
 
 
 
Examining the Benefits of a Hybrid Distributed Architecture for Bandwidth 

Brokers 
 
 

Ch. Bouras K. Stamos 
Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece 

and 
Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece 

Tel:+30-2610-{960375, 960316} 
Fax:+30-2610-{969016, 960358} 
e-mail: {bouras, stamos}@cti.gr 

 
 

Abstract 
In this paper the issue of the architectural 

organization of a Bandwidth Broker with respect to the 
distribution of functionalities among separate entities is 
examined. We discuss the benefits of a distributed versus 
a centralized architecture and study some of the most 
important implementations. We also present a novel 
design proposal that builds on our earlier work on the 
admission control module of a Bandwidth Broker and 
introduces it in the framework of a distributed Bandwidth 
Broker architecture. Our conclusions are supported by a 
series of simulated experiments that we analyze. 

 
1. Introduction 

 
The Differentiated Services (DiffServ) framework is 

one of the basic architectures that have been proposed for 
QoS provision in the Internet. Because the Internet 
consists of numerous network domains with each one 
acting as an autonomous system, just using the current 
DiffServ framework does not solve the problem of 
providing end-to-end QoS, since each domain may be 
incompatibly configured. One entity that has been 
proposed in order to overcome this problem and provide 
end-to-end QoS across network domains is the Bandwidth 
Broker. 

A Bandwidth Broker is an entity responsible for 
providing QoS within a network domain. The Bandwidth 
Broker manages the resources within the specific domain 
by controlling the network load and by accepting or 
rejecting bandwidth requests. 

The operation of a Bandwidth Broker depends on the 
cooperation of a number of modules which include its 
inter-domain interface, the intra-domain interface, a 
routing table interface, a user/application interface, a 
policy manager interface and a network management 
interface. 

Since the concept of the Bandwidth Broker was 
introduced [1], a number of architectures have been 
proposed and a number of implementations have been 
made. In this paper we examine and compare the 
characteristics of some of the most important already 
existing architectures, and we study how the way the 
functionalities are distributed in the network can be 
improved. A survey on existing Bandwidth Broker 
implementations can be found in [6]. 

It is very important while considering the 
architecture of a Bandwidth Broker to determine whether 
the Bandwidth Broker is going to be a centralized module 
with full knowledge of the whole domain that it manages, 
or whether its operation is distributed among several 
nodes in the network. Both approaches offer advantages 
and disadvantages and usually present the engineer with a 
number of trade-offs. 

The basic factor that influents toward a distributed 
designed Bandwidth Broker is the scalability issue with 
regard to the distribution of the processing load. As the 
network size increases, the Bandwidth Broker is likely to 
face increasingly large numbers of flows. Depending on 
the approach taken for handling the admission control 
functionality, this increase can lead to scalability 
problems in terms of disk access speed and memory 
requirements. In our previous work [3], we have dealt 
with how this problem could be tackled by using a more 
intelligent adaptive admission control module. This 
solution, however, has the downside of scaling in expense 
of specific metrics that are associated with the Bandwidth 
Broker performance, like the achieved network 
utilization. A different approach that does not have any 
impact on the Bandwidth Broker performance could be 
the distribution of the load among separate entities, 
leading to a distributed Bandwidth Broker design. 

On the other hand, such an architecture increases the 
Bandwidth Broker’s need for network communication, 



and therefore introduces an overhead that has to be taken 
into account and examined. 

Current literature on Bandwidth Brokers has dealt 
with both categories of designs. Our description of the 
existing Bandwidth Broker architectures is presented with 
regard to the way they distribute the processing load and 
their potential scalability in terms of disk access speed, 
memory and communication overhead. The existing 
architectures can be categorized as follows: 
• Centralized architectures: A single Bandwidth Broker 

handles all requests 
• Distributed architectures: 

� Multiple Bandwidth Brokers operating 
identically, duplicating information 

� Multiple Bandwidth Brokers handling different 
tasks, e.g. a central Bandwidth Broker and 
multiple edge Bandwidth Brokers. 

• Hybrid architectures: A single Bandwidth Broker that 
under circumstances can distribute the load. 
The rest of the paper is organized as follows: Section 

2 presents a comparison between the different 
architectures, and section 3 presents a hybrid model that 

extends previous work with a distribution of the 
Bandwidth Broker components. Section 4 contains 
extensive simulations in order to evaluate the proposed 
architecture, while section 5 describes our final 
conclusions as well as the future work that we intend to 
do on this area. 

