetched. However, the usefulness of predictions de-
creases due to the limited number of prefetched pages.

Figure 6 shows that for values of confidence between 0 and 0.3 any slight increase
in the confidence’s value results in significant increase of the hit ratio with less sig-
nificant cost in the usefulness of predictions. Additionally, values greater than 0.7
have the opposite effect on performance parameters. Therefore, values of confidence
between 0.3 and 0.7 are preferable as they provide better performance results.

If higher order contexts are trusted more than low order contexts and are assigned a
smaller confidence, we have the case of weighted confidence. Figure 7 compares the
cases of constant and weighted confidence. The horizontal lines represent the per-
formance of the algorithm with weighted confidence which takes the values of 0.8 to
0.6 (reducing in steps of 0.1) for orders 1 to 3. This algorithm is compared with three
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others that use constant confidence from 0.6 up to 0.8. Diagrams show that weighted
confidence performs above the average of the three constant-confidence algorithms.
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Fig. 3. Varying confidence. Effect on performance of PPM approach

5.3   Comparing “Most Popular” and PPM Performance

Figure 9 shows that in any case the PPM approach has significantly better accuracy of
predictions and less traffic increase than the “Most popular” approach. On the other
hand, the “Most popular” algorithm has higher usefulness of predictions. It is neces-
sary to mention here that the complexity of the “most popular” case is much less than
that of the PPM case, since a simple algorithm, with no special operational or storage
requirements, is used for the construction of the “n-next most popular” prediction
model.
   It is obvious that the performance of the Prediction by Partial Matching approach on
any of the specified metrics varies depending on the values of the parameters. If an
aggressive policy that allows many pages to be predicted is used, usefulness of pre-
dictions will be high, causing, however, high network overhead and low hit ratio. On
the other hand, a strict policy will result in accurate predictions and reduced traffic in-
crease but its coverage will be limited. Two such cases are shown in Table 2. The
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Fig. 4. Comparing constant and weighted confidence

first predicts almost a quarter of the total number of requests with hit ratio equal to
73%. The second one has higher accuracy (85%) but usefulness shrinks to 18,25%.

To have a clearer picture of performance differences of the two prefetching ap-
proaches we try to find proportional cases of them. For the case of the “Most popular”
aggressive policy with prefetching window size equal to 5 we choose the case of PPM
with previous requests equal to 1 and confidence equal to 0. We choose these values
for the PPM parameters as the “Most popular” case uses also one previous request in
predictions (the last request) and has no confidence limitations applied. For the case
of the “Most popular” strict policy with a prefetching window size equal to 5, we
choose the case of PPM with previous requests equal to 1 and confidence equal to 0.5.
These values of PPM parameters are selected since the strict “Most popular” case uses
only the last request in predictions and the threshold of the decision algorithm is also
equal to 0.5. Figure 10 shows results taken for comparing these proportional cases.

All results studied in the above paragraphs clearly show that the application of pre-
fetching in the Wide Area can be quite beneficial. Even with the use of a simple pre-
diction algorithm, as the “n-next most popular” algorithm proposed in this paper, the
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accuracy of predictions can reach 58% (case of aggressive, user-based policy with
prefetching window size equal to 3) with an insignificant for a WAN increase of net-
work traffic equal to 4%. If a more complex algorithm is used, which is a variation
ofthe Prediction by Partial Matching algorithm in this paper, we show that a high
fraction of user requests (18,25%–23%) can be predicted with an accuracy of 73%–
85%, while bandwidth overhead added is not higher than 2%. In fact, performance re-
sults are better, if we take into account that many of the prefetched requests will be
used by more than a single end user, as prefetching in that case is performed for ICP
requests made by Proxy servers.

Table 2. Efficiency of PPM approach

Hit
Ratio

Usefulness
of

predictions

Network
Traffic

Increase
Aggressive policy, previous requests = 1,
confidence = 0,2-0,3

73% 23% 2%

Strict policy, previous requests = 4,
confidence = 0,7-0,9

85% 18,25% < 0,5%
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6   Future Work and Conclusions

In order to evaluate prefetching on the edge connection of a WAN to the Internet we
use the GRNET WAN edge connection to the Internet, which is a Transparent cache.
We first study the system and present its characteristics. After employing two differ-
ent algorithms for prefetching, a “n Most Popular” approach and a PPM approach, we
find that prefetching can be potentially beneficial to the GRNET WAN. Of course
many further issues must be explored, before deploying prefetching on the edge of
GRNET. Preliminary results provide a clear indication that UPL would be signifi-
cantly reduced in GRNET if a version of prefetching was performed at the Transpar-
ent cache.
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