
BEHAVIOUR INVESTIGATION USING SIMULATION FOR
REDUNDANT MULTICAST TRANSMISSION SUPPORTING ADAPTIVE

QOS
Ch. Bouras1,2 A. Gkamas1,2 An. Karaliotas1,2 K. Stamos1,2

1Computer Engineering and Informatics Dep., Univ. of Patras, GR-26500 Patras, Greece
2Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece

ABSTRACT
In this paper we describe a mechanism for redundant multicast
transmission of multimedia data supporting adaptive QoS over
the Internet and we investigate its behaviour using simulation.
There are two major issues that have to be considered when
designing and implementing such a mechanism, the fairness,
which is the ability to cope with receiver heterogeneity, and the
adaptation schemes. The proposed mechanism uses a friendly to
the network users congestion control policy to control the
transmission of the data. We evaluate the adaptive multicast
transmission mechanism through a number of simulations in
order to examine its behaviour to a heterogeneous group of
receivers and its behaviour against TCP and UDP data streams.
Main conclusion of the simulation was that the proposed
mechanism has friendly behaviour against the dominant traffic
types of today’s Internet and treats a heterogeneous group of
receivers with fairness.

1. INTRODUCTION
The heterogeneous network environment that Internet provides to
the real time applications as well as the lack of sufficient Quality
of Service (QoS) guarantees, many times forces applications to
embody adaptation elements in order to work efficiently. The
main goal of such an approach is to adapt the data rate that is sent
to the network every time that network conditions change. Many
researchers believe that this end-to-end control scheme must be
implemented in the application layer because today’s Internet
architecture does not provide such a mechanism in the network
layer ([7]).
In addition any application that sends data (mostly multimedia)
over the Internet should have a friendly behaviour towards the
other flows that coexist in today’s Internet and especially towards
the TCP flows that comprise the majority of flows. Applications
must meet some special characteristics in order to be
characterized as TCP friendly ([12]).
This paper presents the evaluation through simulation of a
mechanism for redundant multicast transmission, which supports
adaptive QoS. The proposed mechanism is based on multicast
video transmission with the use of RTP/RTCP (Real-time
Transport Protocol / Real-time Transport Control Protocol)([13]).
The main perspectives, which the proposed mechanism tries to
fulfil, are 1) each receiver should receive the best video quality
that it is capable of and 2) the generated multicast data flow
should not be a constraint for the other flows. Paper [3] presents
the architecture and implementation of a prototype, which is
based on the proposed mechanism. Paper [4] gives an evaluation
of the implemented prototype through experiments in a real
network environment.

The methods proposed for the multicast transmission of time
sensitive data in the Internet can be generally divided in three
main categories:
• The source uses a single multicast stream for all receivers

([1], [14], [15]). This results to the most effective use of the
network resources, but on the other hand the fairness
problem (cope with receiver heterogeneity) arises.

• Simulcast: The source transmits versions of the same video
encoded in varying degrees of quality. This results to the
creation of a small number of multicast streams with
different rates, responsible for a range of receivers with
similar capabilities ([8], [6]). The different streams carry the
same video information but in each one the video is encoded
with different bit rates, and even different video formats.
The main disadvantage in this case is that the same video
information is replicated over the network but recent
research has shown that under some conditions simulcast
has better behavior that multicast transmission of layered
encoded video ([9]).

• The source uses layered encoded video, which is video that
can be reconstructed from a number of discrete data streams
and transmit each layer into different multicast stream ([17],
[11], [5]). The receivers subscribe to one or more multicast
streams depending on the available bandwidth into the
network path to the source.

This work is based on the simulcast approach and it is an
extension of the work, which has been presented in [2] and [6].

