
J.X. Yu, X. Lin, H. Lu, and Y. Zhang (Eds.): APWeb 2004, LNCS 3007, pp. 744–754, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Web Page Fragmentation and Content Manipulation for
Constructing Personalized Portals

Ioannis Misedakis, Vaggelis Kapoulas, and Christos Bouras

Research Academic Computer Technology Institute, Riga Feraiou 61, 26221 Patras, Greece
and

Computer Engineering and Informatics Department, University of Patras, 26500 Rion,
Patras, Greece

{misedaki, kapoulas, bouras}@cti.gr

Abstract. This paper presents a web page fragmentation technique, which is
utilized for extracting specific parts of web pages and building personalized
portals using these fragments. It is based on an algorithm, which fragments a
web page in discrete fragments using the page’s internal structure. A training
and update procedure is used for identifying the specific fragments of a web
page in different time points. Using this technique a service provider can offer
Web users a system for building personalized pages based on the content of
their favorite sites. This technique, besides providing a convenient way for
browsing, saves time and reduces the cost of browsing in different sites.

1 Introduction

Most web pages have a presentational structure that rarely changes, even if their con-
tent changes very often. In this structure there are areas that their content is of com-
mon thematic. We call these areas ‘Web Components’ or ‘Web Fragments’. Web us-
ers usually show interest for only few of the thematic areas of their favorite web sites.
For example, some users visit only the sports section, while others prefer to view
news about politics and economy. The technique that is presented in this paper could
be used for building ‘personal pages’ containing specific thematic areas (‘Web Com-
ponents’) from the users’ favorite sites. A software tool (working centrally as a data
source for the web server of the service) analyzes web pages and fragments them in
the thematic areas (Web Components) of which they are composed. Web Components
(denoted WCs in the rest of the paper) are extracted from a web page by parsing the
HTML code of this web page, identifying the part of the code that belongs to the par-
ticular WC and retrieving this code as an independent entity.

 The concept of ‘Web Components’ (WC) was introduced in [1]. A ‘Web surfing
assistant’, which utilizes a similar fragmentation technique for splitting a web page in
semantic regions, is presented in [2]. The work presented in [3] and [4] investigates
fragmentation’s impact on Web performance. Fragmentation of web pages and ma-
nipulation (transcoding) of the fragments has been applied also in numerous systems
that offer WWW services to handheld devices, such as PDAs and mobile phones ([5-
7] amongst others).

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Web Page Fragmentation and Content Manipulation 745

2 Fragmentation Algorithm

HTML tags inside HTML files are nested, which means that the code of a web page
can be represented as a tree (HTML tree or Tag tree). Extracting the Web Compo-
nents (WCs) of web pages could be done by identifying and extracting some particu-
lar nodes of this tree. The fragmentation algorithm, which fragments a web page in
WCs, must be able to recognize the nodes of the HTML tree that represent WCs.
Most web pages use TABLE tags for their layout presentation, which lead to the deci-
sion to use the nested table structure of a web page for its fragmentation. By ignoring
all the nodes of the HTML tree except the TABLE nodes, it is reduced significantly in
complexity and depth. The algorithm uses this reduced tree to make the calculations
for the fragmentation of the page and afterwards it can retrieve the actual content of
each component by following links to the original HTML tree. The reduced trees (in-
dex trees) for two popular web sites are shown in Figure 1. Each circle marked with
bold border represents a table that was chosen as a Web Component.

Fig. 1. Index trees for two popular web pages.

The fragmentation algorithm is used for the web pages’ analysis and fragmenta-
tion, which includes two phases: training and update. Both in the training phase and
the update phase, a software mechanism downloads the web page, parses it and frag-
ments it into web components. The steps of the fragmentation algorithm are presented
in the procedure below:

Fragmentation Algorithm
Note: Steps 1-4 are used both in the ‘Training’ and the ‘Update’ phase.
1) Fetch the latest instance of the web page from its respective URL
2) Parse the web page and construct the HTML tree
3) Analyze the HTML tree and produce the index tree
4) Analyze the index tree and calculate which nodes must be marked as Web compo-

nents
Note: Steps 5 and 6 are used only in the ‘Update’ phase.
5) Check if there are differences in the structure of the index tree from the index tree

of the ‘training’ phase or if there are differences in the number of the web compo-
nents selected. In case there are differences, recalculate the web components.