 
2. Centralized and distributed 

architectures: Comparison description 
and discussion 

 
In this section we present proposed bandwidth 

architectures from the relevant literature on the design of 
Bandwidth Brokers ([7], [8], [9], [10]). Our intention is to 
outline the advantages and disadvantages of the different 
strategies for the Bandwidth Broker design. A lot of 
researchers have worked on this area producing various 
solutions, each of which is potentially suitable for several 
situations and weak on others. 

 

 

Table 1: Comparison table of various Bandwidth Broker architectures 

 University of 
Kansas 

MIPTel QBone UCLA CTI NS-2 
implementation 

Architecture Centralized Centralized Centralized, can be extended 
for distributed 

Distributed Distributed 

Admission 
Control 

Maintains and 
consults policy 
database 

Pre-
configured 
bandwidth 
threshold 

Traffic demand matrix Accepted if 
SLA is not 
violated 

Restricted by 
available 
bandwidth 

Routing table No Yes Yes Yes No 
Security Not defined Not defined Not defined Not defined Not defined 
Robustness / 
Failure 
recovery 

Not defined Not defined Recovery actions from most 
common failures 

Recovery 
actions from 
most 
common 
failures 

Not defined 

Inter-domain 
interface 

TCP sockets for 
Linux routers / 
Telnet 
automated script 
for Cisco routers 

Custom 
protocol 

Custom protocol Custom 
protocol 

TCP 

Intra-domain 
interface 

TCP sockets for 
Linux routers / 
automated script 
for Cisco routers 

Custom 
protocol 

COPS / SNMP / Telnet COPS TCP 

User 
interface 

Web-based GUI message 
exchange 

GUI, Host/User, Server / 
Gateway Interface 

Web-based 
GUI (PHP) 

– 

 
 Some of the architectures presented in the 

comparison Table 1 have been implemented, like the 



University of Kansas and the UCLA architectures, while 
others are theoretical or at the design phase. The table 
offers a view of the wide variation between the 
characteristics of the various proposed and implemented 
Bandwidth Broker architectures that one can find in the 
current literature. It should also be noted, that as Table 1 
also indicates, the distributed architectures are not as 
common as the centralized ones. 

Most of the existing literature proposes Bandwidth 
Brokers that comprise of a central module that deals with 
functionalities such as admission control, inter-domain 
communication, maintaining a routing table interface, 
connecting to the network routers and sending the proper 
configuration parameters. 

In order to overcome the scalability issues that are 
associated with a centralized Bandwidth Broker model 
and to avoid having the Bandwidth Broker as the 
bottleneck while the network itself is underutilized, the 
authors in [4] propose a distributed Bandwidth Broker 
architecture. Their design is comprised of one central 
Bandwidth Broker (cBB) and a number of edge 
Bandwidth Broker (eBB) in the domain. There are two 
levels that represent the QoS states, link level and path 
level. The idea is to maintain databases with information 
regarding both the reservations on the link and on the path 
level. The path level database information is extracted 
from the link QoS state database. While however the link 
state database is only maintained by the cBB, each of the 
eBBs maintains a mutually exclusive subset of the path 
state database, and can therefore handle the admission 
control load for the relevant paths. The authors then 
propose a number of variations on how the admission 
requests can be handled, depending on whether they will 
be accepted or not. 

Comparing the distributed architectures with the 
centralized model, we note that while the distributed 
architectures offer scalability advantages over the 
centralized model, they offer inferior resource 
management and introduce bandwidth wastage along the 
paths. Furthermore, if the link database needs to be 
frequently accessed, the processing overhead can increase 
and become counter-productive. 

Another important comparison point is the 
robustness of each solution and its behavior in unexpected 
or undesirable circumstances. Failures at a network 
component can be categorized as follows: 
• The component does not operate at all. 
• The component operates erroneously and sends 

unexpected and unknown messages to its 
communicating nodes. 

• The component is overrun by a malicious entity (for 
example a virus) and appears to be sending valid 
messages but it does not obey the proper behavior 
and tries to downgrade, corrupt or completely halt the 
proper operation of the architecture. 

The last two categories are also called Byzantine 
behaviors and can be summarized as states where the 
component operates in an arbitrary fashion, not according 
to the algorithm it was designed to follow. 

At this point we can discover still another trade-off 
between the centralized and the distributed classes of 
architectures: A distributed architecture can be designed 
in such a way that greater robustness and tolerance for 
some failed entities of the Bandwidth Broker architecture, 
while a centralized architecture has a single point of 
failure. On the other hand, it is much easier to secure and 
closely protect a single Bandwidth Broker entity, than it is 
to safeguard and scrutinize the behavior of a multitude of 
components that comprise a distributed Bandwidth Broker 
architecture. 

