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Abstract

Resource allocation in 5G and beyond networks remains a demanding problem,
largely driven by the rising need for higher data rates, reliable communication, and
large-scale device connectivity. This chapter examines approaches that combine
Downlink(DL)/Uplink(UL) Decoupling (DUDe) with Multiple-Input-Multiple-Output
(MIMO) systems to improve spectral usage and reduce energy consumption. DUDe
is used to separate UL and DL associations so that User Equipment (UE) can connect
to the most suitable Base Station (BS) for each direction, while MIMO techniques
contribute additional spatial degrees of freedom through multiplexing and
beamforming. The analysis also incorporates machine learning models that predict
UE behavior and assist in adaptive decision-making, together with game-theoretic
frameworks that coordinate UE association and resource competition in dense
deployments. By bringing these elements together, the chapter outlines how future
cellular systems can support more efficient and responsive resource management
under realistic mobility and traffic conditions.

Keywords: Resource allocation, Downlink Uplink Decoupling (DUDe), Multi-Input

Multi-Output (MIMO), Artificial intelligence-driven optimization, 5G and beyond
networks.

1. Introduction

Mobile communication systems have changed drastically in the last years,
evolving from networks built almost exclusively for voice services to infrastructures
that now sustain high resolution media, interactive applications, and an increasing
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number of connected devices. As 5G networks continue to improve and interest in
the next generation increases, expectations for mobile systems are rising. Modern
deployments must serve large and diverse UE populations, each with different
requirements for throughput, latency, reliability, and energy consumption [1, 2]. As
a result, resource management has become more important, since performance now
depends on both the amount of spectrum and how well it is allocated when
conditions change. Resource Allocation (RA) determines how bandwidth, transmit
power, and spatial resources are shared among UEs and Base Stations (BSs).
Modern networks increasingly use Heterogeneous Network (HetNet) layouts, where
macro BSs operate alongside smaller, low-power nodes. While such architectures
offer significantly improved coverage and capacity, they also introduce new
complications: UE association becomes more difficult, interference changes with
local activity, and traffic can shift quickly between layers. Methods designed for
more uniform networks often struggle with this level of variation.

One development that has received growing attention is Downlink/Uplink
Decoupling (DUDe). Instead of forcing a device to rely on the same BS for both
directions of communication, DUDe allows UL and DL associations to be chosen
independently. This flexibility acknowledges that the two links experience different
propagation and interference conditions. In practice, DUDe can relieve congested
macro cells, improve uplink links via nearby small cells, and reduce unnecessary
transmit power, which is especially useful in dense and mobile settings [3]. In
parallel, Massive Multiple-Input Multiple-Output (Massive MIMO) has become an
important development of technology. By equipping BSs with large antenna arrays,
networks gain the ability to serve many UEs simultaneously through spatial
multiplexing and to concentrate energy more effectively through beamforming.
These advantages, however, do not happen automatically. They depend on how UEs
are grouped, how resources are split, and how associations are managed across
layers of the network. RA choices therefore play a decisive role in determining
whether Massive MIMO systems deliver their expected improvements in practice.

Alongside architectural changes, algorithmic tools have become a key part of
modern RA strategies. Machine Learning (ML) methods can identify patterns in UE
mobility, traffic patterns, and channel fluctuations, allowing the network to predict
short-term changes instead of only reacting to them. Predictive models help avoid
inefficient allocations and reduce the need for fixed, rule-based behavior, especially
in environments where conditions shift faster than traditional optimization
methods can adapt [4]. At the same time, Game Theory (GT) offers a framework for
analyzing how UEs or BSs behave when their objectives differ or even conflict. By
modeling these interactions directly, GT can be used to study stable operating
points, explore the trade-off between fairness and throughput, and design
mechanisms that promote cooperation when centralized control is limited or
impractical [5, 6]. This technique is particularly useful in dense deployments where
many decisions must be made locally but still influence network-wide performance.

The material presented in this chapter brings these technologies together:
HetNets, DUDe, Massive MIMO, ML, and GT to provide a coherent view of RA in
current and emerging cellular systems. The discussion builds on earlier work,
including studies on energy efficient operation, UL/DL asymmetry, and predictive
models for UE distribution. Together, these efforts show how decoupled access can
change uplink behavior, how MIMO benefits from balanced UE grouping, how ML
supports adaptive decisions, and how GT can guide interactions among competing
UEs [7]. Even though 5G and future networks are technically comple, they also
create opportunities to rethink many long standing RA assumptions. Therefore, this
work has a twofold purpose: to clarify the central challenges in RA today, and to
position the contributions within ongoing progress in network design and
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performance optimization. The following sections outline key concepts, review
related literature, and describe the models and methods used in this research.

