
HANIME
An H-Anim Compliant Avatar Editor for NVEs

Christos Bouras
Research Academic Computer Technology Institute (CTI), Greece and

Computer Engineering and Informatics Department (CEID), University of Patras, University Campus, GR 26504, Patras,

Greece

bouras@cti.gr

K. Kartsakalis
Computer Engineering and Informatics Department Department (CEID), University of Patras, University Campus, GR

26504, Patras, Greece

kartsaka@ceid.upatras.gr

V. Triglianos
Computer Engineering and Informatics Department Department (CEID), University of Patras, University Campus, GR

26504, Patras, Greece

triglian@ceid.upatras.gr

Th. Tsiatsos
Department of Informatics, Aristotle University of Thessaloniki, University Campus, GR 26504, Thessaloniki, Greece

tsiatsos@csd.auth.gr

Keywords: H-Anim, Graphical User Interface, Networked Virtual Environments, VRML, X3D.

Abstract: This paper addresses the problem of a visual H-Anim avatar editor. Although H-Anim is a very promising

standard for interchangeable avatars and avatar’s animation, the lack of an effective yet simple to use visual

avatar editor could repel users from H-Anim compliant Networked Virtual Environments. Therefore this

paper presents an H-Anim compliant editor, called HanimE, for creating avatars for Networked Virtual

Environments. This editor is entirely based on a graphical user interface and allows users to customize H-

Anim avatars, in a simple yet effective manner. The avatars created by HanimE can be integrated in various

H-Anim compliant Networked Virtual Environments regardless of the technology they are built on, since

they are X3D files.

1 INTRODUCTION

The popularity of Networked Virtual Environments

(NVE’s) has rendered them as part of everyday life

for many online users. Online users are represented

by avatars in the virtual worlds (Singhal & Zyda,

1999). These avatars, in most cases, are three

dimensional (3d) representations of a human like

model. Users tend to develop a psychological bond

with their avatars. One of the main tasks in an NVE

is the integration of humanoid avatars augmented

with humanoid animations. This could be useful for

the users to transfer their avatars from one NVE to

another. In many types of NVEs, such as Massively

Multi-User Online Role-Playing Games, users are

able to control and change the appearance of their

avatars (Yee, 2006). Usually, the users exploit this

functionality to customize their avatars in order to

reflect their real or virtual personality. The virtual

characters are starting to be widely used in user

interfaces in order to improve the human–computer

communication (Del Puy Carretero et al., 2005).

The creation of virtual humans that are

compatible with many different NVE platforms is a

challenging task, since the creation of humanoid

animation is a complex task, which usually requires

particular skills and training (Buttussi et al., 2006).

To that direction the H-Anim specification is

proposed. H-Anim is now included in X3D standard,

and it describes humanoids as an hierarchically

organized set of nodes. The contribution of this

paper is a multi-platform Java based H-Anim

compliant editor for modifying the appearance of

avatars. This editor is called HanimE (H-anim avatar

Editor). H-Anim specification is by definition geared

towards flexibility, compatibility and simplicity.

However, the variety of the available VRML/X3D

editors, are not suitable for non-experienced users

concerning the creation of humanoid avatars. Users

who have limited knowledge about the fundamental

concepts behind x3d (such as the usage of “nodes”

and “routes” as well as the definition of geometries)

cannot easily create H-Anim avatars. Most

frameworks available are either geared towards the

experienced 3d artist exploring the capabilities of

VRML, or they support the H-Anim avatars creation

by offering tools for developing animation and

simulation of movement. Either way, this makes

things complex and discouraging for the average

user who is seeking a graphical tool to modify the

visual properties of his/her avatar, such as colors,

skins and virtual items, before importing it to the

NVE of his/her choice. Given the limited number of

H-Anim compliant avatars, the creation of new

avatars is a strenuous activity which requires hours

of work even for the experienced 3d artist. This is a

limitation in the broad adoption of H-Anim

specification. Furthermore, there is a significant

number of NVE communities that are not providing

a large number of available avatars to their potential

users. For example open source or research projects

cannot afford to hire 3d designers for this task. This

discourages users from participating to such a

community since users want to project their

individuality through their avatar in a virtual world.

A convenient solution to this problem is to provide

one type of avatar that can be customized in a

graphical user interface by the users according to the

his/her preferences. This solution not only saves

resources, but it also allows users differentiate their

avatars.

This paper is structured as follows. The next

section presents similar tools. Next we are

describing the main design characteristics of

HanimE and the functionality it offers. Afterwards,

we are presenting implementation and

interoperability issues and the way we have faced

them. Finally, some concluding remarks and planned

next steps are briefly described.