Furthermore, a distributed architecture also has to 
take into account the issue of consistency between the 
components that comprise the Bandwidth Broker. This is 
also true in some cases of a single Bandwidth Broker 
entity, where in order to increase robustness, additional 
backup components are introduced (like a duplicate 
Bandwidth Broker). 

It also has to be taken into account, that the relative 
pros and cons of the architectures are affected by the 
deployment environment. Since the first category of 
failures (complete shutdown of the failed component) are 
usually much more easily discovered and more desirable 
than the rest of the failure categories, if the Bandwidth 
Broker architecture is implemented and deployed at an 
environment where such failures can be ruled out, the 
relevant types of considerations can naturally be 
discarded. 

 
3. A hybrid model 

 
In [3], we proposed an adaptive model for the 

admission control module of a Bandwidth Broker that 
aims at improving the resource utilization of the 
admission mechanism while balancing it with the 
Bandwidth Broker’s processing load. The above 
discussions demonstrate another variation of that 
algorithm that will also be able to benefit from a 
distributed Bandwidth Broker architecture. In our 
previous work, when the admission control module 
determined that the processing load exceeding a pre-
defined level, it chose to relax the approximation of the 
optimal solution for the resource utilization. Our basic 
idea here is that a distributed architecture in cases of high 
processing load, instead of settling for less optimal 
admission decisions, allows the processing load to be 
distributed among separate entities that can work in 
parallel. 

Our model uses a central Bandwidth Broker that is 
typically an available powerful server, and deals with the 
admission of the requested flows as long as the admission 



algorithm computations does not exceed its capabilities. 
The central Bandwidth Broker has complete knowledge 
of the managed network and the location of the secondary 
Bandwidth Brokers. Each secondary Bandwidth Broker is 
assigned a mutually exclusive subset of the network nodes 
in its neighborhood and keeps information about the state 
of the relevant part of the network. As soon as the central 
Bandwidth Broker is not capable of meeting the 

computation thresholds, it allocates subsets of the 
admission requests to the secondary entities. The 
secondary Bandwidth Brokers use the same admission 
control algorithm as the central Bandwidth Broker, but 
the smaller subsets they handle allow them to reside on 
relatively inexpensive hardware. Figure 1 visualizes an 
example instance of the described architecture. 
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Figure 1: Distributed architecture 

 
We have chosen to distinguish between three cases 

relative to the processing load on the central Bandwidth 
Broker. During Phase 1, the central Bandwidth Broker 
handles all admission requests and manages the domain 
by itself. When the computation load becomes large 
enough to exceed a predetermined threshold, the central 
Bandwidth Broker proceeds to Phase 2 and starts 
distributing some of the admission requests. In particular, 
it distributes the admission requests whose source and 
destination are both managed by the same secondary 
Bandwidth Broker (we name these local requests). If the 
remaining load on the central Bandwidth Broker remains 
large (larger than a times the threshold, where a can be 
reasonably set to a value of 1.5 as discussed below), we 
move to Phase 3, where the central Bandwidth Broker 
iteratively distributes even more admission requests in 
chunks. Requests are distributed according to the length 
of their predicted path (therefore the central Bandwidth 

Broker will release the control of the requests with the 
longest paths, for which it is the most suitable of 
managing, at the very latest stages). In order not to 
increase the complexity of the distribution mechanism the 
prediction of the path length is performed efficiently 
using a matrix that contains average path lengths 
according to their source and destination. This matrix is 
aggregated similarly to the segmentation of the domain in 
the areas managed by the secondary Bandwidth Brokers 
and therefore is kept small enough for quicker access and 
smaller memory requirements. The selection of the value 
of parameter a is closely associated to the topology of the 
specific network. Larger values should be used when the 
ratio of secondary Bandwidth Brokers to network size is 
large, while smaller values should be used when there is a 
relatively small number of secondary Bandwidth Brokers. 
The reason is that this ratio also implicitly affects the 
percentage of requests that will be local, and therefore 



distributed already from Phase 2. Figure 2 gives an 
overview of the transitioning mechanism between the 

three operating phases, while the following pseudocode 
summarizes the idea behind the proposed model: 

 
 