2. Background and State of the Art

Recent studies have investigated how more flexible association mechanisms can
tackle these challenges. Traditional coupled access, which forces both UL and DL
traffic to follow the same BS, often results in suboptimal performance in HetNets.
This constraint has increased interest in DUDe, which allows devices to use different
base stations for uplink and downlink transmissions. The concept has been studied
extensively as a means to rebalance traffic across network tiers, reduce UL
transmission power, and improve spectral efficiency in dense mobile environments.
State of the art investigations examine DUDe not only as an architectural feature but
also as a key enabler for more adaptive and energy efficient resource allocation
schemes under dynamic network conditions [8-10].

In parallel, improvements in radio technology have transformed how resources
can be managed. Massive MIMO, which equips BSs with large antenna arrays,
significantly increases spectral efficiency by supporting many UEs simultaneously
through spatial multiplexing and beamforming. As a result, resource allocation must
also consider UE placement across beams, the link between resources and traffic
load, and the energy impact of using large antenna arrays. Research in this area
increasingly focuses on finding strategies that utilize the spatial capabilities of
Massive MIMO while controlling energy consumption and maintaining stable
performance under mobility.

Beyond architectural and physical-layer developments, modern networks now
increasingly use data driven algorithmic intelligence. ML has become a useful tool
for predicting UE mobility, traffic demand, and identifying patterns in channel
behavior that are not easily captured by fixed rules. ML based resource allocation
frameworks aim to support networks that anticipate changes rather than simply
reacting to them, particularly in environments where UE movement and service
requirements fluctuate over short time periods. The literature includes both
supervised and reinforcement learning approaches that adjust association,
bandwidth allocation, and power control in real time [11-14].

Complementing ML, GT offers conceptual and mathematical structures for
analyzing how multiple decision makers interact when competing for limited
resources. In wireless systems, GT has been used to model UE association, power
control, and spectrum allocation, linking individual goals to overall network
performance. Different formulations such as Stackelberg models, Nash bargaining,
Mean-Field Games, and Potential Game offer various perspectives on fairness,
stability, scalability, and distributed optimization. These models are widely studied
for designing resource allocation schemes that still work well when centralized
coordination becomes difficult or expensive [15, 16].

The current state of the art highlights how network architecture, spatial
processing, prediction, and strategic modeling are increasingly combined. DUDe
changes how UL and DL resources can be assigned; Massive MIMO expands the
spatial dimension of resource management; ML provides adaptability and foresight;
and GT offers structured principles for balancing competing interests within large
systems. These directions provide the basis for the remainder of the chapter, where
each theme is examined in more detail and the contributions of this work are
introduced in the corresponding sections.

3. System Model and Key Assumptions
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For clarity and consistency, the next part introduces the system model and
assumptions that will be used across the following sections. The model includes key
aspects of current 5G networks but remains general so it can be used without
linking the discussion to any particular simulation tool or mathematical framework.
Its purpose is to give the reader a clear understanding of the network environment
in which association decisions, spatial processing, strategic interactions, and
predictive algorithms operate.

The system under consideration is a HetNet cellular network, where a traditional
macro layer is assisted by additional tiers of micro and pico BSs. These layers are
deployed to increase coverage in sparse regions and to provide additional capacity
in dense ones. UEs may therefore find themselves within range of multiple
candidate BSs, each offering different potential advantages depending on distance,
load, and radio conditions. This multi-tier architecture creates a natural setting for
flexible association strategies, as the optimal choice for a UE is not necessarily
determined by the strongest DL signal alone.

A key characteristic of the model is that UL and DL behave differently. For DL,
the primary limitation is interference and the capacity of the serving BS, whereas in
the UL direction, the transmission power of the UE device plays a crucial role.
Because these two approaches respond differently to distance, loss, and cell load,
the assumption that a UE must connect to the same BS for both directions is not
always optimal. The model therefore allows UL and DL to be considered
independently, allowing for the understanding of DUDe as an architectural option
[17,18].

The system also incorporates Massive MIMO capabilities at selected BSs, most
often at the macro layer. These stations are equipped with large antenna arrays that
can shape directional beams and serve multiple UEs simultaneously. While the full
details of the antenna processing are not required here, it is important to
understand that spatial resources form an additional dimension of the allocation
problem. Network performance depends not only on how many UEs connect to a BS
but also on how effectively its antenna resources are distributed among those UEs.
In this sense, Massive MIMO introduces opportunities for increased capacity but
also requires careful management of UE distribution.

