

Examining the Benefits of a Hybrid Distributed Architecture for Bandwidth

Brokers

Ch. Bouras K. Stamos
Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece

and
Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece

Tel:+30-2610-{960375, 960316}
Fax:+30-2610-{969016, 960358}
e-mail: {bouras, stamos}@cti.gr

Abstract
In this paper the issue of the architectural

organization of a Bandwidth Broker with respect to the
distribution of functionalities among separate entities is
examined. We discuss the benefits of a distributed versus
a centralized architecture and study some of the most
important implementations. We also present a novel
design proposal that builds on our earlier work on the
admission control module of a Bandwidth Broker and
introduces it in the framework of a distributed Bandwidth
Broker architecture. Our conclusions are supported by a
series of simulated experiments that we analyze.

1. Introduction

The Differentiated Services (DiffServ) framework is

one of the basic architectures that have been proposed for
QoS provision in the Internet. Because the Internet
consists of numerous network domains with each one
acting as an autonomous system, just using the current
DiffServ framework does not solve the problem of
providing end-to-end QoS, since each domain may be
incompatibly configured. One entity that has been
proposed in order to overcome this problem and provide
end-to-end QoS across network domains is the Bandwidth
Broker.

A Bandwidth Broker is an entity responsible for
providing QoS within a network domain. The Bandwidth
Broker manages the resources within the specific domain
by controlling the network load and by accepting or
rejecting bandwidth requests.

The operation of a Bandwidth Broker depends on the
cooperation of a number of modules which include its
inter-domain interface, the intra-domain interface, a
routing table interface, a user/application interface, a
policy manager interface and a network management
interface.

Since the concept of the Bandwidth Broker was
introduced [1], a number of architectures have been
proposed and a number of implementations have been
made. In this paper we examine and compare the
characteristics of some of the most important already
existing architectures, and we study how the way the
functionalities are distributed in the network can be
improved. A survey on existing Bandwidth Broker
implementations can be found in [6].

It is very important while considering the
architecture of a Bandwidth Broker to determine whether
the Bandwidth Broker is going to be a centralized module
with full knowledge of the whole domain that it manages,
or whether its operation is distributed among several
nodes in the network. Both approaches offer advantages
and disadvantages and usually present the engineer with a
number of trade-offs.

The basic factor that influents toward a distributed
designed Bandwidth Broker is the scalability issue with
regard to the distribution of the processing load. As the
network size increases, the Bandwidth Broker is likely to
face increasingly large numbers of flows. Depending on
the approach taken for handling the admission control
functionality, this increase can lead to scalability
problems in terms of disk access speed and memory
requirements. In our previous work [3], we have dealt
with how this problem could be tackled by using a more
intelligent adaptive admission control module. This
solution, however, has the downside of scaling in expense
of specific metrics that are associated with the Bandwidth
Broker performance, like the achieved network
utilization. A different approach that does not have any
impact on the Bandwidth Broker performance could be
the distribution of the load among separate entities,
leading to a distributed Bandwidth Broker design.

On the other hand, such an architecture increases the
Bandwidth Broker’s need for network communication,

and therefore introduces an overhead that has to be taken
into account and examined.

Current literature on Bandwidth Brokers has dealt
with both categories of designs. Our description of the
existing Bandwidth Broker architectures is presented with
regard to the way they distribute the processing load and
their potential scalability in terms of disk access speed,
memory and communication overhead. The existing
architectures can be categorized as follows:
• Centralized architectures: A single Bandwidth Broker

handles all requests
• Distributed architectures:

� Multiple Bandwidth Brokers operating
identically, duplicating information

� Multiple Bandwidth Brokers handling different
tasks, e.g. a central Bandwidth Broker and
multiple edge Bandwidth Brokers.

• Hybrid architectures: A single Bandwidth Broker that
under circumstances can distribute the load.
The rest of the paper is organized as follows: Section

2 presents a comparison between the different
architectures, and section 3 presents a hybrid model that

extends previous work with a distribution of the
Bandwidth Broker components. Section 4 contains
extensive simulations in order to evaluate the proposed
architecture, while section 5 describes our final
conclusions as well as the future work that we intend to
do on this area.