6) Extract the Web Components from the HTML tree and store them.

Step 1 is fairly simple. The fragmentation algorithm requests the html file of the
web page from the respective URL and downloads it locally.

746 I. Misedakis, V. Kapoulas, and C. Bouras

An HTML parser was built for the needs of step 2. It takes as input the text of the
HTML file and constructs the HTML tree. In this structure all the necessary informa-
tion for reconstructing the HTML file in its initial form are stored.

Step 3 of the fragmentation algorithm takes as input the HTML tree and constructs
the reduced tree, which is used in step 4 for recognizing the Web Components of the
page. It is used also as an index for the HTML tree and therefore it is named ‘index
tree’. The algorithm starts from the root of the HTML tree and recursively traverses
the whole tree. For every TABLE node that it meets, it adds a new node in the index
tree. The ID of each node is the path from the root of the index tree to this node. Each
child of a node has a number indicating its position relative to the other children.
Starting from the root and combining these numbers we get the path and the ID of
each node. Each node in the index tree has a link to its corresponding node in the
HTML tree and also stores some additional information about the node, including the
size of the text of this node (with and without the tags), the ID of the node, the num-
ber of images and finally the number of links contained in it.

In step 4, the fragmentation algorithm uses the index tree in order to decide how
the web page will be fragmented. It recursively traverses the index tree trying to find
nodes that match some particular criteria. When a node, which meets those criteria, is
found, the algorithm stops traversing its children and the node is marked as a WC.
This means that the whole sub-tree beneath this node is considered as a single entity
that can be used by the users of the service for building their site. The children of this
node are part of the WC and cannot be used standalone, since the algorithm has de-
cided that their content is of minor importance (or too small) in order to be used as a
WC. We have to note here that a node in the index tree that has been selected as a WC
cannot be used directly to get the actual content of the WC. In order to achieve this, a
link must be followed from the node in the index tree to its respective node in the
HTML tree and from there the HTML code of the WC can be acquired in text format.

The criteria that are used for deciding if a node of the index tree (i.e. a part of the
HTML file) is suitable for being used as a WC are related to the size of the content of
this node and its internal structure (i.e. the number of children and descendants of this
node). In its current form, the algorithm calculates the ‘size of the content’ of a node
by calculating the length of the pure text (i.e. without the tags) that is found inside the
node (future plans include to use the area occupied by the component in the web page
instead of the length of the text). If node p meets the following criterion then it is
marked as a Web Component without even examining its internal structure:

AverageRatio ≤ Ratiop ≤ 2*AverageRatio (1)

 1 ≤ Ratiop * (Number of Content Nodes)≤ 2 (2)

node root the of Length Text Pure

p node the in Length Text Pure
Ratiop =

(3)

Nodes Content of Number

1
 ioAverageRat =

(4)

Relation 1 (or its equivalent relation 2) expresses the intuitive criterion that a Web
Component must be ‘medium’-sized, in comparison with the whole page size. Ratiop

Web Page Fragmentation and Content Manipulation 747

is calculated by dividing the pure text length included in node p by the text length of
the entire page, giving the percentage of the node’s content to the content of the
whole page. This expresses the relative size of the Web component (regarding the size
of the whole page). AverageRatio is the percentage of the text of the whole page that
a node would have if all nodes that contain content were equally sized. This metric is
used as a base for an approximation of a ‘medium-sized’ component. It is calculated
as the inverse of the number of the content nodes of the index tree. If the size of the
content (text) of a node is greater than the average size (i.e. the AverageRatio) or
smaller than the double of the average size, then the node is considered ‘medium-
sized’ and is selected as a WC.

Relation 2 could be rewritten in a more abstract form as:

l ≤ Ratiop * (Number of Content Nodes)≤ u (5)

where 0≤ l≤ u≤ umax = (Number of Content Nodes)
The values of l and u express the lower and upper bound for the length of a node’s
text in order to be considered ‘medium-sized’ (see figure 2). Relation 5 means that if

a node’s text length is greater or equal than
maxu

l
 and smaller or equal than

maxu

u

of the whole page text length, then this node is considered ‘medium-sized’ and is se-
lected as a Web Component. By substituting l=1 and u=2 in (5) we get the criterion
expressed in (2). The values of l=1 and u=2 were arbitrarily chosen, since they re-
sulted in good fragmentation of web pages. In case we had set a value for l that was
smaller than 1, then the algorithm would select nodes with text length smaller than the
text length of the average node, which is already small. We chose u=2 after experi-
menting with several web sites and examining the fragmentation’s results. However,
future work plans include further testing with more web sites in order to find the
‘ideal’ values for the constants l and u. It has to be noticed here, that the ideal values
will not be the same for each web site, since they solely depend on the web pages’
structure and content.