2. ARCHITECTURE OF THE PROPOSED
MECHANISM

The proposed mechanism is based on the simulcast transmission
of video and follows the client –server architecture and uses the
RTP/RTCP protocol for the transmission of the data. The
transmission rate within each stream is adapting within its limits
according to the capabilities and the state of the Clients
participating in it.
The Server is unique and responsible of: 1) creating the n
different multicast streams (in our simulations we use three), 2)
setting each one’s bandwidth limits, 3) tracking if there are any
Clients that are not handled with fairness and 4) providing the
mechanisms to the Clients to change stream whenever they
consider that they should be in another stream closer to their
capabilities.
Figure 1 shows the organisation and the architecture of the
Server entity. The Server generates n different Stream Managers.
In each Stream Manager an arbitrary number of Client Managers
is assigned. Each Client Manager corresponds to a unique
receiver that has joined the stream controlled by this Stream

Manager. The Synchronisation Server is responsible for the
management, synchronization and intercommunication between
Stream Managers.
The Stream Manager entity is responsible for the maintenance
and the monitoring of one of the n different multicast streams
that are generated in the beginning of the application. Also the
Stream Manager entity has all the intra-stream adaptation
mechanisms for the adjustment of the transmission rate. The
Stream Manager periodically gathers the states reported by all
Client Managers belonging to it at the end of a specific, fixed
time period (from now on called an epoch). It then uses an
algorithm described in a following paragraph that tries to
improve fairness between Clients by determining whether a
lower or a higher bit rate is more appropriate. Whenever a Client
cannot be satisfied by a stream due to the fact that most of the
other Clients have much higher or much lower reception
capabilities, the Stream Manager informs it that it has to move to
a lower or higher quality stream.
Each Client Manager Corresponds to a unique Client. It
processes the RTCP reports generated by the Client and can be
considered as a representative of the Client at the side of the
Server. It can interact only with one Stream Manager at a given
time, the Stream Manager controlling the stream from which the
Client is receiving the video. Client Manager receives the RTCP
reports from the Client and processes them based on packet loss
rate and delay jitter information. It then makes an estimation of
the state of the Client, based on the current and a few previous
reports that it stores in a buffer. The exact operation of the
algorithm is described in the following paragraph.

Synchronisation
Server

Stream
Manager 1

Client
Manager 1

Stream
Manager 2

Stream
Manager n

Client
Manager n

Client
Manager 1

Client
Manager n

Client
Manager 1

Client
Manager n

Server Entity

Figure 1. The architecture and the data flow of the
Server.

3. DESCRIPTION OF MECHANISM
OPERATION

The Server initially constructs a number of streams. When a
Client joins a multicast session, a dedicated Client Manager is
created to represent the Client at the side of the Server and
manipulates the RTCP reports of that Client. Information in
RTCP reports contains two values that describe the quality of the
transmission: packet loss rate and delay jitter. These values are
passed through the following filters used to avoid wrong
estimations and determine the aggressiveness of the feedback
analysis protocol: For the packet loss rate:

LRnew = a * LRold + (1-a) * LRnet
Where: LRnew: The new filtered value of packet loss rate. LRold:
The previous filtered value of packet loss rate (for the first report
after the start of transmission, this value is 0). LRnet: The packet
loss value that was contained in the RTCP report received from
the Client. a: a parameter that determines the aggressiveness of

the adaptation concerning the packet loss value (its value ranges
from 0 to 1). For delay jitter:

Jnew = b * Jold + (1-b) * Jnet
Where: Jnew: The new filtered value of delay jitter. Jold: The
previous filtered value of delay jitter (for the first report after the
start of transmission, this value is 0). Jnet: The delay jitter that
was contained in the RTCP report received from the Client. b: a
parameter that determines the aggressiveness of the adaptation
concerning the delay jitter value (its value ranges from 0 to 1).
For the sake of clarity, a distinction has to be made between two
kinds of states, that both can take the values of UNLOADED,
LOADED or CONGESTED: we call the first one the
“unprocessed state” and the second the “processed state”. The
unprocessed state is derived directly from the filtered values of
packet loss rate and delay jitter, according to the following rules:

if (LRnew >= LRc) unprocessed state = CONGESTED
if (LRu < LRnew < LRc) unprocessed state = LOADED
if (LRnew <= LRu) unprocessed state = UNLOADED
if (Jnew > γ*Jold) unprocessed state = CONGESTED