2 RELATED WORK

Most of the tools for visual H-Anim avatar editing

are either focused to specific tasks or complicated

for the average user. On the one hand this restricts

their integration to NVEs. On the other hand, it

discourages the average user from using them. Wang

and Ressler (2007) present a tool for viewing and

manipulating CAESAR (Civilian American and

European Surface Anthropometry Resource)

generated bodies. However, this work does not apply

to the average user neither from the perspective of

functionality nor from the perspective of ease of use.

Cobo and Biery (2002) presented a Web3D

toolbox for creating H-Anim compatible actors. The

toolbox supports avatar modelling through

primitives, meshes and NURBS, joint and facial

animation. It relies on Shout3D, which is a

proprietary and commercial platform for the

visualization of the avatars. This limits its portability

and ease of integration to NVEs. In addition it

requires that the user has 3D modeling skills and

intermediate knowledge of the H-Anim standard, in

order to use it effectively. HanimE editor presented

in this paper differs in two ways. First of all, it is

based on non-proprietary plug-ins, which allows

easy integration to third party platforms. Secondly, it

is crafted in a way that the basic avatar processing

tasks are performed in a way that no H-Anim

specific knowledge is required from the user.

3 MOTIVATION AND

RATIONALE

Our solution aims at bridging the gap between the
user’s demands for simple avatars creation and the
compatibility with H-anim standard. For that reason
we have implemented HanimE, that is offering to the
avatar creators a graphical interface to create their
avatars. All the editing takes place on a purely visual
level, providing the user with all the sufficient
graphical tools required so that s/he can see any
change on his avatar instantly. Possible changes
include the change of the color of avatar’s shoes, the
exact fitting of sun glasses on the avatar’s head, or
the complete replacement of a body part with a new

one. Any coding and/or technical issue concerning
H-anim compatibility is transparent to the users.
HanimE supports the following features:
• Automatic or manual H-Anim avatar loading.
• Manipulation of the Material Node properties

such as colour, transparency etc.
• Automatic or manual H-Anim avatar scaling.
• H-Anim avatar rotation.
• Texture mapping.
• Virtual items library.
• Adding and adjusting size and orientation of

virtual items on an avatar.
• Save X3D Scene to file.

HanimE is organized in three parts: (a) a
visualizer; (b) library containing virtual items/ H-
Anim body parts; and (c) a material node editor.
This organization aims in guiding the user to the
desired result through simple steps that are easy to
follow.

The visualizer is the first user interface screen
that appears when H-AnimE is launched. An avatar
can be loaded both automatically or manually.
Finally, from that screen a user can save his/her
avatar. The visualizer is an extended VRML/X3D
browser window that deals with the tasks of loading
an avatar, visualizing it and exporting it to a file. In
addition this window triggers the virtual items/ H-
anim body parts library window and/or the material
node editor. The loading portion is accomplished by
a custom fully featured X3D/VRML parser. This
parser enumerates various aspects of an VRML/X3D
file such as characters, lines H-Anim Joints,
Segments Humanoids, Displaces and Sites.
Moreover, it calculates the Level of Articulation of
an avatar as well as whether it is H-Anim compliant
or not. Additional features include the VRML
version of the file, syntax errors check, ROUTEs
and PROTOs syntax check, Segments to Joints ratio
check, orphan Joints check etc. When a user wants
to add geometry to an avatar, either in the form of an
item/accessory or in the form of an H-Anim
compliant body part, the aforementioned library is
triggered. In cases where the user needs to modify
existing geometry, the material node editor is
invoked.

The virtual items/ H-Anim body parts library
is a library that hosts both virtual items, such as hats,
sunglasses etc., and H-Anim compliant body parts,
for example arms and legs. These can be imported,
scaled, transformed and adjusted to an avatar. This
library features both integrated and user added
items. Users can add and instantly preview items to
the library, from ordinary VRML/X3D files. As long
as they have selected the items they want to import,
these items are imported to the 3D scene that
visualizes the avatar. Subsequently, the material

node editor is launched to adjust the properties of the
items or modify the avatar.

The material node editor consists of three
panes. The first pane is a 3D previewer in which the
user previews the changes on the avatar during the
editing. The second pane holds a visual
representation of the avatars joints, where each joint
is represented by a small circle. Users can specify
the joint that they like the item to bind to. The
selected joint is highlighted and the item is bound to
the selected joint, resulting in smooth item motion
when the joint is animated. Finally, the last
component is a tabbed pane that allows the users to
adjust the position, the color and the texture
properties of an avatar or a virtual item. These
actions are performed in a visual way using
graphical controllers. Furthermore, the user can
enter a numerical value for the field s/he is
changing, e.g. the diffuse color of a material.

In addition, in order to ensure portability, the
editor is written in Java (and thus platform
independent) and the processed avatar can be
exported as an X3D or VRML file. Both
characteristics allow the migration of the user’s
avatars to his/her favourite H-Anim compliant NVE
platform.

