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Abstract— Efficient resource allocation is essential in 5G MIMO networks due to 

increasing demands for high-quality communications. This paper compares four game 

theory algorithms: Stackelberg, Nash Bargaining, Mean Field Game, and Potential 

Game, evaluating their effectiveness in allocating resources dynamically. A simulation 

environment is developed to represent realistic user mobility by continuously updating 

User Equipment (UE) positions. Each algorithm is assessed based on UE distribution, 

fairness, bandwidth consumption, and energy efficiency. The simulation results show 

clear differences among the algorithms, highlighting specific advantages and 

limitations that help inform resource allocation strategies in practical 5G network 

scenarios. 
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1 Introduction 

5G Multiple Input Multiple Output (MIMO) networks represent a significant 

advancement in wireless communication technologies, offering solutions designed to 

address rapidly growing demands for high data rates, extensive coverage, and improved 

reliability. These networks leverage advanced Base Station (BS) systems, multiple 

simultaneous data streams, an enhanced spectral efficiency to provide better User 

Equipment (UE) experiences and support diverse, data-intensive applications. As 

emerging applications such as virtual reality, augmented reality, high-definition 

streaming, smart cities, and the Internet of Things (IoT) increase their demands on 

network resources, efficient and adaptive resource management becomes increasingly 

critical. 

Efficient distribution of resources within 5G MIMO networks, particularly in 

dynamic scenarios characterized by mobile UEs, directly influences network 

performance, UE fairness and energy consumption. Current research recognizes that 

traditional static allocation methods may not adequately address the challenges posed 

by UE mobility and dynamic channel conditions. Consequently, interest in adaptive 
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resource allocation methods that can respond effectively to these dynamics has 

increased significantly. 

In response to these challenges, this paper introduces a unified platform for 

examining multiple resource allocation Game Theory strategies within a single 5G 

MIMO environment. In particular, it implements four game-theoretic algorithms 

Stackelberg [1], Nash Bargaining [2], Mean Field [3], and Potential Game [4]. Within 

each algorithm UEs act as players competing to maximize their individual profit, while 

considering factors such as distance, velocity, path loss, and Signal-to-Noise Ratio 

(SNR). After every time interval, the algorithm assigns random movement directions 

base on initially velocities to each UE, recalculating distances to each BS. This allows 

for a more accurate observation of how mobility affects key performance metrics such 

as fairness, energy use, and user allocation. By evaluating all four algorithms under the 

same mobility conditions, the study highlights their individual advantages and 

weaknesses for each game theory algorithm in a practical setting. As a result, the 

findings offer useful guidance for researchers and network designers aiming to build 

better or combined strategies that are suited for dynamic and realistic 5G environments. 

Also, these four game theory algorithms cover the main approaches used for resource 

allocation in 5G MIMO networks. The Stackelberg game captures the leader–follower 

link between a BS and its UE, the Nash bargaining game frames cooperative negotiation 

to maintain fairness; the mean-field game scales to many UEs by reacting to their 

average behavior and the potential game guides distributed choices toward a network-

wide optimum. [5], [6], [7], [8]. 

The rest of this paper is organized as follows: Section 2 presents a review of recent 

research concerning resource allocation methods based on Game Theory approaches in 

5G MIMO systems. Section 3 introduces the mathematical algorithm employed in the 

simulation environment. Section 4 provides a detailed analysis of the algorithms used 

as the foundation for developing experimental scenarios. In Section 5, the simulation 

environment and methodology used to evaluate algorithm performance are described. 

Section 6 presents the simulation results along with a comprehensive analysis of the 

findings. Finally, Section 7 concludes the paper and identifies potential directions for 

future research. 

2 Related Work 

Recent studies have explored multiple approaches, ranging from optimization 

algorithms and heuristic methods to advanced strategies using game-theoretic 

principles. This section briefly examines representative works that address different 

dimensions of resource allocation, providing a clear context for identifying how this 

current paper contributes uniquely, particularly by considering realistic UE mobility 

and dynamic channel conditions.  

In the work presented by the authors in [9], a pilot allocation strategy based on 

coalitional game theory is developed to address pilot contamination challenges in 

distributed MIMO systems, a common problem exacerbated by increasing numbers of 

UE terminals in 5G networks. Their proposed algorithm transforms pilot allocation into 



an optimization problem aimed at minimizing the Normalized Mean Squared Error 

(NMSE) in channel estimation. By adopting a coalitional game framework and 

designing a symmetric, additive separable preference function related to Mean Squared 

Error (MSE), the researchers achieve results comparable to exhaustive methods but 

with significantly reduced complexity. Simulation findings demonstrate substantial 

improvements over random pilot reuse, highlighting the efficiency of game theory 

techniques in managing resource constraints in distributed MIMO scenarios. 