We have defined LRu as the maximum value of the unloaded
packet loss rate and LRc as the minimum value of the congested
packet loss rate. Where γ is a parameter which specifies how
aggressive the network condition estimation component will be
to the increase of delay jitter.
The state that will be reported to the Stream Manager is called
the processed state. It is computed by taking into account the last
n unprocessed states, which are held in an n-sized buffer in the
Client Manager. This buffering mechanism contributes to the
conservative behaviour of the Optimal Rate Estimation module.
A CONGESTED unprocessed state does not necessarily impose
that the processed state will also be congested, especially if the
majority of the previous “unprocessed states” were
UNLOADED. The way the processed state is computed is
presented below: We first introduce a new variable, USV
(Unprocessed State Variable), which takes a new value for each
unprocessed state as shown:

if (unprocessed statei = = CONGESTED) then USVi = -1
if (unprocessed statei = = LOADED) then USVi = 0

if (unprocessed statei = = UNLOADED) then USVi = 1
The processed state is then determined by the value of

f(i) = USVi * wi + USVi-1 * wi-1 + … + USVi-n+2 * wi-n+2 + USVi-

n+1 * wi-n+1
where w1 < w2 < … wn are weights used to quantify the
decreasing importance of old unprocessed states. We have
chosen 1/wi = (1/wi-1) – 1, with w1 = 1/n, although any
monotonous increasing sequence could have been used. We
consider that all states i-k where k>5 have no real significance in
estimating the current state because they are too old. So we chose
n equal to 5.

if (f(i) < 0) then processed statei = CONGESTED
if (f(i) = = 0) then processed statei = LOADED
if (f(i) > 0) then processed statei = UNLOADED

Information update in Client Managers is made asynchronously,
every time an RTCP report arrives. We have chosen to
completely ignore the first RTCP report since the moment a

Client joins a new stream, because we observed that this report
usually contains a very high packet loss rate value. That value is
due to temporary transition load and does not reflect an actual
congestion reason. Had we taken it into account, it would force
the next few processed states to be found CONGESTED, and
would therefore tend to invoke a new unwanted transition
towards a lower stream. Stream Managers update their rates
synchronously and therefore time in system operation is divided
in epochs of certain length. At the end of an epoch, each Stream
Manager polls the states of all the Client Managers that
correspond to a Client receiving this stream and determines the
improvement or degradation in this stream’s video quality.
Whether there will be an improvement or degradation is
determined as follows: If all receivers (the number n of the
receivers can easily computed by the RTCP protocol) are in the
UNLOADED state, video quality is improved. If more than a
certain threshold of receivers is CONGESTED, video quality is
degraded. In other cased we keep the current video quality. The
threshold used for our simulations was one-second of all
receivers listening to the stream.
The new bit rate is estimated using an Additive Increase,
Multiplicative Decrease (AIMD) algorithm, just like TCP.
Increase is achieved by adding a standard small value to the
previous bit rate, and is therefore quite conservative in bandwidth
consumption, while decrease is achieved by multiplying the
previous bit rate with a number in the range of 0…1 (typically
around 0.75) and so the algorithm is more aggressive when trying
to react to congestion.
There are three cases in this phase that will lead to a Client’s
transition towards another stream:
• If the stream from which the Client is currently receiving

video has already reached its lowest transmitting rate and
the Client is still in CONGESTED state then the Client
stops listening to this stream and joins the stream of a lower
quality stream (if such a stream exists).

• If the stream from which the Client is currently receiving
video has already reached its highest transmitting rate and
the Client is still in UNLOADED state then the Client stops
listening to this stream and joins the stream of a higher
quality stream (if such a stream exists).

• The third case applies to a Client that co-exists in a stream
with low capacity receivers but is capable of handling better
quality video, so it has been unable to improve the video
quality of the current stream. The mechanism used aims in
making the protocol more conservative and operates by
counting the number of consecutive times the receiver was
UNLOADED but failed to improve the video quality. When
this number exceeds a certain limit, we assume that the
receiver has indeed higher capabilities and move it to a
better quality stream. Transition from one stream to another
also means that the Client’s corresponding Client Manager
module will now interact with the new Stream Manager.