Figure 1: Main screen with automatic avatar loading.

4 AVATAR EDITING PROCESS

This section describes the avatar editing process.
The function of the utility presupposes the existence
of a VRML file that contains a valid H-Anim avatar,
structured according to the H-Anim 1.1
specification, with the list of Joints named according
to the full description of the specification. We also
presuppose that available to the user is a long list of
items written in VRML, each one contained in it’s
own VRML library, although that is not strictly
necessary for the editor to function.

The operations supported by the editor on the
avatar are: material editing, item/ body part fitting.
As far as materials are concerned users can modify
material properties such as color and transparency.
Item/body part fitting describes the process of
loading items or body parts to the Avatar Scene,
selecting the Joint to which they will be attached and
relocating them correctly so that they fit in the scene
accordingly. The operation of the editor is based on
the steps depicted in Figure 2.

Figure 2: Mechanism Flow chart.

Step 1. Avatar loading: User loads the avatar on the
startup editor screen, either manually, or by setting
the editor to automatically load the avatar each time
s/he launches the editor (Figure 1).
Step 2. Selection of editing function: The user
chooses the editing function (a) import of an item or
a body part to the avatar, or (b) editing the material
nodes of the avatar. In the second case, steps 3 and 4
are omitted and the editor goes straight to step 5.
Step 3. Selecting items from virtual items library:
User is shown the library of available items and
body parts (Figure 3).

Figure 3: Virtual Items and Body Parts Library.

This library contains personal items/body parts for each

user. Each user can fully manage this library by adding

new items, body parts, removing old ones and/or

selecting/viewing the items s/he wishes to import. This has

to be a collection of non H-Anim files.

Step 4. Importing items from items library: User
imports selected items/body parts to his/her H-Anim
avatar. Both the avatar and the imported items/body
parts appear on the next screen (the edit screen,
Figure 5 and Figure 6), with the item given a set of
tools for relocation on the X, Y, Z axis, scaling or
rotation.

Figure 4: Changing Colors.

Step 5. Editing the material nodes of the avatar:
The edit screen contains a view of the Scene (the H-
Anim avatar, along with the imported items, if any),
and a panel showing the H-Anim Joint Hierarchy. In
this panel, the Joints used by the avatar are
highlighted and selectable. Below this panel is a set
of tools by which the user can modify the material
properties of any selectable (highlighted) Joint.

Figure 5: Adjusting a helmet to an avatar.

These tools appear as part of the “Colour” tab
(Figure 4) of this area, and allow the changing of the
material attributes: diffusion color field,
transparency, shininess etc. Any changes occurring
to the material appear instantly on the Scene.

Figure 6: Adjusting a shoe to an avatar.

Step 6. Relocation of items: The “Position” tab
of the same area is only enabled if user chose to
import an item on step 2, otherwise this panel is
empty. The list of tools for the relocation of the
imported item is provided here, as explained in step
4. It should be noted that the user must select the
Joint to which the item will be attached (e.g. a hat
item would be attached to a node corresponding to
the head). The editor provides the option for
automatic relocation of the item to match the
coordinates of the selected Joint. However, the user
can take it one step further using the relocation tools
to fit his item exactly where he wants it to be before
attaching it to the selected node. Once that happens,

the item is moving along with the rest of the H-
Anim avatar, following the corresponding ROUTEs
of the Joint.
Step 7. Save/Export. The user can choose to save
the avatar’s file, or to export it to the NVE for which
the editor is to be used.

5 IMPLEMENTATION AND

INTEROPERABILITY ISSUES

One of the major goals of the editor is to be portable,
while complying to open and widely used standards.
In order to obtain portability the whole application is
programmed in Java that makes it executable on
virtually every platform for which a Java Virtual
Machine exists. The manipulation and visualization
of the X3D models was developed using the Xj3D
Toolkit, a Java base toolkit for X3D and VRML
content. However, the usage of Xj3D entailed some
problems.

One of the major issues with the use of the Xj3D
toolkit is the complete absence of an integrated
“Save Scene To File” function, that would take full
responsibility for extracting all the valuable data
from an X3DScene Object in Java and writing them
in the correct format in an output file. The solution
to this issue is a challenging one, considering the
fact that not all Nodes in an X3DScene are named,
and that the Xj3D package does not allow the user to
read values from certain field types, therefore
rendering the implementation of a “Save Scene to
File” function from scratch nearly impossible. Our
solution to this problem is based on the fact that the
user makes use of already existing X3D files, both
for the avatar and the items to be imported, which
can be parsed by Java and treated as simple text files
following the appropriate X3D format. When the
applications needs to save changes to the loaded file,
it opens up the loaded file using the tools contained
within the java.io.* package used for reading/writing
to a file as text. Subsequently the application scans
the file for the appropriate position(s) to save the
new data and carefully removes any old data that has
to be replaced, with the edited file being stored in
the same folder used by the utility and the original
file intact, only to be replaced with the new one
when the user clicks on either the “Save” or “Save
As” button.

