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ABSTRACT 
In this paper we describe a mechanism for redundant multicast 
transmission of multimedia data supporting adaptive QoS over 
the Internet and we investigate its behaviour using simulation. 
There are two major issues that have to be considered when 
designing and implementing such a mechanism, the fairness, 
which is the ability to cope with receiver heterogeneity, and the 
adaptation schemes. The proposed mechanism uses a friendly to 
the network users congestion control policy to control the 
transmission of the data. We evaluate the adaptive multicast 
transmission mechanism through a number of simulations in 
order to examine its behaviour to a heterogeneous group of 
receivers and its behaviour against TCP and UDP data streams. 
Main conclusion of the simulation was that the proposed 
mechanism has friendly behaviour against the dominant traffic 
types of today’s Internet and treats a heterogeneous group of 
receivers with fairness. 

1. INTRODUCTION 
The heterogeneous network environment that Internet provides to 
the real time applications as well as the lack of sufficient Quality 
of Service (QoS) guarantees, many times forces applications to 
embody adaptation elements in order to work efficiently. The 
main goal of such an approach is to adapt the data rate that is sent 
to the network every time that network conditions change. Many 
researchers believe that this end-to-end control scheme must be 
implemented in the application layer because today’s Internet 
architecture does not provide such a mechanism in the network 
layer ([7]). 
In addition any application that sends data (mostly multimedia) 
over the Internet should have a friendly behaviour towards the 
other flows that coexist in today’s Internet and especially towards 
the TCP flows that comprise the majority of flows. Applications 
must meet some special characteristics in order to be 
characterized as TCP friendly ([12]).  
This paper presents the evaluation through simulation of a 
mechanism for redundant multicast transmission, which supports 
adaptive QoS. The proposed mechanism is based on multicast 
video transmission with the use of RTP/RTCP (Real-time 
Transport Protocol / Real-time Transport Control Protocol)([13]). 
The main perspectives, which the proposed mechanism tries to 
fulfil, are 1) each receiver should receive the best video quality 
that it is capable of and 2) the generated multicast data flow 
should not be a constraint for the other flows. Paper [3] presents 
the architecture and implementation of a prototype, which is 
based on the proposed mechanism. Paper [4] gives an evaluation 
of the implemented prototype through experiments in a real 
network environment. 

The methods proposed for the multicast transmission of time 
sensitive data in the Internet can be generally divided in three 
main categories: 
• The source uses a single multicast stream for all receivers 

([1], [14], [15]). This results to the most effective use of the 
network resources, but on the other hand the fairness 
problem (cope with receiver heterogeneity) arises. 

• Simulcast: The source transmits versions of the same video 
encoded in varying degrees of quality. This results to the 
creation of a small number of multicast streams with 
different rates, responsible for a range of receivers with 
similar capabilities ([8], [6]). The different streams carry the 
same video information but in each one the video is encoded 
with different bit rates, and even different video formats. 
The main disadvantage in this case is that the same video 
information is replicated over the network but recent 
research has shown that under some conditions simulcast 
has better behavior that multicast transmission of layered 
encoded video ([9]). 

• The source uses layered encoded video, which is video that 
can be reconstructed from a number of discrete data streams 
and transmit each layer into different multicast stream ([17], 
[11], [5]). The receivers subscribe to one or more multicast 
streams depending on the available bandwidth into the 
network path to the source. 

This work is based on the simulcast approach and it is an 
extension of the work, which has been presented in [2] and [6]. 

2. ARCHITECTURE OF THE PROPOSED 
MECHANISM 

The proposed mechanism is based on the simulcast transmission 
of video and follows the client –server architecture and uses the 
RTP/RTCP protocol for the transmission of the data. The 
transmission rate within each stream is adapting within its limits 
according to the capabilities and the state of the Clients 
participating in it. 
The Server is unique and responsible of: 1) creating the n 
different multicast streams (in our simulations we use three), 2) 
setting each one’s bandwidth limits, 3) tracking if there are any 
Clients that are not handled with fairness and 4) providing the 
mechanisms to the Clients to change stream whenever they 
consider that they should be in another stream closer to their 
capabilities.  
Figure 1 shows the organisation and the architecture of the 
Server entity. The Server generates n different Stream Managers. 
In each Stream Manager an arbitrary number of Client Managers 
is assigned. Each Client Manager corresponds to a unique 
receiver that has joined the stream controlled by this Stream 