For a Client transition to occur, an additional rule is imposed in
all cases: the Client must have sent a minimum number of reports
(for our simulations this number was set to 5) since it joined the
stream before leaves that stream. This rule tries to avoid very
often transitions that cause unnecessary processing load and
waste bandwidth. The Client is forced to stay in a stream for at
least a certain amount of time (the time it takes to send the
minimum number of RTCP reports) and so if it nevertheless

decides to change stream after this time period, we are certain
that this is a justified decision.
We declare as unsuccessful stream change the situation when a
Client joins a stream with higher transmission rate (or a lower
transmission rate) and after a sort time period (Tchange) return to
the previous stream. During our performance evaluation, we
observe that the unsuccessful stream changes by the Clients
cause instability to the operation of the proposed mechanism and
must be avoided. In order to avoid unsuccessful stream changes
by the Clients, when a Client makes an unsuccessful stream
change we set the condition of the corresponding Client Manager
to LOADED, we ignore the next 3 RTCP reports and we avert
the Client to make the stream change which was unsuccessful for
the next 2* Tchange time.
We have to point out that Clients make transitions between
streams synchronized at the end of each epoch. This helps us
avoid possible problems that could be caused for example by two
Clients sitting behind the same link and receiving different bit
rates.

4. PERFORMANCE EVALUATION
In this section, we present a number of simulations that we made
in order to analyze the behavior of the proposed mechanism
during the multicast transmission of multimedia data with the use
of simulcast approach. We implemented our mechanism and run
simulations in the LBNL network simulator ns-2 ([10]).
We run two simulations: (1) Multicast transmission of adaptive
multimedia in heterogeneous Clients and UDP traffic at the same
time. (2) Multicast transmission of adaptive multimedia in
heterogeneous Clients and TCP traffic at the same time. The
Server transmitted three streams with the following limits: stream
one: 100Kbps-600Kbps, stream two: 600Kbps-1100Kbps and
stream three: 1100Kbps-1600Kbps. During the simulations the
Server was using the following parameters in order to control the
operation of the proposed mechanism: a=0.75, b=0.8, γ=2,
LRu=0.01, LRc=0.055 and Tchange = 20 sec (we obtain the above
values through a number of experiments [2]). The AIMD
algorithm of the Server was increasing the transmission rate of
the stream one by 50Kbps, the transmission rate of the stream
two by 70Kbps and transmission rate of the stream three by
100Kbps, during unloaded network periods and was decreasing
the transmission rate of all the streams by 80% during network
congestion periods.
Figure 2 shows the simulation topology. The bandwidth of each
link is given to the simulation topology and varies from 0.7 Mbps
to 4.0 Mbps. All the links in the simulation topology are full
duplex, have delay 10 ms and they use the drop-tail (FIFO)
policy to their queues. During the simulations, we have one
Server (S) that multicast multimedia data to a group of 20 Clients
(C1 to C20) with the use of the proposed mechanism. Clients C1
to C10 are connected to router n2 and Clients C11 to C20 are
connected to router n3. The Clients can be divided in to three
categories: (1) High capacity Clients with 1.7 Mbps available
bandwidth, (2) Medium capacity Clients with 1.2 Mbps available
bandwidth and (3) Low capacity Clients with 0.7 Mbps available
bandwidth.
We execute the simulations for 300 seconds and the Server starts
transmitting the stream one with transmission rate 100Kbps, the
stream two with transmission rate 600Kbps and the stream three

with transmission rate: 1100Kbps. In order to avoid
synchronization, the Clients join randomly the stream one during
the first 10 seconds of the simulation.

n1 n2 n3

S

A B

C20C11 C10 C1

4.0 MB

4.0 MB

4.0 MB 4.0 MB
4.0 MB

L1 L10 L11 L20

.
.