UE mobility is another critical component. Whether UEs move slowly within
indoor environments or rapidly across outdoor areas, their positions influence
which BSs can serve them effectively and how long good radio conditions can be
maintained. The system therefore assumes that mobility can be variable and, in
some situations, highly dynamic. This assumption is important when considering
algorithmic approaches such as ML, which can benefit from predicting changes in
UE position, and GT, which must account for the fact that resource competition
evolves over time. In addition, modern networks must balance performance with
sustainability, and resource allocation decisions often influence energy consumption
at both the BS and UE device levels. The system assumes that energy usage is a
necessary performance indicator and that UL and DL decisions can affect it
differently.

Finally, although a variety of concepts and algorithms are discussed in this
chapter, the core system model is kept technology-agnostic. It can be implemented
in environments like DeepMIMO, used with standardized propagation models, or
combined with mobility datasets, yet it is not tied to any single platform or dataset.
These assumptions describe a modern, flexible, and dynamic network environment.
Multiple layers of BSs coexist; UL and DL behave differently; spatial resources
influence performance; UEs are mobile; and energy efficiency matters. This model
reflects the challenges faced by real 5G systems and provides the fundamentals for
understanding the resource allocation strategies presented later on. The following
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chapters will be built upon this framework to examine the methods and
technologies that were studied [19, 20].

4. Downlink/Uplink Decoupling in HetNet Networks

DUDe has attracted more interest as mobile networks move toward denser,
more demanding HetNet deployments. Traditional UE association usually assumes
that the same base station serves both the DL and UL transmissions. This coupled
approach simplifies design, but it doesn’t satisfy modern HetNets, where base
stations can vary widely in coverage, transmit power, antenna setup, and traffic
load. Because UL and DL are limited by different factors, for example, BSs transmit
at much higher power than UEs, and UEs experience widely varying pathloss, many
studies state that the traditional coupled access tends to create inefficiencies,
especially in dense urban deployments.

The central idea behind DUDe is to treat the UL and DL as independent
association decisions. This allows a UE to use the cell with the strongest or most
reliable DL for reception, while sending UL data through a nearer and less congested
cell, improving uplink efficiency. Studies on DUDe report that decoupling can
improve load balancing across HetNet levels. By directing more uplink traffic to
small cells, macro base stations face less UL load, leaving more capacity for wide
area DL coverage and helping the network respond appropriately to the UE’s
demands. Several works also highlight that DUDe can reduce UE transmit power,
since UEs no longer need to reach a distant macro BS for UL communication, which
in turn supports longer device battery life and lowers interference across the
network.

Another thread of the state-of-the-art discussion concerns the interaction
between DUDe and mobility. Because UEs move through areas served by cells of
varying size and capacity, the benefits of decoupling are more pronounced when the
association mechanism can adapt to changing link conditions without causing
instability. Prior research shows that DUDe smooths UL performance for fast-
moving UEs and mitigates the sharp UL degradation that often occurs when UEs
transition between macro and small-cell coverage areas. In addition, DUDe is
increasingly examined in combination with advanced antenna technologies such as
MIMO, where the decoupling of UL and DL can make spatial resources more
effective by distributing UEs more evenly across antenna domains.

These results highlight DUDe as a crucial technology for next generation
resource allocation. Once UL and DL association are decoupled, allocation decisions
can be fine-tuned, supporting energy-aware scheduling and more adaptive policies
that better match the demands in modern networks. It also creates opportunities for
hybrid approaches that blend decoupling with predictive algorithms and strategic
decision-making topics that will be explored in later sections.

The contribution of this research on DUDe builds on a common simulation
framework for HetNet 5G networks, where Macro, Micro and Pico BSs coexist in the
same coverage area and serve a large number of UEs. In all cases, the focus is on
how UE association and UL-DL pairing affect energy consumption, bandwidth usage
and UE distribution across the different tiers of a HetNet. The same family of
scenarios is used to study two complementary aspects: energy efficiency under
decoupled access and the impact of DUDe on bandwidth and UE allocation in dense
deployments.