 
Phase = 1 
while incoming requests are accumulated 
  try to compute optimal admission decision 
  if ComputationTime > Threshold 
    if ComputationTime > a * Threshold 
      Phase = 3 
      sort requests by predicted path length 
      chunk = the (chunk size) shortest paths 
      distribution set = distribution set + chunk 
    else  
      Phase = 2 
      distribution set = local requests 
    end if 
    break distribution set in mutually exclusive sets 
    for all sets 
      activate secondary BB 
      distribute set to secondary BB 
    end for 
  else 
    Phase = 1  
    Empty distribution set  
    increase max number of admission requests concurrently 

examined 
  end if 
end while 
 

 
 
Details on how the admission control part of the 

mechanism operates can be found in [3]. Whether all 
secondary Bandwidth Brokers are active or not is 
determined by the central Bandwidth Broker. Secondary 
Bandwidth Brokers that manage a part of the network 
where a lot of admission requests are originated from are 
the ones that are invoked more frequently. 

During its operation the central Bandwidth Broker 
entity makes sure to keep the secondary Bandwidth 
Brokers updated about the state of the network links and 
the already admitted flows. In order to keep the 
communication overhead as low as possible, the central 
Bandwidth Broker transmits only the absolutely necessary 
information to the secondary Bandwidth Brokers. In 
particular, when transitioning from Phase 1 to Phase 2, 
the central Bandwidth Broker only needs to transfer the 
local routing and reservation status to some secondary 
Bandwidth Brokers (since during Phase 2, the secondary 
Bandwidth Brokers are only going to decide for local 
requests). While in Phase 2, the central Bandwidth Broker 

only transmits the routing and reservation status 
information to the secondary Bandwidth Brokers that will 
examine requests. Finally, when transitioning to Phase 3, 
the central Bandwidth Broker transmits the complete 
routing and reservation status information to some 
secondary Bandwidth Brokers. While in Phase 3, the 
central Bandwidth Broker will have to transfer both local 
and complete information on several secondary 
Bandwidth Brokers. 

Although the secondary Bandwidth Broker entities 
might seem to require additional resources and additional 
network management effort, their low requirements allow 
them to be typically hosted on the machine that 
accompanies the router software in most practical 
implementations. In this case, the proposed architecture 
manages to decrease the load from the central Bandwidth 
Broker while staying relatively close to a satisfactory 
network utilization as described in [3], while also taking 
advantage of existing resources. 

We have chosen not to keep a flow database as in 
[4], in order to save memory, hard disk space and CPU 



resources. Furthermore, such an approach would make it 
more difficult to assign the mutually exclusive admission 
request sets. 

Secondary Bandwidth Brokers can also function as 
back-up mechanisms in the event that the central 
Bandwidth Broker fails. In the simple case when the 
central Bandwidth Brokers ceases to operate, a suitable 
designated secondary can take its place. For the more 
serious case of a Byzantine failure, the proposed 
architecture can easily be designed so that secondary 
Bandwidth Brokers can detect and overcome an 

erroneously operating central Bandwidth Broker. This can 
be achieved if several secondary Bandwidth Brokers have 
been specifically assigned and monitor the messages 
originated by the central entity. If these messages become 
consistently corrupted or incompatible with the 
algorithm’s operation (of which the secondary Bandwidth 
Brokers are aware since they run the same algorithm on a 
smaller scale) they can notify the rest and effectively 
ignore the erroneously behaving central Bandwidth 
Broker. 
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Figure 2: Hybrid model’s operation 

 
 

4. Performance evaluation via simulation 
 

4.1. Simulation setup 
 
In our performance evaluation we have to take into 

consideration the following factors that affect the 
scalability capability of a centralized Bandwidth Broker 
design: 
• Disk accesses: This parameter depends on the 

number of updates that the Bandwidth Broker has to 
perform on the states that it maintains for managing 
the network. Reducing this number can significantly 
enhance the Bandwidth Broker’s capability to deal 
with heavier loads. 

• Memory requirements: Memory can also be a 
limiting factor and has been examined in previous 
work as in [5]. 

• Communication overhead: Depending on the 
distribution architecture, this factor depends on the 
level of communication between equivalent modules 
of the Bandwidth Broker or between hierarchically 
separated components, for example a central 
Bandwidth Broker communicating with edge 
Bandwidth Brokers. 
The communication model used in an architecture 

plays a very significant role for the overhead that this 
communication introduces at the network. Some 
implementations choose to use the COPS protocol [2] that 
has been specifically designed for the kind of 
communication that is necessary for exchanging policy 
information between the Bandwidth Broker and the 
router, while others prefer a customized approach. 