Medium-sized
nodes

l u umax 0

Fig. 2. Definition of ‘medium-sized’ nodes.

The other major criterion for fragmenting a web page is based only on the structure
of the index tree. The areas that intuitively are perceived as Web Components are
usually composed of more then one TABLE tags, one of which contains the main
body of the Component’s content, while the others are layout tags or tags with insig-
nificant amount of content. So, when the fragmentation algorithm finds out one node
of the index tree that contains less than four children and less than five (in total) de-
scendants (not including layout nodes) it selects this node as a Web Component. This
criterion helps ‘refine’ the results of the criterion that is based on the content’s size.

748 I. Misedakis, V. Kapoulas, and C. Bouras

Finally, if the fragmentation algorithm reaches a leaf node, it selects it as a WC,
because it cannot be furthered analyzed. This can lead to selection of nodes as WCs
that have very small content. But it was included, because we do not want to have
content loss. Future work plans include the improvement of the fragmentation algo-
rithm by adding the possibility to create WCs by merging neighboring nodes.

When the fragmentation algorithm finishes the traversal of the index tree, it makes
some last refinements of the Web Components selections. More specifically, if it
finds a Web component that is the single child of its father it selects the father as a
component. This is done because probably the father of the previously selected com-
ponent is a layout table tag or contains some content that is related to its child node
(such as the title or author of an article).

The algorithm includes two more steps, which are used only in the update phase
and will be described in its respective section.

3 Construction of Personal Pages Based on Web Components

The technique for constructing ‘personal pages’ based on WCs is presented in this
section. Three steps are required: Web pages’ analysis and fragmentation, WCs selec-
tion (by the user) and personalized page synthesis for presentation to the user.

3.1 Web Pages’ Analysis and Fragmentation

Web pages’ analysis and fragmentation is performed in two phases. The first is the
training phase, where each web page is analyzed for a period of time. The training al-
gorithm parses the web page many times, fragments it and stores some data from
every parsing. When enough data have been gathered, the algorithm analyses them
and calculates which areas of the page will be extracted as Web Components and also
assigns a unique identifier (signature) for each one of them. The update phase begins
when the training has been completed. This procedure fragments the web page and
updates the latest instances of the Web Components that have been stored. The train-
ing and update procedures are described more thoroughly in [8].

3.1.1 Training Phase
The goal of the training phase is to provide knowledge about how to fragment a web
page in Web Components. During the training phase a web page is parsed many times
and its various instances are analyzed. Its outcome is a unique identifier for the WCs
that are contained in the page. These identifiers (signatures) are based on the content
and the relative position of the WCs and are stored in the page index. The signatures
of WCs are utilized in the update phase, in cases where the fragmentation algorithm
detects different number of WCs or the page structure has differences than the usual.
We assume that changes like that do not happen during the training period.

Many factors could be used for distinguishing a WC from the rest: Its ID inside the
index tree, its relative position to the other WCs, its content, its content size and oth-
ers. However, finding a criterion to uniquely identify a WC from the others in all the
page instances is a difficult task. This is done by the training procedure.

Web Page Fragmentation and Content Manipulation 749

Before continuing, one important fact must be mentioned about the content of the
WCs. They can be classified in three categories, based on the changes of their con-
tent: There are some components for which the content never changes (for example an
area with links to categories of news), there are some others for which the entire con-
tent changes (for example an area with news headlines) and there is a third category
of components for which some part of the content changes, while another part re-
mains constant (for example an area with news headlines that has in the top a ‘NEWS
HEADLINES’ title). The training phase uses the constant part of the components
content for the first and third categories in order to assign a unique identifier for them,
while it uses the relative position and the content size of the components for the sec-
ond category.

The training phase for a web page can be split in four sub-phases:

1. Data gathering phase
2. Comparison of Content Vectors of instances of the same Web Component and ex-

traction of a single Constant Content Vector (CCV) for each Web Component
3. Comparison of the CCVs of all the Web Components of the web page and extrac-

tion of the Identifier Content Vector (ICV) of each Web Component.
4. Assignment of a signature for each web component of the page.