The editor is designed to be used as a stand-alone
application for creating and editing avatars.
However, in case that the NVE designer chooses to
integrate HanimE to a NVE platform, the following
have to be considered: An NVE administrator
integrating HanimE to his NVE platform would have
to provide access to three screens either prior to the

importation of the user avatar to the NVE’s world,
or as an extra editor once the user is inside the NVE.
These three screens are the HanimE project Frames
(using javax.swing.JFrame): the startup screen, the
item library screen and the edit screen, which
connect with each other. In any case, the NVE can
read the edited H-Anim avatar with the new values
either directly, from the x3d Browser contained
within the startup and edit screens as an X3D Scene,
or by reading the corresponding saved filed after the
user has edited his avatar. In the latter case, the
editor automatically generates a backup VRML file
in the same folder as the editor, which can be used
as a direct reference.

6 CONCLUSIONS – FUTURE

WORK

An H-Anim compliant avatar editor was presented in
this paper. The focus of the authors is to provide a
portable easy to use graphical editor for avatar
customization, while at the same time comply with
the H-Anim specifications. The application is
developed upon portable and open standardized
technologies to allow platform migration, such as
Java and Xj3D. It features a friendly easy to use
graphical interface that the average user can handle
with ease. The editor supports functions such as
adding H-Anim body parts and items to an avatar,
avatar rotation, changing colors and more, and can
save the prefered state of an avatar as an X3D file.
Furthermore, an VRML/X3D parser utility presents
useful information to the end user.
Among our future plans is the enhancement of the
editor with new features. More specifically, we
intend to integrate the work presented in Bouras et
al. (2009) that will make possible the addition of H-
Anim animations to the user’s avatar. Moreover, an
animation authoring tool will provide animating
capabilities to the average user. A user will be able
to add, remove and adjust animations to an avatar, as
well as to create custom animations through a visual
wizard. Furthermore, an avatar creator tool that will
allow the creation of custom avatars is to be
integrated to the next version. The tool will follow
the same principles HanimE follows, that is
efficiency combined with ease of use. The user will
have a set of primitives and body parts that he will
be able to modify and combine in order to form
his/her avatar. Finally, to improve H-Anim
interoperability, an H-Anim syntax validation and
correction tool will be incorporated to the editor. It
will parse VRML/X3D files imported by the user
and it will validate them against the H-Anim
standard. In case that the file has errors or

incompatibilities with the H-Anim standard, the tool
will try to repair the file or will suggest solutions to
fix the problems. We believe that the above
enhancements will offer a powerful tool to the
average user and will enforce the position of the H-
Anim standard, eliminating some of the difficulties
that prevent it from being widely spread.

REFERENCES

Bouras, C., Chatziprimou, K., Triglianos, V., Tsiatsos Th.

2009. A framework for H-Anim support in NVE’. In

proceedings of the International Conference on

Computer Graphics Theory and Applications 2009

Lisboa, Portugal, February 5-8.

Buttussi, F., Chittaro, L., Nadalutti D. 2009. H-Animator:

a visual tool for modeling, reuse and sharing of X3D

humanoid animations. In proceedings of the Eleventh

international Conference on 3D Web Technology

Columbia, Maryland, April 18-21, 2006.

Cobo, M., Bieri, H. 2002. A Web3D Toolbox for Creating

H-Anim Compatible Actors. Computer Animation

2002, pp.120.

Del Puy Carretero, M., Oyarzun, D., Ortiz, A., Aizpurua,

I., Posada, J. 2005. Virtual characters facial and body

animation through the edition and interpretation of

mark-up languages. Computers & Graphics, Volume

29, Issue 2, April 2005, Pages 189-194, ISSN 0097-

8493, DOI: 10.1016/j.cag.2004.12.003.

Humanoid Animation Working Group (2004). H-

Anim.http://h-anim.org.

Singhal, S., Zyda, M. 1999. Networked Virtual

Environments: Design and Implementation. Addison

Wesley, Reading, MA.

Wang, Q. and Ressler, S. 2007. Generation and

manipulation of H-Anim CAESAR scan bodies. In

proceedings of the Twelfth international conference on

3D web technology. Perugia, Italy, April 15-18, pp.

191-194.

Yee, N. 2006. The Psychology of Massively Multi-User

Online Role-Playing Games: Motivations, Emotional

Investment, Relationships and Problematic Usage.

Avatars at Work and Play, Book Series Computer

Supported Cooperative Work, Volume 34, ISSN 1431-

1496, Springer.