The hybrid distribution model that was presented in 
the previous section was evaluated through simulation 
experiments using a customized simulation environment 
that we developed for the purposes of this evaluation. 
This enabled us to run a number of simulations with 
various topologies and various combinations of central 
and secondary Bandwidth Brokers. In general, trying to 
evaluate the number of disk accesses and the memory 
requirements of a specific algorithm is rather complicated 
because it can be affected by low level details like the 
type of operating system used and the quality of the 
implementation, factors which can not be evaluated 
satisfactorily in a simulation environment. We therefore 
chose to use the distribution of the requests as the most 
appropriate indicator of the overhead that our model 
imposes on the various components that comprise our 
architecture, and the one that is least affected by the fact 
that the results are extracted from a simulation and not 
from an actual implementation. 

For our simulations, we used the initial hybrid model 
that was presented in section 3. Because our intention was 
to measure the performance characteristics of the 
proposed model and not its failure-resilience features, the 
simulation did not take into account Byzantine or other 
failures. We believe that such performance evaluations 
are better suited for actual environments. The simulations 
were performed on a Pentium 4 2.4 GHz Windows PC 
and we repeated each experiment in order to certify its 
repeatability. Reservation requests were simulated using 
an input file that was gradually processed by the 
Bandwidth Broker module. 

 
4.2. Simulation results 

 
The initial topology specified one central and 2 

secondary Bandwidth Brokers, with each one managing 
an equal number of users that created reservation 
requests. For our first experiment we used a random 
sequence of reservation requests that were infrequent 
enough for the central Bandwidth Broker to handle them 
exclusively. The results are shown in Figure 3. 
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Figure 3: Infrequent requests 

Since the central Bandwidth Broker can easily 
handle all admission decisions, they are optimally decided 
without resorting to any secondary Bandwidth Broker, 
which therefore remain inactive. In this case, the central 
Bandwidth Broker can decide on the admission of 
requests using an algorithm that approximates the optimal 
utilization of network resources, as detailed in [3]. 

For our second experiment we also used a random 
sequence of reservation requests, this time however they 
arrived at a higher frequency. The results we obtained can 
be seen in Figure 4. 
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Figure 4: Frequent requests 

As the incoming requests increased, the central 
Bandwidth Broker transitioned from Phase 1 to Phase 2 in 
the early stages of our experiment. At that point, it started 
distributing local requests to both the secondary 
Bandwidth Brokers, which allowed the central Bandwidth 
Broker to remain within the specified threshold for the 
computation time. It can also be observed that our 
distribution scheme offloads some of the computation 
burden to the secondary Bandwidth Brokers, but avoids 
placing a significant burden on them, because during 
Phase 2 the central Bandwidth Broker still handles a 
significant number of requests. This property of our 
proposal offers a double advantage over most of the 
alternative architectures: 
• It distributes the processing load and therefore the 

architecture is more scalable and can cope with more 
large-scale environments than the single entity 
architectures 

• The central Bandwidth Broker entity is utilized at the 
maximum of its capabilities, therefore reducing the 
network communication overhead compared to the 
distributed architectures. 
For our final simulation we used a larger topology 

with 5 secondary Bandwidth Brokers and an increased 
rate of reservation requests. As the results in Figure 5 
show, the load could easily be handled by the Bandwidth 
Broker entities. In practice, such large-scale domains 
would typically have a number of servers available for 
running the secondary Bandwidth Broker module 
analogous to their size. This experiment demonstrates that 



in such cases, these servers are utilized by our model, 
allowing the architecture to effectively scale. 
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Figure 5: Large-scale topology 

Because of the large number of requests, the central 
Bandwidth Broker was initially overwhelmed. However, 
it quickly transitioned from Phase 1 to Phase 3 and 
distributed the requests to the secondary Bandwidth 
Brokers, and therefore managed to retain a low processing 
overhead throughout the rest of the experiment, while 
each secondary Bandwidth Broker was able to deal with 
its limited admission set. 

 
5. Conclusions - Future work 

 
A distributed architecture can offer a number of 

advantages over the centralized approach. Our proposal, 
combined with an adaptive admission control scheme can 
make use of existing resources in order to both improve 
the efficiency of the admission decisions and keep the 
processing requirements low. Furthermore, the 
distribution of Bandwidth Broker components helps the 
network deal with a number of failures of varying degree 
of seriousness. 

Our future work will focus both on the extension of 
the study on the Bandwidth Broker architectures, and on 
the issue of securing the Bandwidth Broker’s operation 
from compromised Bandwidth Broker components, from 
disobedient clients and from stolen or altered messages 
while transmitted on the network. Specifically, we intend 

to evaluate our model on an actual environment and 
measure our implementation’s resilience to various kinds 
of failures. 
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