2. Centralized and distributed

architectures: Comparison description
and discussion

In this section we present proposed bandwidth

architectures from the relevant literature on the design of
Bandwidth Brokers ([7], [8], [9], [10]). Our intention is to
outline the advantages and disadvantages of the different
strategies for the Bandwidth Broker design. A lot of
researchers have worked on this area producing various
solutions, each of which is potentially suitable for several
situations and weak on others.

Table 1: Comparison table of various Bandwidth Broker architectures

 University of
Kansas

MIPTel QBone UCLA CTI NS-2
implementation

Architecture Centralized Centralized Centralized, can be extended
for distributed

Distributed Distributed

Admission
Control

Maintains and
consults policy
database

Pre-
configured
bandwidth
threshold

Traffic demand matrix Accepted if
SLA is not
violated

Restricted by
available
bandwidth

Routing table No Yes Yes Yes No
Security Not defined Not defined Not defined Not defined Not defined
Robustness /
Failure
recovery

Not defined Not defined Recovery actions from most
common failures

Recovery
actions from
most
common
failures

Not defined

Inter-domain
interface

TCP sockets for
Linux routers /
Telnet
automated script
for Cisco routers

Custom
protocol

Custom protocol Custom
protocol

TCP

Intra-domain
interface

TCP sockets for
Linux routers /
automated script
for Cisco routers

Custom
protocol

COPS / SNMP / Telnet COPS TCP

User
interface

Web-based GUI message
exchange

GUI, Host/User, Server /
Gateway Interface

Web-based
GUI (PHP)

–

 Some of the architectures presented in the

comparison Table 1 have been implemented, like the

University of Kansas and the UCLA architectures, while
others are theoretical or at the design phase. The table
offers a view of the wide variation between the
characteristics of the various proposed and implemented
Bandwidth Broker architectures that one can find in the
current literature. It should also be noted, that as Table 1
also indicates, the distributed architectures are not as
common as the centralized ones.

Most of the existing literature proposes Bandwidth
Brokers that comprise of a central module that deals with
functionalities such as admission control, inter-domain
communication, maintaining a routing table interface,
connecting to the network routers and sending the proper
configuration parameters.

In order to overcome the scalability issues that are
associated with a centralized Bandwidth Broker model
and to avoid having the Bandwidth Broker as the
bottleneck while the network itself is underutilized, the
authors in [4] propose a distributed Bandwidth Broker
architecture. Their design is comprised of one central
Bandwidth Broker (cBB) and a number of edge
Bandwidth Broker (eBB) in the domain. There are two
levels that represent the QoS states, link level and path
level. The idea is to maintain databases with information
regarding both the reservations on the link and on the path
level. The path level database information is extracted
from the link QoS state database. While however the link
state database is only maintained by the cBB, each of the
eBBs maintains a mutually exclusive subset of the path
state database, and can therefore handle the admission
control load for the relevant paths. The authors then
propose a number of variations on how the admission
requests can be handled, depending on whether they will
be accepted or not.

Comparing the distributed architectures with the
centralized model, we note that while the distributed
architectures offer scalability advantages over the
centralized model, they offer inferior resource
management and introduce bandwidth wastage along the
paths. Furthermore, if the link database needs to be
frequently accessed, the processing overhead can increase
and become counter-productive.

Another important comparison point is the
robustness of each solution and its behavior in unexpected
or undesirable circumstances. Failures at a network
component can be categorized as follows:
• The component does not operate at all.
• The component operates erroneously and sends

unexpected and unknown messages to its
communicating nodes.

• The component is overrun by a malicious entity (for
example a virus) and appears to be sending valid
messages but it does not obey the proper behavior
and tries to downgrade, corrupt or completely halt the
proper operation of the architecture.

The last two categories are also called Byzantine
behaviors and can be summarized as states where the
component operates in an arbitrary fashion, not according
to the algorithm it was designed to follow.