At the start of research, DUDe is evaluated as an energy-aware association
mechanism operating under strict transmit-power limits at the UE side [21]. The
network is represented as an urban and a rural topology, each populated with fixed
numbers of Macro, Micro, and Pico BSs configured with realistic transmit powers,
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antenna heights, and gains, following the propagation assumptions of the 3rd
Generation Partnership Project (3GPP) TR 38.901 [22] specification. Rather than
presenting the full mathematical formulation, the analysis relies on a well-
established pathloss model to estimate signal attenuation between each BS and UE,
from which the corresponding UL and DL Signal-to-Noise Ratios (SNRs) are
obtained. Using these SNR values and a maximum UL transmit-power constraint,
two association rules are compared: traditional Downlink/Uplink Coupling (DUCo),
where both directions are served by the same BS, and DUDe, where UL traffic may
attach to a different, typically nearer, small cell while the DL remains anchored to
the BS offering the strongest received power. To operationalize this comparison, a
simulation chain generates random UE positions within the coverage region,
evaluates pathloss and SNR for every BS-UE pair, and computes per-UE transmit and
received power under both DUCo and DUDe. Energy consumption is assessed by
aggregating the UL transmit energy required to maintain a consistent quality of
service under each association policy, along with the corresponding reception
requirements at the base-station side. The setup holds traffic, propagation, and
power limits constant across both schemes, so the impact of the association method
can be evaluated on its own.

In addition, the following equations summarize how the simulation links
pathloss, SNR, bandwidth demand, and energy efficiency.

Pathloss PLij determines the received power for the link between UEi and BS;.
The received power expressed in the following Eq. (1):

P, [dBm] = P [dBm] + G.[dBi] + G.[dBi] — PL; [dB] (1)
After that the simulation convert Pr,ij to linear units with Eq. (2):
Yii = Prij/ (No - By) (2)

Where here the N, denotes the noise power spectral density and B;; denotes the
allocated bandwidth. Furthermore, given in some experiments a target rate Ri,
bandwidth demand follows the Shannon-Hartley guideline as seen in the Eq.(3):

Bij = Ri/log2(1 + vy) (3)

Lower SNR increases the bandwidth needed to support the same rate. Energy
efficiency is expressed in bits per Joule as the total served rate divided by the total
consumed power across base stations and UEs. The expression of this is shown in
the following Eq. (4):

n = Q&iR) /& (Pui(DL)/§ + Pc,j) + X (UL)) (4)

The Py,;(DL)is the BS downlink transmit power, §; is the power-amplifier
efficiency, P_c,; is the BS circuit power, and Py,;(UL) is the UE uplink transmit power.
This definition links association decisions to energy cost, since DUDe can reduce
uplink transmit power by shifting uplink connections toward closer cells while
keeping the downlink anchored to strong coverage when needed.

Across both the urban and rural deployments, DUDe consistently exhibits lower
energy consumption than DUCo. The primary reason is that many UL connections
migrate from distant Macro BSs to closer Micro and Pico sites, which require
substantially less transmit power to achieve the same SNR target. This
redistribution of UL traffic also alleviates load on the macro layer and supports
more energy-conscious operation of high-power BSs, as illustrated in Figure 1.
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Figure 1 Comparison Energy Consumption per Macro, Micro and Pico BS under DUCo and DUDe

Another contribution in the field of DUDe [23] shifts attention from energy
considerations to resource allocation and UE distribution. In this study, a HetNet 5G
network composed of Macro, Micro, and Pico BSs is again examined, but the
emphasis is placed on bandwidth consumption at the macro layer and the
distribution of UEs across the different tiers when DUDe is activated. The
association logic relies on the same foundational elements pathloss, SNR, and tier-
specific capacity constraints yet the primary performance indicators become the
bandwidth utilized at each BS and the number of UEs admitted within each tier.
DUCo continues to serve as the baseline configuration, assigning every UE to a single
BS for both UL and DL, while DUDe enables the UL to be handled by a different,
typically smaller, cell, with the DL remaining anchored to the macro station that
provides the strongest received signal.

In the bandwidth-oriented experiments, each UE is assigned a service profile
with specific UL and DL rate requirements, such as web browsing, video streaming
or more demanding applications. Using the Shannon-Hartley capacity relationship
as a guideline rather than a strict optimization tool, the simulator derives the
bandwidth that each BS must allocate to satisfy these demands under the measured
SNR values. The important point for the reader is that the bandwidth assigned to the
Macro BSs is finite and comparable to realistic mid-band 5G deployments; as more
UEs attach to macro sites under DUCo, the available bandwidth per UE decreases
and the macro layer approaches its capacity limit. Under DUDe, a substantial
fraction of UL traffic is migrated to Micro and Pico BSs, which relieves the macro
layer from part of the burden and allows more UEs to be served without exceeding
its bandwidth budget. The comparison between the two association schemes
therefore reveals not only better bandwidth utilization(Figure 2) but also a more
balanced distribution of UEs ( Figure 3).
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Figure 2 Bandwidth Consumption across Macro BS under DUCo and DUDe
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These two research efforts provide a coherent picture of DUDe as a practical
mechanism for improving the behavior of HetNet 5G networks without changing the
underlying physical layer or antenna configuration. The energy-oriented study
demonstrates that by decoupling UL and DL associations and exploiting the
proximity of small cells, it is possible to reduce UE transmit energy and alleviate the
load on high-power macro infrastructure. The complementary bandwidth-oriented
investigation shows that the same decoupling logic can be used to preserve scarce
macro-layer bandwidth and to avoid over-concentration of UEs in a single tier,
resulting in more graceful scaling as the number of active UEs increases.