The research in [10] introduces a dynamic resource allocation approach specifically 

designed for downlink scenarios in 5G Radio-over-Fiber (RoF) networks utilizing 

Wavelength Division Multiplexing Passive Optical Networks (WDM-PON) combined 

with Multiple-UE MIMO (MU-MIMO). The proposed method focuses on efficiently 

reallocating wireless Resource Blocks (RB) within Component Carriers (CC), aiming 

to optimize wavelength usage, reduce system cost, and enhance throughput. To achieve 

this, a heuristic algorithm is developed to dynamically adjust RB assignments based on 

varying network demands. Simulation results presented by the author indicate that this 

method effectively reduces wavelength consumption and improves throughput 

performance under diverse UE conditions and block error rates. The work highlights 

the potential benefits of dynamic resource reallocation strategies, particularly 

emphasizing their significance in managing resource utilization efficiently in complex 

5G scenarios involving MIMO technology and varying UE demands. 

Authors in [11] proposes a generalized resource allocation framework tailored for 

MU-MIMO systems utilizing Orthogonal Frequency Division Multiple Access 

(OFDMA). The presented strategy addresses key challenges associated with spatial 

multiplexing, particularly focusing on efficient co-scheduling of multiple UEs to 

increase system capacity while preserving fairness among UEs. Central to this approach 

is a scheduling algorithm that dynamically allocates resources by considering both 

transmitting power distribution and inter UE interference, crucial factors that impact 

overall performance. Simulation results based on the SCM-5G channel model 

demonstrate that the proposed framework successfully achieves a beneficial trade-off 

between increased network capacity and sustained UE fairness. Moreover, the findings 

emphasize the necessity of precise resource allocation strategies in MU-MIMO 

systems, reinforcing that capacity improvements gained through advanced BS systems 

must be managed carefully to ensure balanced throughput among UEs. 

The manuscript in [12] investigates resource allocation strategies for downlink 

transmission in cell-free massive MIMO networks. The work specifically aims to 

maximize the minimum achievable data rate across UE, focusing on optimal transmit 

precoding and power allocation strategies. The author tackles the inherent non-

convexity of this optimization problem by employing the uplink-downlink duality 

principle, proposing an iterative algorithm to achieve efficient and practical solutions. 

The analysis further incorporates the impact of channel estimation errors, deriving a 

lower bound for network capacity. Through comprehensive system-level evaluations, 

the author demonstrates that the proposed algorithm significantly surpasses traditional 

allocation methods, validating its practicality and effectiveness in realistic wireless 

communication environments. 



Unlike previous studies, which often keep UEs fixed or consider limited random 

movements, this paper explicitly incorporates realistic mobility in two dimensions. 

Thus, intervals how UE mobility impacts performance aspects such as fairness, energy 

efficiency, and UE distribution. By directly comparing these four algorithms’ side by 

side, this work provides clear insights into each algorithm’s practical strengths and 

limitations when mobility is realistically considered. Researchers and engineers can 

therefore easily understand the effectiveness of each method, supporting the 

development of improved or hybrid strategies tailored specifically for dynamic and 

realistic 5G deployment scenarios. 

3 Mathematical Model  

This section defines mathematically the problem of dynamic UE allocation using 

principles from game theory. In this scenario, each UE, denoted by index 𝑖, selects a 

fraction of its allocation to each available BS, indicated by index 𝑗, aiming to optimize 

its individual or global profit. Several parameters, such as distance, pathloss, data rate, 

SNR, and UE velocity, are factored into the profit calculation. Four game-theoretic 

algorithms Stackelberg, Nash Bargaining, Mean Field, and Potential Game are applied 

to distribute a total of 1810 UEs among 7 BSs throughout 50 distinct time intervals. 

Formally, let the set of UEs be represented by U={1,2,…,N} with ∣U∣=1810, 

and let the set of BSs be denoted by B={1,2,…,M} with ∣B∣=7. The allocation 

fraction aij represents the portion of UE i's total allocation assigned specifically to BS 

j. To ensure consistency and resource utilization constraints, we enforce the following 

normalization constraint across all BSs for each UE: 

∑α𝑖𝑗

𝑀

𝑗=1

= 1 

 

(1) 

The variables utilized in calculating the profit are clearly defined. The distance from 

UE i to BS j is dij, based on their two-dimensional positions. Pathloss between UE i and 

BS j is represented as PLij, and the corresponding SNR (uplink, downlink, or a 

combination of both) is denoted SNRij. Additionally, DRij indicates the data rate for UE 

i from BS j, while vi describes UE i's velocity. A constant factor, referred to as the 

penalty factor, modifies the utility calculation based on distance and velocity. 