At this point we can discover still another trade-off
between the centralized and the distributed classes of
architectures: A distributed architecture can be designed
in such a way that greater robustness and tolerance for
some failed entities of the Bandwidth Broker architecture,
while a centralized architecture has a single point of
failure. On the other hand, it is much easier to secure and
closely protect a single Bandwidth Broker entity, than it is
to safeguard and scrutinize the behavior of a multitude of
components that comprise a distributed Bandwidth Broker
architecture.

Furthermore, a distributed architecture also has to
take into account the issue of consistency between the
components that comprise the Bandwidth Broker. This is
also true in some cases of a single Bandwidth Broker
entity, where in order to increase robustness, additional
backup components are introduced (like a duplicate
Bandwidth Broker).

It also has to be taken into account, that the relative
pros and cons of the architectures are affected by the
deployment environment. Since the first category of
failures (complete shutdown of the failed component) are
usually much more easily discovered and more desirable
than the rest of the failure categories, if the Bandwidth
Broker architecture is implemented and deployed at an
environment where such failures can be ruled out, the
relevant types of considerations can naturally be
discarded.

3. A hybrid model

In [3], we proposed an adaptive model for the

admission control module of a Bandwidth Broker that
aims at improving the resource utilization of the
admission mechanism while balancing it with the
Bandwidth Broker’s processing load. The above
discussions demonstrate another variation of that
algorithm that will also be able to benefit from a
distributed Bandwidth Broker architecture. In our
previous work, when the admission control module
determined that the processing load exceeding a pre-
defined level, it chose to relax the approximation of the
optimal solution for the resource utilization. Our basic
idea here is that a distributed architecture in cases of high
processing load, instead of settling for less optimal
admission decisions, allows the processing load to be
distributed among separate entities that can work in
parallel.

Our model uses a central Bandwidth Broker that is
typically an available powerful server, and deals with the
admission of the requested flows as long as the admission

algorithm computations does not exceed its capabilities.
The central Bandwidth Broker has complete knowledge
of the managed network and the location of the secondary
Bandwidth Brokers. Each secondary Bandwidth Broker is
assigned a mutually exclusive subset of the network nodes
in its neighborhood and keeps information about the state
of the relevant part of the network. As soon as the central
Bandwidth Broker is not capable of meeting the

computation thresholds, it allocates subsets of the
admission requests to the secondary entities. The
secondary Bandwidth Brokers use the same admission
control algorithm as the central Bandwidth Broker, but
the smaller subsets they handle allow them to reside on
relatively inexpensive hardware. Figure 1 visualizes an
example instance of the described architecture.

central
Bandwidth Broker

secondary
Bandwidth Broker

secondary
Bandwidth Broker

secondary
Bandwidth Broker

Router

Router

Router

Router

Router

Router

Network links

Distributed Bandwidth Broker communication

Managed
Domain

Figure 1: Distributed architecture

We have chosen to distinguish between three cases

relative to the processing load on the central Bandwidth
Broker. During Phase 1, the central Bandwidth Broker
handles all admission requests and manages the domain
by itself. When the computation load becomes large
enough to exceed a predetermined threshold, the central
Bandwidth Broker proceeds to Phase 2 and starts
distributing some of the admission requests. In particular,
it distributes the admission requests whose source and
destination are both managed by the same secondary
Bandwidth Broker (we name these local requests). If the
remaining load on the central Bandwidth Broker remains
large (larger than a times the threshold, where a can be
reasonably set to a value of 1.5 as discussed below), we
move to Phase 3, where the central Bandwidth Broker
iteratively distributes even more admission requests in
chunks. Requests are distributed according to the length
of their predicted path (therefore the central Bandwidth

Broker will release the control of the requests with the
longest paths, for which it is the most suitable of
managing, at the very latest stages). In order not to
increase the complexity of the distribution mechanism the
prediction of the path length is performed efficiently
using a matrix that contains average path lengths
according to their source and destination. This matrix is
aggregated similarly to the segmentation of the domain in
the areas managed by the secondary Bandwidth Brokers
and therefore is kept small enough for quicker access and
smaller memory requirements. The selection of the value
of parameter a is closely associated to the topology of the
specific network. Larger values should be used when the
ratio of secondary Bandwidth Brokers to network size is
large, while smaller values should be used when there is a
relatively small number of secondary Bandwidth Brokers.
The reason is that this ratio also implicitly affects the
percentage of requests that will be local, and therefore

distributed already from Phase 2. Figure 2 gives an
overview of the transitioning mechanism between the

three operating phases, while the following pseudocode
summarizes the idea behind the proposed model:

Phase = 1
while incoming requests are accumulated
 try to compute optimal admission decision
 if ComputationTime > Threshold
 if ComputationTime > a * Threshold
 Phase = 3
 sort requests by predicted path length
 chunk = the (chunk size) shortest paths
 distribution set = distribution set + chunk
 else
 Phase = 2
 distribution set = local requests
 end if
 break distribution set in mutually exclusive sets
 for all sets
 activate secondary BB
 distribute set to secondary BB
 end for
 else
 Phase = 1
 Empty distribution set
 increase max number of admission requests concurrently

examined
 end if
end while

Details on how the admission control part of the

mechanism operates can be found in [3]. Whether all
secondary Bandwidth Brokers are active or not is
determined by the central Bandwidth Broker. Secondary
Bandwidth Brokers that manage a part of the network
where a lot of admission requests are originated from are
the ones that are invoked more frequently.

During its operation the central Bandwidth Broker
entity makes sure to keep the secondary Bandwidth
Brokers updated about the state of the network links and
the already admitted flows. In order to keep the
communication overhead as low as possible, the central
Bandwidth Broker transmits only the absolutely necessary
information to the secondary Bandwidth Brokers. In
particular, when transitioning from Phase 1 to Phase 2,
the central Bandwidth Broker only needs to transfer the
local routing and reservation status to some secondary
Bandwidth Brokers (since during Phase 2, the secondary
Bandwidth Brokers are only going to decide for local
requests). While in Phase 2, the central Bandwidth Broker

only transmits the routing and reservation status
information to the secondary Bandwidth Brokers that will
examine requests. Finally, when transitioning to Phase 3,
the central Bandwidth Broker transmits the complete
routing and reservation status information to some
secondary Bandwidth Brokers. While in Phase 3, the
central Bandwidth Broker will have to transfer both local
and complete information on several secondary
Bandwidth Brokers.

Although the secondary Bandwidth Broker entities
might seem to require additional resources and additional
network management effort, their low requirements allow
them to be typically hosted on the machine that
accompanies the router software in most practical
implementations. In this case, the proposed architecture
manages to decrease the load from the central Bandwidth
Broker while staying relatively close to a satisfactory
network utilization as described in [3], while also taking
advantage of existing resources.

We have chosen not to keep a flow database as in
[4], in order to save memory, hard disk space and CPU

resources. Furthermore, such an approach would make it
more difficult to assign the mutually exclusive admission
request sets.

Secondary Bandwidth Brokers can also function as
back-up mechanisms in the event that the central
Bandwidth Broker fails. In the simple case when the
central Bandwidth Brokers ceases to operate, a suitable
designated secondary can take its place. For the more
serious case of a Byzantine failure, the proposed
architecture can easily be designed so that secondary
Bandwidth Brokers can detect and overcome an

erroneously operating central Bandwidth Broker. This can
be achieved if several secondary Bandwidth Brokers have
been specifically assigned and monitor the messages
originated by the central entity. If these messages become
consistently corrupted or incompatible with the
algorithm’s operation (of which the secondary Bandwidth
Brokers are aware since they run the same algorithm on a
smaller scale) they can notify the rest and effectively
ignore the erroneously behaving central Bandwidth
Broker.