During the data gathering phase, the fragmentation algorithm is activated in fixed
intervals of time and the index tree for the specific page instance in that point of time
is stored. The page that is analyzed is monitored for a given period during which all
the updates that usually happen in it have been performed. For news portals this pe-
riod is usually 24 hours. In this monitoring period k specimens of the index tree are

collected, where 







=

Interval Sampling

Period Monitoring
k .

When the monitoring period has been completed, the content (text and images) that
stayed constant is detected. The content of each WC, i.e. every word of the text inside
it and the filenames of the images contained in it, is stored in a data structure named
‘Content Vector’ (CV). This structure is a characteristic of each Web Component in-
stance (This means that the CVs can be different for different instances of the same
WC). Using the ID of each WC, the training algorithm acquires this WC’s instances
and its CVs from the collection of the index trees. Following this, it compares the k
CVs of each WC and keeps only the content that exists in ALL the CVs. This is
stored in a vector named ‘Constant Content Vector’ (CCV) and is a characteristic of a
WC independently of its instances in different time points.

The CCV of a WC is derived taking into account only the content of this specific
WC. The goal of the training procedure is to produce unique identifiers for all the
WCs of a Web page. Therefore, the CCVs of all the WCs are compared mutually (in
step 3) and the text or images that exist in all the CCVs are removed. If the content of
a CCV is contained completely inside the content of another CCV, then the first Web
Component is marked as weak. This means that its CCV cannot uniquely identify it.
In the end of step 3 of the training procedure, each Web component has a reduced
CCV that uniquely identifies it in the Web Page, with the exception of WCs that are
marked as weak or have CCVs that are empty. The reduced CCVs produced in this
step of the training procedure are named ‘Identifier Content Vectors’ (ICVs).

750 I. Misedakis, V. Kapoulas, and C. Bouras

Step 4 is the final phase of the training procedure. The ICVs of the WCs are as-
signed as their signatures in this step. The WCs that have an empty or weak ICV are
assigned another kind of data structure as a signature, which is based in their relative
position in the web page and their content size. The training phase produces at the end
the page index, which is a matrix containing the ID and the signature of each WC of
the page.

3.1.2 Update Phase
The update phase has many similarities with the training phase. It continuously
fetches the web page, parses it and calculates (using the fragmentation algorithm) the
web components of the web page. Following this, it stores the latest instances of the
web components in the Web Server of the system, in order to be used by the users for
their personalized portals’ creation.

The fragmentation algorithm produces in step 4 the index tree of the web page in-
stance that was fetched and marks some nodes as WCs. We assumed that during the
training phase no changes happen in the page structure or in the number of the de-
tected WCs. But generally, changes may appear during the update phase. In this case
the fragmentation algorithm has to by-pass the problems caused by the changes. Step
5 of the fragmentation algorithm uses the index tree and the page index for detecting
if changes appeared. This check is done by checking for differences in the ID fields
between the page index of the latest page instance and the page index that was pro-
duced in the training procedure (the page index of page instances contains the Web
Components’ CV in the placeholder of the signature, since the signature is a charac-
teristic of all the instances of a WC and a CV is a characteristic of each single in-
stance). If no changes appear, the fragmentation algorithm continues with step 6. Oth-
erwise, a special ‘fragmentation correction algorithm’ is triggered, which is presented
below. It is the most complex algorithm implemented for the functioning of the sys-
tem, since many situations may lead to triggering it.

Fragmentation Correction Algorithm
(1)If (WCcount in the page index from training== WCcount in the instance
page index){

Compare the signatures contained in the page index with the Content
Vectors contained in the instance page index*/
(2)If (signatures match) {

Mark for extraction the Web components based on their signatures
 }
(2) else {

Extract all the Web components that their CVs match with signa-
tures in the page index. Extract all the rest WCs based on their
order of appearance in the page index.

}(2)
}(1)
(1)else {

 (3)If (index tree structure from training matches with the instance
index tree) {

Extract (or mark for extraction) the WCs based on their IDs
}(3)
(3) else {

Counter++;
(4)If (Counter<4){
 (5)If (WCcount in the instance > WCcount from training){

Web Page Fragmentation and Content Manipulation 751

Increase the u parameter of the fragmentation algorithm
and recalculate the index tree and the Web Components.