L1=1.7 MB

L5=0.7 MB L4=0.7 MB L3=1.7 MB L2=1.7 MB L6=1.2 MB

L10=1.2 MB L9=1.2 MB L8=0.7 MB L7=0.7 MB L11=1.7 MB

L15=0.7 MB L14=1.2 MB L13=1.7 MB L12=1.7 MB L16=1.2 MB

L20=1.2 MB L19=1.2 MB L18=0.7 MB L17=0.7 MB

Figure 2. Simulation topology

4.1 First Simulation: Transmission with
Background UDP Traffic

During this simulation, we investigate the behavior of the
proposed mechanism during network congestion produced by a
greedy UDP traffic. In order to produce UDP traffic, we attach to
node A of the simulation topology, a CBR (Constant Bit Rate)
traffic generator (CBR-Source), which transmits data to a CBR-
Receiver attached to node B of the simulation topology. The
CBR-Source produces UDP traffic with constant transmission
rate of 2.5 Mbps. The CBR-Source starts the transmission of the
data at 100th second, and stops the transmission of the data at
200th second.
Figure 3 shows the transmission rates of Server streams and the
UDP traffic during the simulation three and Figure 4, Figure 5
and Figure 6 show the reception rate of a representative high
capacity Client, a representative medium capacity Client and a
representative low capacity Client respectively during the
simulation three.
In this simulation the Server except of treat with fairness the
group of Clients, it must share the bandwidth of the congested
links between the router n1, n2 and between router n2, n3 with
the CBR-Source, when the CBR-Source transmits data. As
Figure 3 shows, the Server streams start from their minimum
transmission rates and increase their transmission rates while
Clients join them. Around 50th second all the three streams have
reach their maximum transmission rates. When the transmission
of UDP traffic starts (at 100th second), congestion occurs to links
between the router n1, n2 and between router n2, n3. The Clients
prefer smaller transmission rates due to congestion condition, and
the Server reduces its transmission rate. When the transmission
of UDP traffic stops (200th second), the Server gradually
consumes again the available bandwidth.
As Figure 4, Figure 5 and Figure 6 show the Clients after some
seconds join the stream that fulfils most their capabilities. When
the transmission of CBR takes place, most of the Clients change
stream and join the stream with smaller transmission rate due to
the congestion condition. Low capacity Clients do not have the
capability to go a stream with smaller transmission rate and keep
receiving stream one. When the transmission of CBR stops, the
Clients return to their initially stream and keep receiving this
stream until the end of the simulation.
It is obvious from Figure 3 that the proposed mechanism has
good behavior during network congestion condition produced by
greedy UDP traffic. When the transmission of UDP traffic starts
the Server reduces its transmission rate and when the

transmission of UDP traffic stops the Server consumes again the
available bandwidth.

0

500000

1000000

1500000

2000000

2500000

0 30 60 90 120 150 180 210 240 270 300
Time (sec)

B
an

dw
id

th
 (b

ps
)

Server Stream One Server Stream Two Server Stream Three UDP Traffic

Figure 3. Server Streams and UDP traffic transmission
rates during simulation three

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

0 30 60 90 120 150 180 210 240 270 300
Time (sec)

B
an

dw
id

th
 (k

ps
)

0

1

2

3

4

St
re

am
 n

um
be

r

High Capacity Client Bandwidth High Capacity Client Stream

Figure 4. Bandwidth of high capacity Client during
simulation three

0

200000

400000

600000

800000

1000000

1200000

1400000

0 30 60 90 120 150 180 210 240 270 300
Time (sec)

B
an

dw
id

th
 (k

ps
)

0

1

2

3

4

St
re

am
 n

um
be

r

Medium Capacity Client Bandwidth Medium Capacity Client Stream

Figure 5. Bandwidth of medium capacity Client during
simulation three

0

100000

200000

300000

400000

500000

600000

700000

0 30 60 90 120 150 180 210 240 270 300
Time (sec)

B
an

dw
id

th
 (k

ps
)