Manager. The Synchronisation Server is responsible for the 
management, synchronization and intercommunication between 
Stream Managers. 
The Stream Manager entity is responsible for the maintenance 
and the monitoring of one of the n different multicast streams 
that are generated in the beginning of the application. Also the 
Stream Manager entity has all the intra-stream adaptation 
mechanisms for the adjustment of the transmission rate. The 
Stream Manager periodically gathers the states reported by all 
Client Managers belonging to it at the end of a specific, fixed 
time period (from now on called an epoch). It then uses an 
algorithm described in a following paragraph that tries to 
improve fairness between Clients by determining whether a 
lower or a higher bit rate is more appropriate. Whenever a Client 
cannot be satisfied by a stream due to the fact that most of the 
other Clients have much higher or much lower reception 
capabilities, the Stream Manager informs it that it has to move to 
a lower or higher quality stream. 
Each Client Manager Corresponds to a unique Client. It 
processes the RTCP reports generated by the Client and can be 
considered as a representative of the Client at the side of the 
Server. It can interact only with one Stream Manager at a given 
time, the Stream Manager controlling the stream from which the 
Client is receiving the video. Client Manager receives the RTCP 
reports from the Client and processes them based on packet loss 
rate and delay jitter information. It then makes an estimation of 
the state of the Client, based on the current and a few previous 
reports that it stores in a buffer. The exact operation of the 
algorithm is described in the following paragraph. 
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Figure 1. The architecture and the data flow of the 
Server. 

3. DESCRIPTION OF MECHANISM 
OPERATION 

The Server initially constructs a number of streams. When a 
Client joins a multicast session, a dedicated Client Manager is 
created to represent the Client at the side of the Server and 
manipulates the RTCP reports of that Client. Information in 
RTCP reports contains two values that describe the quality of the 
transmission: packet loss rate and delay jitter. These values are 
passed through the following filters used to avoid wrong 
estimations and determine the aggressiveness of the feedback 
analysis protocol: For the packet loss rate: 

LRnew = a * LRold + (1-a) * LRnet 
Where: LRnew: The new filtered value of packet loss rate. LRold: 
The previous filtered value of packet loss rate (for the first report 
after the start of transmission, this value is 0). LRnet: The packet 
loss value that was contained in the RTCP report received from 
the Client. a: a parameter that determines the aggressiveness of 

the adaptation concerning the packet loss value (its value ranges 
from 0 to 1). For delay jitter: 

Jnew = b * Jold + (1-b) * Jnet 
Where: Jnew: The new filtered value of delay jitter. Jold: The 
previous filtered value of delay jitter (for the first report after the 
start of transmission, this value is 0). Jnet: The delay jitter that 
was contained in the RTCP report received from the Client. b: a 
parameter that determines the aggressiveness of the adaptation 
concerning the delay jitter value (its value ranges from 0 to 1). 
For the sake of clarity, a distinction has to be made between two 
kinds of states, that both can take the values of UNLOADED, 
LOADED or CONGESTED: we call the first one the 
“unprocessed state” and the second the “processed state”. The 
unprocessed state is derived directly from the filtered values of 
packet loss rate and delay jitter, according to the following rules: 

if (LRnew >= LRc) unprocessed state = CONGESTED 
if (LRu < LRnew < LRc) unprocessed state = LOADED 
if (LRnew <= LRu) unprocessed state = UNLOADED 
if (Jnew > γ*Jold) unprocessed state = CONGESTED 

We have defined LRu as the maximum value of the unloaded 
packet loss rate and LRc as the minimum value of the congested 
packet loss rate. Where γ is a parameter which specifies how 
aggressive the network condition estimation component will be 
to the increase of delay jitter. 
The state that will be reported to the Stream Manager is called 
the processed state. It is computed by taking into account the last 
n unprocessed states, which are held in an n-sized buffer in the 
Client Manager. This buffering mechanism contributes to the 
conservative behaviour of the Optimal Rate Estimation module. 
A CONGESTED unprocessed state does not necessarily impose 
that the processed state will also be congested, especially if the 
majority of the previous “unprocessed states” were 
UNLOADED. The way the processed state is computed is 
presented below: We first introduce a new variable, USV 
(Unprocessed State Variable), which takes a new value for each 
unprocessed state as shown: 