Inactive

Transmission of local requests

Central
BB

Secondary
BB 1

Secondary
BB 3

Central
BB

Central
BB

Secondary
BB 2

Secondary
BB 4

Secondary
BB 1

Secondary
BB 3

Secondary
BB 2

Secondary
BB 4

Secondary
BB 1

Secondary
BB 3

Secondary
BB 2

Secondary
BB 4

Secondary
BB

Secondary
BB

Secondary
BB

Processing only local requests

Fully active

Transmission of local and non-local requests

Phase 1 Phase 2 Phase 3

Figure 2: Hybrid model’s operation

4. Performance evaluation via simulation

4.1. Simulation setup

In our performance evaluation we have to take into

consideration the following factors that affect the
scalability capability of a centralized Bandwidth Broker
design:
• Disk accesses: This parameter depends on the

number of updates that the Bandwidth Broker has to
perform on the states that it maintains for managing
the network. Reducing this number can significantly
enhance the Bandwidth Broker’s capability to deal
with heavier loads.

• Memory requirements: Memory can also be a
limiting factor and has been examined in previous
work as in [5].

• Communication overhead: Depending on the
distribution architecture, this factor depends on the
level of communication between equivalent modules
of the Bandwidth Broker or between hierarchically
separated components, for example a central
Bandwidth Broker communicating with edge
Bandwidth Brokers.
The communication model used in an architecture

plays a very significant role for the overhead that this
communication introduces at the network. Some
implementations choose to use the COPS protocol [2] that
has been specifically designed for the kind of
communication that is necessary for exchanging policy
information between the Bandwidth Broker and the
router, while others prefer a customized approach.

The hybrid distribution model that was presented in
the previous section was evaluated through simulation
experiments using a customized simulation environment
that we developed for the purposes of this evaluation.
This enabled us to run a number of simulations with
various topologies and various combinations of central
and secondary Bandwidth Brokers. In general, trying to
evaluate the number of disk accesses and the memory
requirements of a specific algorithm is rather complicated
because it can be affected by low level details like the
type of operating system used and the quality of the
implementation, factors which can not be evaluated
satisfactorily in a simulation environment. We therefore
chose to use the distribution of the requests as the most
appropriate indicator of the overhead that our model
imposes on the various components that comprise our
architecture, and the one that is least affected by the fact
that the results are extracted from a simulation and not
from an actual implementation.

For our simulations, we used the initial hybrid model
that was presented in section 3. Because our intention was
to measure the performance characteristics of the
proposed model and not its failure-resilience features, the
simulation did not take into account Byzantine or other
failures. We believe that such performance evaluations
are better suited for actual environments. The simulations
were performed on a Pentium 4 2.4 GHz Windows PC
and we repeated each experiment in order to certify its
repeatability. Reservation requests were simulated using
an input file that was gradually processed by the
Bandwidth Broker module.

4.2. Simulation results

The initial topology specified one central and 2

secondary Bandwidth Brokers, with each one managing
an equal number of users that created reservation
requests. For our first experiment we used a random
sequence of reservation requests that were infrequent
enough for the central Bandwidth Broker to handle them
exclusively. The results are shown in Figure 3.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Time

R
eq

ue
st

s

Total Requests Requests for Central
Sec BB1 Sec BB2

Figure 3: Infrequent requests

Since the central Bandwidth Broker can easily
handle all admission decisions, they are optimally decided
without resorting to any secondary Bandwidth Broker,
which therefore remain inactive. In this case, the central
Bandwidth Broker can decide on the admission of
requests using an algorithm that approximates the optimal
utilization of network resources, as detailed in [3].

For our second experiment we also used a random
sequence of reservation requests, this time however they
arrived at a higher frequency. The results we obtained can
be seen in Figure 4.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Time

Re
qu

es
ts

Total Requests Requests for Central Sec BB1 Sec BB2

Figure 4: Frequent requests

As the incoming requests increased, the central
Bandwidth Broker transitioned from Phase 1 to Phase 2 in
the early stages of our experiment. At that point, it started
distributing local requests to both the secondary
Bandwidth Brokers, which allowed the central Bandwidth
Broker to remain within the specified threshold for the
computation time. It can also be observed that our
distribution scheme offloads some of the computation
burden to the secondary Bandwidth Brokers, but avoids
placing a significant burden on them, because during
Phase 2 the central Bandwidth Broker still handles a
significant number of requests. This property of our
proposal offers a double advantage over most of the
alternative architectures:
• It distributes the processing load and therefore the

architecture is more scalable and can cope with more
large-scale environments than the single entity
architectures