0

1

2

3

St
re

am
 n

um
be

r

Low Capacity Client Bandwidth Low Capacity Client Stream

Figure 6. Bandwidth of low capacity Client during
simulation three

4.2 Second Simulation: Transmission with
Background TCP Traffic

During this simulation, we investigate the behavior of the
implemented mechanism against TCP traffic. We use again the
simulation topology of Figure 2 but we have set the bandwidth of
links n1-n2 and n2-n3 to 3.3Mbps in order to ensure that heavy
congestion will occur during the simulation. In order to produce
TCP traffic, we connect to node A and B of the simulation
topology, an FTP server and an FTP client respectively. The FTP
server transmits a file to the FTP client using “4.3BSD Tahoe
TCP” protocol [16]. The transmission of the file from the FTP
server to the FTP client, starts at the 100th second and stops at the
200th second.
Figure 7 shows the transmission rates of Server streams and the
TCP traffic during simulation two and Figure 8, Figure 9 and
Figure 10 show the bandwidth of a representative high capacity

Client, a representative medium capacity Client and a
representative low capacity Client respectively during simulation
two.

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

0 30 60 90 120 150 180 210 240 270 300
Time (sec)

B
an

dw
id

th
 (b

ps
)

Server Stream One Server Stream Two Server Stream Three TCP Traffic

Figure 7. Server Streams and TCP traffic transmission
rates during simulation two

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

Ba
nd

w
id

th
 (k

bp
s)

0

0,5

1

1,5

2

2,5

3

3,5

St
re

am
 n

um
be

r

High Capacity Client Bandwidth High Capacity Client Stream

Figure 8. Bandwidth of high capacity Client during
simulation two

0

200000

400000

600000

800000

1000000

1200000

1400000

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

Ba
nd

w
id

th
 (k

bp
s)

0

0,5

1

1,5

2

2,5

3

3,5

St
re

am
 n

um
be

r

Medium Capacity Client Bandwidth Medium Capacity Client Stream
Figure 9. Bandwidth of medium capacity Client during
simulation two

0

100000

200000

300000

400000

500000

600000

700000

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

Ba
nd

w
id

th
 (k

bp
s)

0

0,5

1

1,5

2

2,5

St
re

am
 n

um
be

r

Low Capacity Client Bandwidth Low Capacity Client Stream

Figure 10. Bandwidth of low capacity Client during
simulation two

In this simulation, the Server except of treating the group of
Clients with fairness, it must share the bandwidth of the
congested links between the router n1, n2 and between router n2,
n3 with the TCP traffic when the FTP transmission of the file
takes place. As Figure 7 shows, the Server streams start from
their minimum transmission rate and increase their transmission
rates while Clients join them. Around the 50th second all three
streams have reached their maximum transmission rates. When
the transmission of TCP source starts (at the 100th second),
congestion occurs to links between the router n1, n2 and between
router n2, n3. The Clients prefer smaller transmission rates due to
congestion condition, and the Server releases bandwidth so that
the TCP traffic can use it. When the transmission of the TCP
traffic takes place, the Server releases some bandwidth (about 0.5
Mbps) for a while and reserves it again. When the transmission
of TCP traffic stops (100th second) the Server gradually reserves
again the available bandwidth.

As Figure 8, Figure 9 and Figure 10 show the Clients after some
seconds have joined the stream that better fulfils their
capabilities. When the transmission of TCP takes place most of
the Clients do not change stream and keep receiving the same
stream with reduced transmission rate due to the congestion
condition. Medium capacity Client tries to join stream one but
after some seconds returns again to Stream two, which better
meets its capabilities.
It is obvious from Figure 7 that the behavior of our mechanism to
TCP traffic is friendly. The TCP traffic has transmission rate of
more than 0.4 Mbps many times and maximum transmission rate
of 1.2Mbps during the simulation, which is good performance for
TCP transmission. In addition, the Server many times releases
bandwidth and provides it to TCP source and in one case (115th
second) the Server releases 0.5 Mbps of its bandwidth. The
Server has the following drawback: The Server’s transmission
rate during the transmission of TCP traffic is not stable. The
Server would have ideal behavior if it reduced its transmission
rate and kept it steady while the transmission of TCP traffic took
place.