5. Resource Allocation and Performance Challenges in MIMO-Based 5G
Networks

MIMO has become a defining feature of modern wireless systems, mainly
because multiple antenna setups let a network serve more UEs, transfer higher data
rates, and keep links more stable. In 5G, it is treated as part of the core architecture
rather than an add-on, since it makes practical use of spatial degrees through
beamforming and spatial multiplexing. This means a BS can concentrate its energy
toward selected users, limit interference toward others, and support more diverse
service even when the environment is crowded. However, these gains come with
practical disadvantages that affect resource allocation. Multiple antenna processing
increases computational effort and often increases energy usage, while both UL and
DL require extra signaling and more demanding channel-state acquisition and
tracking. In real deployments, performance depends heavily on where users are
located, how they move, the local propagation conditions, and the traffic they
generate. As shown in the literature, results can vary widely with user density,
antenna placement, and SNR, so the benefits of MIMO should not be treated
uniformly across an entire network.

Moreover, MIMO performance is also tightly linked to UL quality. Since UL SNR
affects how accurately the channel can be estimated, weak uplink conditions can
limit spatial processing even when the DL signal looks strong. This imbalance
between UL and DL has pushed many MIMO oriented studies toward more flexible
association, mobility-aware prediction, and scheduling that responds to traffic
patterns and uses spatial resources where they matter most. The literature also
stresses a practical balancing act between UE density and antenna load: if too few
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users are served, spatial multiplexing is not fully used, while an overloaded array
may struggle to separate users cleanly and performance starts to drop.

Further recent work also points to energy consumption as a growing concern.
While MIMO can deliver more throughput from the same spectrum, running large
antenna arrays and their signal processing adds a noticeable power cost. For this
reason, several studies look at ideas such as selective antenna activation, better UL-
DL coordination, and adaptive association to keep energy overhead under control.
Overall, the central idea from the literature is that MIMO resource management
needs to capture spatial gains without driving energy consumption upward, using
approaches that connect where UEs are located with how the antenna resources are
used in an adaptive and practical way.

The first relevant study [24] focuses on how multiple antenna 5G deployments
behave as UE load changes, how service demand varies across the network and how
user locations follow more realistic patterns. The evaluation is built on an urban
scenario generated using the DeepMIMO dataset, and it focuses on how spatial
diversity, UE distribution, and resource usage interact in a multiple antenna system.
In this setting, DUDe is not treated as the core technology, but rather as a useful
mechanism for showing how strongly MIMO outcomes can depend on UL channel
conditions and where UEs are positioned in the.

The results show that the remaining bandwidth at each BS depends heavily on
whether UL traffic is guided through directions that fit the antenna array well. As
the number of UEs increases from 362 to 905, the multiple antenna setup retains
noticeably more bandwidth when UL connections align with antenna elements that
provide stronger channel quality. This highlights a basic point about MIMO in
practice: spatial resources are used effectively only when the UE distribution
matches the array geometry in a way that the system can exploit. The bandwidth
trends that capture this sensitivity are represented in Figure 4:
. w108 RemainingIBandwidLh per B;ase Station (DUDe vs. DUCo)

[ GA
I DUCo

Remaining Bandwidth (in Hz)
~
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Figure 4. Remaining Bandwidth per BS comparison between DUCo and DUDe.