if (unprocessed statei = = CONGESTED) then USVi = -1 
if (unprocessed statei = = LOADED) then USVi = 0 

if (unprocessed statei = = UNLOADED) then USVi = 1 
The processed state is then determined by the value of  

f(i) = USVi * wi + USVi-1 * wi-1 + … + USVi-n+2 * wi-n+2 + USVi-

n+1 * wi-n+1 
where w1 < w2 < … wn are weights used to quantify the 
decreasing importance of old unprocessed states. We have 
chosen 1/wi = (1/wi-1) – 1, with w1 = 1/n, although any 
monotonous increasing sequence could have been used. We 
consider that all states i-k where k>5 have no real significance in 
estimating the current state because they are too old. So we chose 
n equal to 5. 

if ( f(i) < 0 ) then processed statei = CONGESTED 
if ( f(i) = = 0 ) then processed statei = LOADED 
if ( f(i) > 0 ) then processed statei = UNLOADED 

Information update in Client Managers is made asynchronously, 
every time an RTCP report arrives. We have chosen to 
completely ignore the first RTCP report since the moment a 



Client joins a new stream, because we observed that this report 
usually contains a very high packet loss rate value. That value is 
due to temporary transition load and does not reflect an actual 
congestion reason. Had we taken it into account, it would force 
the next few processed states to be found CONGESTED, and 
would therefore tend to invoke a new unwanted transition 
towards a lower stream. Stream Managers update their rates 
synchronously and therefore time in system operation is divided 
in epochs of certain length. At the end of an epoch, each Stream 
Manager polls the states of all the Client Managers that 
correspond to a Client receiving this stream and determines the 
improvement or degradation in this stream’s video quality. 
Whether there will be an improvement or degradation is 
determined as follows: If all receivers (the number n of the 
receivers can easily computed by the RTCP protocol) are in the 
UNLOADED state, video quality is improved. If more than a 
certain threshold of receivers is CONGESTED, video quality is 
degraded. In other cased we keep the current video quality. The 
threshold used for our simulations was one-second of all 
receivers listening to the stream. 
The new bit rate is estimated using an Additive Increase, 
Multiplicative Decrease (AIMD) algorithm, just like TCP. 
Increase is achieved by adding a standard small value to the 
previous bit rate, and is therefore quite conservative in bandwidth 
consumption, while decrease is achieved by multiplying the 
previous bit rate with a number in the range of 0…1 (typically 
around 0.75) and so the algorithm is more aggressive when trying 
to react to congestion. 
There are three cases in this phase that will lead to a Client’s 
transition towards another stream: 
• If the stream from which the Client is currently receiving 

video has already reached its lowest transmitting rate and 
the Client is still in CONGESTED state then the Client 
stops listening to this stream and joins the stream of a lower 
quality stream (if such a stream exists). 

• If the stream from which the Client is currently receiving 
video has already reached its highest transmitting rate and 
the Client is still in UNLOADED state then the Client stops 
listening to this stream and joins the stream of a higher 
quality stream (if such a stream exists). 

• The third case applies to a Client that co-exists in a stream 
with low capacity receivers but is capable of handling better 
quality video, so it has been unable to improve the video 
quality of the current stream. The mechanism used aims in 
making the protocol more conservative and operates by 
counting the number of consecutive times the receiver was 
UNLOADED but failed to improve the video quality. When 
this number exceeds a certain limit, we assume that the 
receiver has indeed higher capabilities and move it to a 
better quality stream. Transition from one stream to another 
also means that the Client’s corresponding Client Manager 
module will now interact with the new Stream Manager. 