 } (5)
 (5) else{

Decrease the u parameter of the fragmentation algorithm
and recalculate the index tree and the Web Components.

 }(5)
}(4)
(4)else {

Get the initial fragmentation (with the default value of the
u parameter). Extract all the WCs that can be extracted based
on their CVs. Extract all the remaining WCs based on their
order of appearance and their content size (closest match).

 }(4)
}(3)

}(1)

When the fragmentation correction algorithm finishes, the WCs are extracted,
some changes are performed in their HTML code and they are stored in the Web
Server of the service provider (step 6 of the fragmentation algorithm).

3.2 Personal Page Creation (by the User)

Using a web interface, the user is called to select one of the pages that have been
analyzed by the system. Upon making a choice, the user is transferred to a page where
all the WCs of the selected page are shown. In this page the user selects the WCs that
will be used as the building blocks of his personal page. Having finished with the
WCs of the particular page, the user can select another site from the initial page.

3.3 Personal Page Synthesis

A script in the web server of the service provider performs the ‘personal page synthe-
sis’. This is done every time the user requests to see his/her personal page. This script
checks the database for the user’s record and retrieves the list of the selected WCs.
Then it retrieves from the filesystem of the web server the source code of each se-
lected web component and uses it for constructing the user’s personal page.

4 Evaluation of the Technique

In order to demonstrate the amount of avoided data transfers to the users’ personal
computers by using this technique, an experiment was performed. Three popular sites
were selected (CNN, BBC and Yahoo) and the fragmentation technique was applied
to them. They were split in their respective Web Components and the size of each
component was recorded. Assuming that a user selects some web components of each
site and rejects all the others, only the data of these components will be transferred to
the user’s personal computer.

752 I. Misedakis, V. Kapoulas, and C. Bouras

Table 1. Fragmentation of 3 popular web pages.

Web Component ID Size Web Component ID Size Web Component ID Size
'1 20084 '1 2820 '1 540
'2-1 13408 '2 1201 '2 1203
'2-2 1473 '3 14520 '3 71
'2-3 18752 '4-1 1472 '4-1-1 35
'2-4 533 '4-2 4293 '4-1-2 114
'2-5 10565 '4-3 9593 '4-1-3 35
'2-6 582 '4-4 1448 '4-1-4 114
'2-7 2642 '4-5 565 '4-2 3776
'2-8 1240 '4-6 1046 '4-3 1871
'2-9 2749 '4-7 1855 '4-4 228
'3-1 8656 '4-8 994 '4-5 114
'3-2 12787 '4-9 504 '4-6 2713
'3-3 824 '4-10 289 '4-7 631
'3-4 3456 '4-11 1436 '4-8 365
'3-5 864 '5 300 '4-9 911
'3-6 2656 '6 326 '4-10 1551
'3-7 857 Total 42662 '4-11 1956
'3-8 1491 '4-12 590
'3-9 4660 '4-13 3014
'4 6373 '4-14 591
'5 6338 '4-15 1637
Total 120990 '5-1 85

'5-2 1625
'5-3 83
'5-4 1566
'5-5 35
'5-6 1024
'5-7 35
Total 26513

CNN BBC YAHOO

CNN

0

5000

10000

15000

20000

25000

'1 '2-1 '2-2 '2-3 '2-4 '2-5 '2-6 '2-7 '2-8 '2-9 '3-1 '3-2 '3-3 '3-4 '3-5 '3-6 '3-7 '3-8 '3-9 '4 '5

BBC

0

2000

4000

6000

8000

10000

12000

14000

16000

'1 '2 '3 '4-1 '4-2 '4-3 '4-4 '4-5 '4-6 '4-7 '4-8 '4-9 '4-10 '4-11 '5 '6

YAHOO

0

500

1000

1500

2000

2500

3000

3500

4000

'1 '2 '3 '4-1-1 '4-1-2 '4-1-3 '4-1-4 '4-2 '4-3 '4-4 '4-5 '4-6 '4-7 '4-8 '4-9 '4-10 '4-11 '4-12 '4-13 '4-14 '4-15 '5-1 '5-2 '5-3 '5-4 '5-5 '5-6 '5-7

Fig. 3. Fragmentation of 3 popular web pages.