The mobility experiments in [25], further strengthen by highlighting how UE
motion interacts with MIMO spatial processing. As UE velocity increases, handover
frequency and packet loss escalate rapidly when UL and DL remain tied to the same
serving element, especially in dense regions where sharp spatial transitions occur.
When the UL is allowed to follow the direction of the antenna with better channel
conditions, mobility causes less disruption and latency increases more smoothly.
Overall, the results reinforce that MIMO performance depends strongly on uplink
quality and on how UEs are positioned relative to the antenna geometry. The key
mobility trends are summarized in Figures 5-6:
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Energy efficiency observations support these findings. As the UE load rises, the
power needed to maintain uplink connectivity depends strongly on each UE'’s
distance to the serving BS and the quality of its channel to the antenna array. When
uplink links are pointed towards antenna directions with better conditions, transmit
power tends to spread more evenly across UEs and the total energy consumption is
lower. This again suggests that MIMO behavior is driven more by spatial geometry

and link quality than by antenna count alone. These results are illustrated in Figure
6:
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Figure 6. Energy Efficiency and Power Consumption for MIMO.

In conclusion, these observations offer a more detailed view of how multiple
antenna 5G systems behave when spatial diversity, channel conditions and UE
mobility converge. The studies support the idea that the effectiveness of MIMO
depends not simply on expanding antenna arrays, but on how well UE distribution,
UL channel quality and resource allocation strategies align with the system’s
geometric structure. Bandwidth utilization, mobility robustness, energy
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consumption and UE distribution all interact closely MIMO operation, providing a
starting point for future work that combines spatial processing with predictive and
optimization focused techniques.

6. Machine Learning for Adaptive Resource Allocation in 5G and
Beyond Networks

ML has become increasingly important in wireless systems because 5G, and the
early direction of 6G, operate in environments that are dense, heterogeneous, and
dynamic. Traditional approaches often lose effectiveness when confronted with
rapidly shifting traffic patterns, HetNet service demands, and mobility-induced
channel variations. As radio access networks evolve into multi-layered topologies
and integrate massive MIMO arrays, optimization problems that once appeared
manageable now involve thousands of interacting UEs, fluctuating propagation
conditions, and a variety of hardware states that scale over time. ML offers an
alternative that learns patterns from data, captures nonlinear behavior without
fixed rules, and makes fast decisions with less computation than repeatedly solving
complex optimization problems.

Within this domain, Reinforcement Learning (RL) has become more widely used.
RL treats network control as a series of decisions made under uncertainty, where a
BS or a controller chooses actions and adjusts them over time based on observed
traffic load, interference levels, and UE distribution. Early studies showed that RL
can outperform standard heuristic methods in tasks such as small cell sleep
scheduling, interference management, and traffic steering. Later work expanded
these ideas to larger systems, introducing deep RL architectures capable of encoding
complex network states and learning energy- or throughput-aware policies. The
appeal of RL lies in its capacity for continuous adaptation, particularly when channel
conditions or mobility patterns evolve unpredictably. In multi-layer and HetNet 5G
deployments where idle and active states of macro and small cells must be
coordinated RL has repeatedly shown that data-driven decision-making can reduce
energy consumption without sacrificing latency or service guarantees.

Graph Neural Networks (GNNs) have transformed learning-based resource
allocation into multi-antenna systems. Wireless networks naturally form graph
structures consisting of UEs, BSs, and, in some cases, antenna panels or resource
blocks. Interference, geometry, pathloss, and connectivity follow relational patterns
that GNNs can express more efficiently than conventional neural models. While
homogeneous GNNs were first used for tasks such as power control and
beamforming, more sophisticated HetNet GNNs now distinguish between node
types, enabling joint optimization that simultaneously considers UE association, per-
antenna power distribution, and the interplay among multiple BSs. Their ability to
approximate classical optimization methods such as WMMSE in a single inference
step has positioned GNNs as a powerful tool for real-time operation, offering
substantial reductions in computational effort while retaining near-optimal
performance.

Across literature, two trends stand out. First, ML-based methods usually perform
better than fixed resource allocation schemes when network conditions change
quickly. Second, the most reliable results often come from hybrid designs, where
learning is supported by basic domain knowledge or by signals produced by
classical optimization methods. This has led research toward combining prediction
with practical HetNet conditions, user mobility, and multiple antenna operation. The
aim is not only better performance, but also a better balance between energy usage,
fairness, and scalability under realistic constraints. the contributions discussed in
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this section focus on two related directions in ML-based resource allocation: using
reinforcement learning for dynamic energy control in HetNet 5G/6G systems and
using graph neural networks in MIMO-based HetNets to jointly handle UE
association and power allocation. Together, these works show how ML can be used
directly in network control, supporting decisions that are more adaptive, scalable,
and efficient for next-generation wireless systems.

The first contribution studies RL for dynamic energy management in 5G and
later networks, with a focus on deciding which base stations should stay active as
traffic demand and user mobility change. It proposes a deep RL approach that can
switch cell states (active, idle, or sleep), based on real-time indicators such as load,
latency, interference, and energy use. Instead of using fixed sleep schedules or
simple heuristics, the RL agent learns its policy through interaction with a simulated
network that includes daily traffic variation, HetNet deployments, and multi-cell
interference.