For a Client transition to occur, an additional rule is imposed in 
all cases: the Client must have sent a minimum number of reports 
(for our simulations this number was set to 5) since it joined the 
stream before leaves that stream. This rule tries to avoid very 
often transitions that cause unnecessary processing load and 
waste bandwidth. The Client is forced to stay in a stream for at 
least a certain amount of time (the time it takes to send the 
minimum number of RTCP reports) and so if it nevertheless 

decides to change stream after this time period, we are certain 
that this is a justified decision. 
We declare as unsuccessful stream change the situation when a 
Client joins a stream with higher transmission rate (or a lower 
transmission rate) and after a sort time period (Tchange) return to 
the previous stream. During our performance evaluation, we 
observe that the unsuccessful stream changes by the Clients 
cause instability to the operation of the proposed mechanism and 
must be avoided. In order to avoid unsuccessful stream changes 
by the Clients, when a Client makes an unsuccessful stream 
change we set the condition of the corresponding Client Manager 
to LOADED, we ignore the next 3 RTCP reports and we avert 
the Client to make the stream change which was unsuccessful for 
the next 2* Tchange time. 
We have to point out that Clients make transitions between 
streams synchronized at the end of each epoch. This helps us 
avoid possible problems that could be caused for example by two 
Clients sitting behind the same link and receiving different bit 
rates. 

4. PERFORMANCE EVALUATION  
In this section, we present a number of simulations that we made 
in order to analyze the behavior of the proposed mechanism 
during the multicast transmission of multimedia data with the use 
of simulcast approach. We implemented our mechanism and run 
simulations in the LBNL network simulator ns-2 ([10]). 
We run two simulations: (1) Multicast transmission of adaptive 
multimedia in heterogeneous Clients and UDP traffic at the same 
time. (2) Multicast transmission of adaptive multimedia in 
heterogeneous Clients and TCP traffic at the same time. The 
Server transmitted three streams with the following limits: stream 
one: 100Kbps-600Kbps, stream two: 600Kbps-1100Kbps and 
stream three: 1100Kbps-1600Kbps. During the simulations the 
Server was using the following parameters in order to control the 
operation of the proposed mechanism: a=0.75, b=0.8, γ=2, 
LRu=0.01, LRc=0.055 and Tchange = 20 sec (we obtain the above 
values through a number of experiments [2]). The AIMD 
algorithm of the Server was increasing the transmission rate of 
the stream one by 50Kbps, the transmission rate of the stream 
two by 70Kbps and transmission rate of the stream three by 
100Kbps, during unloaded network periods and was decreasing 
the transmission rate of all the streams by 80% during network 
congestion periods. 
Figure 2 shows the simulation topology. The bandwidth of each 
link is given to the simulation topology and varies from 0.7 Mbps 
to 4.0 Mbps. All the links in the simulation topology are full 
duplex, have delay 10 ms and they use the drop-tail (FIFO) 
policy to their queues. During the simulations, we have one 
Server (S) that multicast multimedia data to a group of 20 Clients 
(C1 to C20) with the use of the proposed mechanism. Clients C1 
to C10 are connected to router n2 and Clients C11 to C20 are 
connected to router n3. The Clients can be divided in to three 
categories: (1) High capacity Clients with 1.7 Mbps available 
bandwidth, (2) Medium capacity Clients with 1.2 Mbps available 
bandwidth and (3) Low capacity Clients with 0.7 Mbps available 
bandwidth. 
We execute the simulations for 300 seconds and the Server starts 
transmitting the stream one with transmission rate 100Kbps, the 
stream two with transmission rate 600Kbps and the stream three 



with transmission rate: 1100Kbps. In order to avoid 
synchronization, the Clients join randomly the stream one during 
the first 10 seconds of the simulation.  
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Figure 2. Simulation topology 