• The central Bandwidth Broker entity is utilized at the
maximum of its capabilities, therefore reducing the
network communication overhead compared to the
distributed architectures.
For our final simulation we used a larger topology

with 5 secondary Bandwidth Brokers and an increased
rate of reservation requests. As the results in Figure 5
show, the load could easily be handled by the Bandwidth
Broker entities. In practice, such large-scale domains
would typically have a number of servers available for
running the secondary Bandwidth Broker module
analogous to their size. This experiment demonstrates that

in such cases, these servers are utilized by our model,
allowing the architecture to effectively scale.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Time

Re
qu

es
ts

Total Requests Requests for Central
Sec BB1 Sec BB2
Sec BB3 Sec BB4
Sec BB5

Figure 5: Large-scale topology

Because of the large number of requests, the central
Bandwidth Broker was initially overwhelmed. However,
it quickly transitioned from Phase 1 to Phase 3 and
distributed the requests to the secondary Bandwidth
Brokers, and therefore managed to retain a low processing
overhead throughout the rest of the experiment, while
each secondary Bandwidth Broker was able to deal with
its limited admission set.

5. Conclusions - Future work

A distributed architecture can offer a number of

advantages over the centralized approach. Our proposal,
combined with an adaptive admission control scheme can
make use of existing resources in order to both improve
the efficiency of the admission decisions and keep the
processing requirements low. Furthermore, the
distribution of Bandwidth Broker components helps the
network deal with a number of failures of varying degree
of seriousness.

Our future work will focus both on the extension of
the study on the Bandwidth Broker architectures, and on
the issue of securing the Bandwidth Broker’s operation
from compromised Bandwidth Broker components, from
disobedient clients and from stolen or altered messages
while transmitted on the network. Specifically, we intend

to evaluate our model on an actual environment and
measure our implementation’s resilience to various kinds
of failures.

6. References

[1] K. Nichols, V. Jackobson, L. Zhang, RFC 2638 “A Two-bit

Differentiated Services Architecture for the Internet”, July
1999

[2] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A.
Sastry, RFC 2748, “The COPS (Common Open Policy
Service) Protocol”, January 2000

[3] C. Bouras, K. Stamos, “An Adaptive Admission Control
Algorithm for Bandwidth Brokers”, 3rd IEEE International
Symposium on Network Computing and Applications
(NCA04), Cambridge, MA, USA, August 30 - September 1
2004

[4] Z. Zhang, Z. Duan, Y. Hou, “On Scalable Design of
Bandwidth Brokers”, IEICE Trans. Communications, Vol.
E84-B, No.8 August 2001

[5] L. Burchard, H. Heiss, “Performance Evaluation of Data
Structures for Admission Control in Bandwidth Brokers”,
Technical Report No. 2002-12, TU Berlin, April 2002

[6] S. Sohail, S. Jha, “The Survey of Bandwidth Broker”,
Technical Report UNSW CSE TR 0206, School of
Computer Science and Engineering, University of New
South Wales, Sydney 2052, Australia, May 2002

[7] “QBone Bandwidth Broker Architecture”, QBone
Signaling Design Team,
http://qbone.internet2.edu/bb/bboutline2.html

[8] “Bandwidth Broker Implementation”, Information and
Technology Telecommunication Centre, University of
Kansas, http://www.ittc.ukans.edu/~kdrao/BB/

[9] T. Braun, G. Stattenberger, “Performance of a Bandwidth
Broker for DiffServ Networks”, Kommunikation in
verteilten Systemen (KiVS03), Leipzig, Germany, March
25-28, 2003

[10] J. Ogawa, A. Terzis, S. Tsui, L. Wang, L. Zhang. “A
Prototype Implementation of the Two-Tier Architecture for
Differentiated Services”, RTAS99 Vancouver, Canada

	Abstract
	Introduction
	Centralized and distributed architectures: Comparison description and discussion
	A hybrid model
	Performance evaluation via simulation
	Simulation setup
	Simulation results

	Conclusions - Future work
	References