The simulations show that the RL-driven policy significantly reduces overall
energy consumption while maintaining acceptable latency and minimizing service
level agreement violations. Under peak-hour, off-peak, and variable-load scenarios,
the RL strategy consistently outperforms baseline policies, activating only the
minimum number of cells required to satisfy service constraints. This behavior
highlights the role of RL in anticipating load transitions and adapting cell states
before inefficient configurations emerge. Representative outcomes can be seen in
Figures 7-10.
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These results demonstrate the growing importance of RL for intelligent power-
state control in next-generation networks, particularly as energy consumption
becomes a central design constraint in future 6G systems.

The second contribution applies ML from a structural perspective, using a
HetNet graph neural network to jointly predict UE association and antenna-level
power allocation in 5G MIMO HetNet networks. Unlike conventional iterative
optimizers, which treat association and power as separate sequential tasks, the
proposed model represents BSs, UEs, and antenna elements as distinct node type-
aware message passing to embed their relationships into a unified graph. This
enables the network to produce both association decisions and per-resource-block
power fractions in a single inference step. The evaluation, conducted on a
DeepMIMO-based urban deployment containing 5,400 UEs and five BSs, shows that
the HetNet GNN achieves more than 85% of the throughput of the WMMSE teacher
algorithm while requiring only a single forward pass. Although fairness and low-
percentile rates fall slightly below the teacher, the model delivers substantial gains
over the baseline heuristic and performs inference in milliseconds, making it
suitable for real-time adaptation in dense deployments.
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Figure 9. Jain's Fairness Index for RL.
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Figure 10. Aggregate Sum-Rate for RL.

Overall, the results support the use of graph-based learning in HetNets, since the
network can be described naturally as connected nodes. By using geometry, channel
conditions, antenna context, and interference relations together, the model can
deliver strong allocations without the delay of running full optimization at every
step.
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The RL framework and the HetNet GNN describe two practical ways to update
resource allocation for 5G and beyond. RL is mainly used for control over time, it
learns how the network should adjust its actions as load, interference, and mobility
change. On the contrary, the HetNet GNN targets fast decisions, it uses the network’s
structure to produce appropriate association and power patterns on demand. Both
reflect the same reality: future networks will be larger, more dynamic, and more
difficult to manage with fixed rules or slow centralized optimization.

7. Game-Theoretic Resource Allocation in 5G MIMO Networks

GT has become a common way to describe wireless resource management in 5G
MIMO systems. Dense deployments and mobility make channel conditions change
quickly, so allocation must work under uncertainty. Many studies therefore favor
adaptive mechanisms over rigid optimization rules, especially when UEs and BSs
influence each other. GT provides a clear framework for this, since decisions are
interdependent and results emerge through competition, coordination, or
equilibrium.

Previous studies focused on applying classical game models leader-follower
formulations, cooperative bargaining schemes, mean-field approximations and
potential-driven equilibria to static or semi-static MIMO networks. These methods
demonstrated that distributed decision making can achieve many of the benefits of
centralized scheduling while keeping signaling lower overhead. However,
performance often remained highly sensitive to UE mobility, because of fast changes
in distance, pathloss, and SNR can reshape the utility values faster than the game
can reach a stable outcome. In practice, once users move away from the initial
conditions, fairness, energy efficiency, and bandwidth utilization may start to vary
in ways that are difficult to control. Over time, the literature has split into two broad
responses to this problem. Some work stays within the game-theoretic layer and
tries to make the games themselves more practical under mobility. Other work
treats mobility as something that should be anticipated rather than absorbed and
introduces prediction, so that the key quantities that drive the utilities (distance,
pathloss, SNR) can be estimated ahead of time. This view is especially useful in
MIMO settings, where small geometric changes can quickly alter spatial separability
and effective antenna gains. Instead of adjusting after performance has already
dropped, a predictive allocator can act on the geometry that is likely to hold in the
next interval. The emphasis therefore moves from reacting to fading and movement
to making allocation choices early enough to limit their impact.