The percentage of downloaded data (D) and avoided data (A) over the whole page
data size, which denote the gain from the technique, can be calculated by the formu-
las:

∑
∑=

k

kp

Total

S
D

, and
∑
∑−=

k

kp

Total

S
A

,
1 , where Sp,k denotes the size of the pth component

of the kth page and Totalk denotes the size of the whole page.
As an example of the gain from using the fragmentation technique, let’s assume

that a user selects to see in a personal page only the news headlines and the ‘general’
links from the three sites presented above. These are included in the following Com-

Web Page Fragmentation and Content Manipulation 753

ponents: 2-1 and 3-2 for CNN, 4-1 and 4-3 for BBC and 4-7 and 4-13 for Yahoo (they
are marked with different colour in figure 3). Substituting the respective values in the
formulas presented above we get a 78% gain for the user!

Concluding, the fragmentation technique, besides the convenience of presenting in
a single page all the desired information for a user, can also help towards the reduc-
tion of the data transfers to the users’ PCs and increase the perceived ‘speed’ of the
internet connection during the browsing sessions.

5 Future Work – Conclusions

The technique that is presented in this paper can be further improved. There are some
cases where the fragmentation algorithm selects small leaf nodes as WCs or some ar-
eas of content are not included in any of the WCs of a page. This is a result of using
only the TABLE tags for defining the page structure. In future versions of the frag-
mentation technique the index tree will be constructed using other tags also (TR, TD)
and it will be possible to include nodes that are not children of a common ancestor in
a single WC. The whole procedure could be also enhanced by merging the training
phase with the update phase and by utilizing them for providing ‘hints’ to the frag-
mentation algorithm.

Concluding, in this paper we presented the concept of ‘WCs’ and its application in
designing and implementing a software technique that can assist Web users in their
browsing sessions, by presenting to them in a single web page only the parts of pages
that they are interested in. Usage of this technique enhances the browsing experience,
since all the information a user usually accesses in a single browsing session is gath-
ered in the user’s personal page.

References

1. C. Bouras and A. Konidaris, “Web Components: A Concept for Improving Personalization
and Reducing User Perceived Latency on the World Wide Web”, Proceedings of the 2nd
International Conference on Internet Computing (IC2001), Las Vegas, Nevada, USA, June
2001, Vol 2, pp.238-244.

2. E. Hwang and Sieun Lee, “Web Surfing Assistant for Improving Web Accessibility”, Inter-
national Conference on Internet Computing (IC'03), Las Vegas, Nevada, USA, June 2003.

3. J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed. “A publishing system for ef-
ficiently creating dynamic web content”, Proceedings of the IEEE Conference on Computer
Communications (INFOCOM'00), March 2000.

4. Craig E. Wills and Mikhail Mikhailov, “Studying the impact of more complete server in-
formation on Web caching”, 5th International Web caching and Content delivery Workshop,
Lisbon, Portugal, May 2000.

5. Masahiro Hori, Goh Kondoh, Kohichi Ono, Shin-ichi Hirose, and Sandeep Singhal.
‘Annotation-based Web Content Transcoding’. In Proceedings of the 9th International
World Wide Web Conference, Amsterdam, Netherlands , May 2000.

6. Buyukkokten, H. Garcia-Molina, A, Paepcke, ‘Accordion Summarization for End-Game
Browsing on PDAs and Cellular Phones’, In Proceedings of the Conference on Human
Factors in Computing Systems, CHI'01, 2001.

754 I. Misedakis, V. Kapoulas, and C. Bouras

7. Juliana Freire, Bharat Kumar, Daniel Lieuwen, ‘WebViews: Accessing Personalized Web
Content and Services’, Proceedings of the 10th international conference on World Wide
Web, Hong Kong, 2001.

8. C. Bouras, V. Kapoulas, I. Misedakis, “Web Page Fragmentation for Personalized Portal
Construction”, Proceedings of International Conference on Information Technology (ITCC
2004), Las Vegas, Nevada, USA, April 2004.

	1 Introduction
	2 Fragmentation Algorithm
	3 Construction of Personal Pages Based on Web Components
	3.1 Web Pages™ Analysis and Fragmentation
	3.1.1 Training Phase
	3.1.2 Update Phase

	3.2 Personal Page Creation (by the User)
	3.3 Personal Page Synthesis

	4 Evaluation of the Technique
	5 Future Work Œ Conclusions
	References