4.1 First Simulation: Transmission with 
Background UDP Traffic 

During this simulation, we investigate the behavior of the 
proposed mechanism during network congestion produced by a 
greedy UDP traffic. In order to produce UDP traffic, we attach to 
node A of the simulation topology, a CBR (Constant Bit Rate) 
traffic generator (CBR-Source), which transmits data to a CBR-
Receiver attached to node B of the simulation topology. The 
CBR-Source produces UDP traffic with constant transmission 
rate of 2.5 Mbps. The CBR-Source starts the transmission of the 
data at 100th second, and stops the transmission of the data at 
200th second. 
Figure 3 shows the transmission rates of Server streams and the 
UDP traffic during the simulation three and Figure 4, Figure 5 
and Figure 6 show the reception rate of a representative high 
capacity Client, a representative medium capacity Client and a 
representative low capacity Client respectively during the 
simulation three. 
In this simulation the Server except of treat with fairness the 
group of Clients, it must share the bandwidth of the congested 
links between the router n1, n2 and between router n2, n3 with 
the CBR-Source, when the CBR-Source transmits data. As 
Figure 3 shows, the Server streams start from their minimum 
transmission rates and increase their transmission rates while 
Clients join them. Around 50th second all the three streams have 
reach their maximum transmission rates. When the transmission 
of UDP traffic starts (at 100th second), congestion occurs to links 
between the router n1, n2 and between router n2, n3. The Clients 
prefer smaller transmission rates due to congestion condition, and 
the Server reduces its transmission rate. When the transmission 
of UDP traffic stops (200th second), the Server gradually 
consumes again the available bandwidth. 
As Figure 4, Figure 5 and Figure 6 show the Clients after some 
seconds join the stream that fulfils most their capabilities. When 
the transmission of CBR takes place, most of the Clients change 
stream and join the stream with smaller transmission rate due to 
the congestion condition. Low capacity Clients do not have the 
capability to go a stream with smaller transmission rate and keep 
receiving stream one. When the transmission of CBR stops, the 
Clients return to their initially stream and keep receiving this 
stream until the end of the simulation. 
It is obvious from Figure 3 that the proposed mechanism has 
good behavior during network congestion condition produced by 
greedy UDP traffic. When the transmission of UDP traffic starts 
the Server reduces its transmission rate and when the 

transmission of UDP traffic stops the Server consumes again the 
available bandwidth. 
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Figure 3. Server Streams and UDP traffic transmission 
rates during simulation three 
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Figure 4. Bandwidth of high capacity Client during 
simulation three 
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Figure 5. Bandwidth of medium capacity Client during 
simulation three 
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Figure 6. Bandwidth of low capacity Client during 
simulation three 

4.2 Second Simulation: Transmission with 
Background TCP Traffic  

During this simulation, we investigate the behavior of the 
implemented mechanism against TCP traffic. We use again the 
simulation topology of Figure 2 but we have set the bandwidth of 
links n1-n2 and n2-n3 to 3.3Mbps in order to ensure that heavy 
congestion will occur during the simulation. In order to produce 
TCP traffic, we connect to node A and B of the simulation 
topology, an FTP server and an FTP client respectively. The FTP 
server transmits a file to the FTP client using “4.3BSD Tahoe 
TCP” protocol [16]. The transmission of the file from the FTP 
server to the FTP client, starts at the 100th second and stops at the 
200th second. 
Figure 7 shows the transmission rates of Server streams and the 
TCP traffic during simulation two and Figure 8, Figure 9 and 
Figure 10 show the bandwidth of a representative high capacity 



Client, a representative medium capacity Client and a 
representative low capacity Client respectively during simulation 
two. 
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Figure 7. Server Streams and TCP traffic transmission 
rates during simulation two 
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Figure 8. Bandwidth of high capacity Client during 
simulation two 
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Figure 9. Bandwidth of medium capacity Client during 
simulation two 
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Figure 10. Bandwidth of low capacity Client during 
simulation two 

In this simulation, the Server except of treating the group of 
Clients with fairness, it must share the bandwidth of the 
congested links between the router n1, n2 and between router n2, 
n3 with the TCP traffic when the FTP transmission of the file 
takes place. As Figure 7 shows, the Server streams start from 
their minimum transmission rate and increase their transmission 
rates while Clients join them. Around the 50th second all three 
streams have reached their maximum transmission rates. When 
the transmission of TCP source starts (at the 100th second), 
congestion occurs to links between the router n1, n2 and between 
router n2, n3. The Clients prefer smaller transmission rates due to 
congestion condition, and the Server releases bandwidth so that 
the TCP traffic can use it. When the transmission of the TCP 
traffic takes place, the Server releases some bandwidth (about 0.5 
Mbps) for a while and reserves it again. When the transmission 
of TCP traffic stops (100th second) the Server gradually reserves 
again the available bandwidth. 