Within this setting, two studies are useful for showing how GT-based methods
can be applied in mobile 5G MIMO networks [26, 27]. The first presents a common
testbed for four well-known approaches (Stackelberg, Nash bargaining, mean-field
games, and potential games), under continuous UE mobility, where channel-related
inputs are refreshed at every scheduling step. The same mobility traces and the
same inputs (distance, pathloss, and data-rate conditions) are used across all four
methods, so differences in outcomes can be traced back to the game structure rather
than to the scenario itself. The comparison makes the contrasts clear. Some schemes
tend to gather UEs toward the most favorable antennas, while others distribute
users more broadly across the available cells or beams. The objectives also differ,
certain formulations lean toward fairness, while some prioritize throughput and
others try to balance fairness with energy efficiency. Under mobility, these patterns
become more visible because the UE geometry changes every interval, forcing each
method to respond to a shifting spatial situation. The experiments show that
performance is shaped not only by antenna capability or total bandwidth, but by
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how each game reacts to changes in distance, SNR, and user velocity. The main

trends are illustrated in Flgures 11-12.
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The results of the research underscore how MIMO-topology sensitivity, UE
dynamics, and spatial load distribution collectively determine the practical
suitability of each algorithm. No single method dominates all metrics; each excels
under specific system priorities. The analysis therefore provides a rigorous
baseline: a realistic, mobility-aware comparison of four major game-theoretic

resource allocation frameworks in a 5G MIMO

environment.

Building on this baseline, the second research provides a predictive, mobility-
aware reinforcement learning mechanism that augments these same games with
short-horizon foresight. Instead of allocating resources based solely on current
measurements, a lightweight neural model forecasts UE positions and channel
quality one interval into the future. These predictions are then used to update the
payoff values given to each game, so the resulting equilibria are based on the
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geometry expected in the next interval rather than the geometry observed in the
past. This leads to a control process that is more stable and more forward-looking,
where allocations converge faster, sudden bursts of handovers are reduced, and
throughput improves because strategic choices better match the SNR that is likely to
occur. Some of the performance metrics are shown in Figures 13-14.
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The predictive layer helps the games behave more steadily under mobility,
reducing sudden swings by smoothing how the system moves from one state to the
next. This matters in dense MIMO deployments, where antenna selection and spatial
effects can change quickly and interact in complicated ways. Game-theoretic models
can describe how UEs compete or cooperate, but predictive reinforcement learning
adds information about what is likely to happen next, so the decisions stay sensible
as geometry shifts. Together, they support a resource allocation approach that is
more efficient, and scalable for future networks.

In summary, these findings show that GT still provides a strong way to think about
strategic resource allocation, but also that its performance in MIMO settings
improves when mobility awareness and spatial prediction are added. As 5G moves
toward denser deployments, higher mobility, and more diverse HetNet demands,
combining predictive intelligence with decentralized decision rules can help balance
network performance, without depending on a single, heavy centralized scheduler.
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Conclusion

This chapter shows that resource allocation in modern cellular networks is
driven less by fixed design choices and more by conditions that change from one
moment to the next. Mobility, uneven traffic demand, and shifting interference mean
that a solution that looks reasonable in a static setting can quickly become
inefficient once the geometry and load of the network evolve. For this reason, the
chapter’s main themes should be seen as responses to the same underlying
challenge: allocation decisions must remain effective under continual change.

Each theme contributes a distinct part of the overall picture. DUDe highlights
that uplink and downlink constraints are not symmetric, and that treating
association as a single coupled choice can waste resources and energy in
heterogeneous deployments. Massive MIMO demonstrates that spatial processing
offers major gains, but only when user distribution and scheduling align with the
spatial structure of the environment; simply adding antennas does not guarantee
consistent improvement. Game-theoretic methods provide a disciplined way to
represent competition and cooperation when decisions are distributed across many
actors, yet their stability can be fragile when mobility reshapes channel conditions
faster than equilibria can settle. ML-based approaches address this gap by learning
patterns in traffic and movement, enabling decisions to be guided by expected
short-term conditions rather than delayed observations.

Overall, the chapter leads to a clear endpoint and also points to next steps.
Future wireless systems will require resource management methods that adapt fast,
stay stable under frequent updates, and scale in dense, heterogeneous deployments.
A natural extension is to integrate RL, so the association policy adjusts UE-BS
UL/DL coupling over time based on mobility, traffic demand, and channel
conditions. The same framework can then be evaluated in 6G oriented scenarios,
where cell free massive MIMO, denser layouts, and higher carrier frequencies
reshape interference and handover behavior. RIS-enabled networks provide
another research path, since association can interact with RIS phase control and
beamforming; a joint design can aim at higher energy efficiency and throughput
while keeping control latency bounded. Stronger validation should rely on larger
traces, mixed indoor-outdoor settings, and hardware-aware power models to
maintain reproducibility and improve relevance to real deployments.
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