4.3 Comparison of simulation and experimental
results

In this paragraph, we compare the simulation results, which are
presented in this paper, with the experimental results, which have
been obtained through the experimental evaluation of the
proposed mechanism ([4]).
In outline, the proposed mechanism has similar behavior both in
the simulation environment and in the real network environment
where the experiments presented in [4] took place. In both cases
the proposed mechanism behaves the same against TCP traffic:
In addition, in both cases the proposed mechanism behaves the
same during heavy network congestion: Figure 11 shows the
transmission rate of TCP traffic and the transmission rate of the
implemented prototype in the experimental testbed.

0

50

100

150

200

250

300

0 16 32 48 64 80 96 10
9

12
5

14
1

15
7

17
3

18
9

19
9

21
5

23
1

24
7

26
3

27
9

29
5

31
1

32
7

34
3

35
9

37
5

39
1

40
7

42
3

43
9

45
5

47
1

48
7

50
3

51
9

53
5

55
1

56
7

58
3

Time (sec)

Bi
tra

te
 (K

bp
s)

TCP traffic Client Stream no

Figure 11. Transmission rate of TCP traffic and the
implemented prototype in the experimental test-bed

We notice the following differences in the behavior of the
proposed mechanism between the simulation environment and
the real network environment:
• The transmission rate of the Server is not so stable in the

real network environment as it is in the simulation
environment.

• The Server needs more time to find the streams’
transmission rates that satisfy most the heterogeneous group
of receivers in the real network environment comparing
with the simulation environment

The above differences derive from the following facts:
• During the simulation, we assume that the encoder of the

Server has the capability to produce any transmission rate

that the proposed mechanism suggests. This is not true
during the experiments in a real network environment due to
the fact that depending on the used compression scheme and
the data content, the encoder might only be able to change
its transmission rate in steps. When the proposed
mechanism suggests a new transmission rate and the
encoder cannot produce it, cause instability to the operation
of the proposed mechanism. This is the reason why during
the experiments in a real network environment the
transmission rate of the Server is not stable.

• During the simulation, we assume that the CPU of Server is
powerful enough to encode all the transmitted streams. This
is not always true during the experiments in a real network
environment. Many times the CPU can be overloaded,
which has as result the instability of the Server operation.
Due to this instability, the Server cannot keep the
transmission rate that the proposed mechanism suggests.
This lead to the above described behavior of Server.

In order to avoid the above describe undesirable behavior of the
proposed mechanism during the experiments in a real network
environment, we have to take in account constrains that the
multimedia communication over the Internet has. This constrains
are presented in [14].

5. CONCLUSIONS - FUTURE WORK
In this paper, we present the behaviour investigation of a
mechanism for multicast transmission of adaptive multimedia
data in a heterogeneous group of receivers with the use of
replicated streams. We investigate the behaviour of the proposed
mechanism through a number of simulations. In addition, we
compare the simulation results presented in this paper with the
experimental results, which we have been presented in paper [4].
Main conclusion of the simulation was that the proposed
mechanism has friendly behaviour against the dominant traffic
types (TCP traffic) of today’s Internet and good behaviour during
congestion condition. In addition the proposed mechanism treat
with fairness a heterogeneous group of Clients.
Our future work includes the investigation of dynamically adding
more streams instead of the static number of streams (specified
during initialisation) that the proposed mechanism supports now.
In addition we will enhance the proposed mechanism in order to
support multicast of layered encoded video and we will evaluate
this new version. Moreover we plan to increase the reliability and
the efficiency of the implemented prototype in order to overcome
the drawbacks that the implemented prototype has. In addition,
our future work includes the improvement of the proposed
mechanism’s behavior against TCP traffic. In addition we will
investigate the behavior of the proposed mechanism during the
multicast transmission in very large group of receivers. The
multicast transmission in very large group of receivers
encounters the feedback implosion problem ([1]).