As Figure 8, Figure 9 and Figure 10 show the Clients after some 
seconds have joined the stream that better fulfils their 
capabilities. When the transmission of TCP takes place most of 
the Clients do not change stream and keep receiving the same 
stream with reduced transmission rate due to the congestion 
condition. Medium capacity Client tries to join stream one but 
after some seconds returns again to Stream two, which better 
meets its capabilities. 
It is obvious from Figure 7 that the behavior of our mechanism to 
TCP traffic is friendly. The TCP traffic has transmission rate of 
more than 0.4 Mbps many times and maximum transmission rate 
of 1.2Mbps during the simulation, which is good performance for 
TCP transmission. In addition, the Server many times releases 
bandwidth and provides it to TCP source and in one case (115th 
second) the Server releases 0.5 Mbps of its bandwidth. The 
Server has the following drawback: The Server’s transmission 
rate during the transmission of TCP traffic is not stable. The 
Server would have ideal behavior if it reduced its transmission 
rate and kept it steady while the transmission of TCP traffic took 
place.  

4.3 Comparison of simulation and experimental 
results 

In this paragraph, we compare the simulation results, which are 
presented in this paper, with the experimental results, which have 
been obtained through the experimental evaluation of the 
proposed mechanism ([4]). 
In outline, the proposed mechanism has similar behavior both in 
the simulation environment and in the real network environment 
where the experiments presented in [4] took place. In both cases 
the proposed mechanism behaves the same against TCP traffic: 
In addition, in both cases the proposed mechanism behaves the 
same during heavy network congestion: Figure 11 shows the 
transmission rate of TCP traffic and the transmission rate of the 
implemented prototype in the experimental testbed. 
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Figure 11. Transmission rate of TCP traffic and the 
implemented prototype in the experimental test-bed 

We notice the following differences in the behavior of the 
proposed mechanism between the simulation environment and 
the real network environment: 
• The transmission rate of the Server is not so stable in the 

real network environment as it is in the simulation 
environment. 

• The Server needs more time to find the streams’ 
transmission rates that satisfy most the heterogeneous group 
of receivers in the real network environment comparing 
with the simulation environment 

The above differences derive from the following facts: 
• During the simulation, we assume that the encoder of the 

Server has the capability to produce any transmission rate 



that the proposed mechanism suggests. This is not true 
during the experiments in a real network environment due to 
the fact that depending on the used compression scheme and 
the data content, the encoder might only be able to change 
its transmission rate in steps. When the proposed 
mechanism suggests a new transmission rate and the 
encoder cannot produce it, cause instability to the operation 
of the proposed mechanism. This is the reason why during 
the experiments in a real network environment the 
transmission rate of the Server is not stable. 

• During the simulation, we assume that the CPU of Server is 
powerful enough to encode all the transmitted streams. This 
is not always true during the experiments in a real network 
environment. Many times the CPU can be overloaded, 
which has as result the instability of the Server operation. 
Due to this instability, the Server cannot keep the 
transmission rate that the proposed mechanism suggests. 
This lead to the above described behavior of Server. 

In order to avoid the above describe undesirable behavior of the 
proposed mechanism during the experiments in a real network 
environment, we have to take in account constrains that the 
multimedia communication over the Internet has. This constrains 
are presented in [14]. 

5. CONCLUSIONS - FUTURE WORK 
In this paper, we present the behaviour investigation of a 
mechanism for multicast transmission of adaptive multimedia 
data in a heterogeneous group of receivers with the use of 
replicated streams. We investigate the behaviour of the proposed 
mechanism through a number of simulations. In addition, we 
compare the simulation results presented in this paper with the 
experimental results, which we have been presented in paper [4]. 
Main conclusion of the simulation was that the proposed 
mechanism has friendly behaviour against the dominant traffic 
types (TCP traffic) of today’s Internet and good behaviour during 
congestion condition. In addition the proposed mechanism treat 
with fairness a heterogeneous group of Clients.  
Our future work includes the investigation of dynamically adding 
more streams instead of the static number of streams (specified 
during initialisation) that the proposed mechanism supports now. 
In addition we will enhance the proposed mechanism in order to 
support multicast of layered encoded video and we will evaluate 
this new version. Moreover we plan to increase the reliability and 
the efficiency of the implemented prototype in order to overcome 
the drawbacks that the implemented prototype has. In addition, 
our future work includes the improvement of the proposed 
mechanism’s behavior against TCP traffic. In addition we will 
investigate the behavior of the proposed mechanism during the 
multicast transmission in very large group of receivers. The 
multicast transmission in very large group of receivers 
encounters the feedback implosion problem ([1]). 
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