6. BIBLIOGRAPHY
[1] Bolot J.-C., Turletti T., Wakeman I., Scalable feedback

control for multicast video distribution in the Internet, In
Proceedings of SIGCOMM 1994, pp. 139-146, London,
England, August 1994. ACM SIGCOMM.

[2] Bouras Ch., Gkamas A., Streaming Multimedia Data With
Adaptive QoS Characteristics, Protocols for Multimedia

Systems 2000, Cracow, Poland, October 22-25, 2000, pp
129-139.

[3] Bouras Ch., Gkamas A., Karaliotas An., Stamos K., An
Architecture for Redundant Multicast Transmission
Supporting Adaptive QoS, Workshop on Multimedia
Information Systems, November 7-9, 2001 - Capri, Italy.

[4] Bouras Ch., Gkamas A., Karaliotas An., Stamos K.,
Architecture And Performance Evaluation For Redundant
Multicast Transmission Supporting Adaptive QoS, 2001
International Conference on Software, Telecommunications
and Computer Networks (SoftCOM 2001) October 09-12,
2001 Split, Dubrovnik (Croatia) Ancona, Bari (Italy).

[5] Chang Y., Messerschmitt D., Adaptive layered video coding
for multi-time scale bandwidth fluctuations, submitted to
IEEE Journal on Selected Areas in Communications.

[6] Cheung S. Y., Ammar M., Li X., On the Use of Destination
Set Grouping to Improve Fariness in Multicast Video
Distribution, INFOCOM 96, March 1996, San Fransisco.

[7] Floyd S., Fall K., Promoting the Use of End-to-End
Congestion Control in the Internet, IEEE/ACM
Transactions on Networking, 1998.

[8] Jiang T., Zegura E. W., Ammar M., Inter-receiver fair
multicast communication over the Internet, In Proceedings
of the 9th International Workshopon Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV),
pp. 103-114, June 1999.

[9] Kim T., Ammar M. H., A comparison of layering and
stream replication video multicast schemes, Proc.
NOSSDAV'01, Port Jefferson, NY, June 25-26, 2001.

[10] McCanne S., Floyd S., The UCB/LBNL network simulator,
software online, http://www.isi.edu/nsnam/ns/.

[11] McCanne S., Jacobson V., Receiver-driven layered
multicast, 1996 ACM Sigcomm Conference, pp. 117-130,
August 1996.

[12] Pandhye J., Kurose J., Towsley D., Koodli R., A model
based TCP-friendly rate control protocol, Proc.
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Basking
Ridge, NJ, June 1999.

[13] Shculzrinne H., Casner S., Frederick R., Jacobson V., RTP:
A Transport Protocol for Real-Time Applications, RFC
1889, IETF, January 1996.

[14] Sisalem D., and Wolisz A., Constrained TCP-friendly
congestion control for multimedia communication, tech.
rep., GMD Fokus, Berlin Germany, Feb. 2000.

[15] Sisalem D., Wolisz A., LDA+ TCP-Friendly Adaptation: A
Measurement and Comparison Study, in the 10th
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV'2000),
June 25-28, 2000, Chapel Hill, NC, USA.

[16] Stevens W., TCP Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery Algorithms, RFC 2001,
January 1997.

[17] Vickers B. J., Albuquerque C. V. N., Suda T., Adaptive
Multicast of Multi-Layered Video: Rate-Based and
CreditBased Approaches, Proc. of IEEE Infocom, March
1998.

http://www.isi.edu/nsnam/ns/

	INTRODUCTION
	ARCHITECTURE OF THE PROPOSED MECHANISM
	DESCRIPTION OF MECHANISM OPERATION
	PERFORMANCE EVALUATION
	First Simulation: Transmission with Background UDP Traffic
	Second Simulation: Transmission with Background TCP Traffic
	Comparison of simulation and experimental results

	CONCLUSIONS - FUTURE WORK
	BIBLIOGRAPHY