Meanwhile, the resource parameter resources[j], associated with BS j, is scaled 

iteratively by the game-theoretic algorithms. The profit function is formulated as 

follows, using a small constant ε>0 to prevent division by zero: 

Profit𝑖𝑗 =
α𝑖𝑗 × (𝐷𝑅𝑖𝑗 × 𝑆𝑁𝑅𝑖𝑗)

(1 + 𝑃𝐿𝑖𝑗) × ((𝑑𝑖𝑗 + 1)(𝑣𝑖 + 1) × penalty_factor + ε)
 (2) 



The total profit for UE i across all BSs is simply the sum of the profits associated 

with each BS j. In numerical computations, introducing a small positive constant, 

commonly referred to as epsilon (ε), is a standard technique to maintain numerical 

stability. This approach prevents issues like division by zero when variables such as a 

user's distance (dᵢⱼ) or velocity (vᵢ) are extremely small or zero. By adding ε (typically 

around 10⁻⁸ or smaller) to the denominator, computations avoid instability and infinite 

values without significantly affecting the model's accuracy. This practice is widely 

adopted in numerical simulations to ensure robust and reliable calculations. 

Each of the four game-theoretic algorithms employs the above profit function and 

the allocation constraint, but they differ in the method by which they iteratively update 

allocations. In the Stackelberg Game, a leader BS iteratively adjusts its resource scaling 

strategy, and follower UEs subsequently adapt their allocations, typically using a lower 

penalty factor. Nash Bargaining Game introduces a logarithmic transformation to 

balance utility across UEs and BSs, commonly using moderate penalty factors. The 

Mean Field Game presumes each UE responds independently to the average allocations 

of other UEs, updating its choice using an exponential or softmax function. Lastly, the 

Potential Game maximizes a global potential, measured as the sum of squared UE 

profits, thus guiding allocations toward resources with collectively greater utilities. 

Also, other performance metrics are calculated to evaluate allocation effectiveness. 

The fairness index is a dimensionless measure, defined as follows: 

𝑓 =
(∑ thr𝑖

𝑁
𝑖=1 )

2

𝑁 × ∑ thr𝑖
2𝑁

𝑖=1 + ε
 (3) 

Energy efficiency is defined as follows: 

η =
∑ thr𝑖
𝑁
𝑖=1

∑ ((𝑑𝑖,∗)
2
× 𝑣𝑖)

𝑁
𝑖=1 × power_factor + ε

 (4) 

where di, is the average distance of UE 𝑖 to the BSs, and power_factor can differ per 

algorithms [13], [14]. 

Thus, for bandwidth allocation we calculate the maximum needs in Mbps of each 

UE in each BS, using the Shannon-Hartley theorem [15]. The Shannon-Hartley theorem 

is a principle used to determine the maximum theoretical rate at which information can 

be transmitted over a communication channel with a given bandwidth, accounting for 

the presence of noise. It is an application of the noisy-channel coding theorem and is 

commonly applied to continuous analog communication channels affected by Gaussian 

noise. This theorem establishes the channel capacity, which refers to the maximum 

amount of error-free information that can be transmitted per unit time, given a specific 

bandwidth and assuming limited signal power and knowledge of the noise properties. 

Named after Claude Shannon and Ralph Hartley, the theorem is an important concept 

in information theory and is widely utilized in the design and analysis of 

communication systems. In practical terms, the Shannon-Hartley theorem allows 

communication system designers to optimize their systems by finding the optimal 

balance between information transfer rate and error minimization. By mathematically 

relating to the channel capacity (denoted as C), the signal power (S), the noise power 

(N), and the bandwidth, the theorem provides a framework for maximizing information 



transfer while considering the limitations imposed by noise and available bandwidth. 

This is particularly relevant in scenarios where the channel is subject to Additive White 

Gaussian Noise (AWGN). In essence, the Shannon-Hartley theorem provides a 

valuable tool for understanding and designing communication systems, enabling 

engineers to determine the maximum amount of reliable information that can be 

transmitted through an analog communication channel in the presence of noise. By 

optimizing the factors involved, such as signal power and bandwidth, communication 

systems can be designed to achieve efficient and effective data transmission while 

minimizing errors. 

 
C = Blog2(1 + S/N) (5) 

The channel capacity, denoted as C in bits per second, represents the maximum 

achievable net bit rate without using error-correction codes. The channel's bandwidth, 

denoted as B and measured in hertz, refers to the passband bandwidth for a bandpass 

signal. The average received signal power, denoted as S and measured in watts (or volts 

squared), is the average power of the signal over the bandwidth. In carrier-modulated 

passband transmission, it is often referred to as C. The average power of noise and 

interference over the bandwidth is represented as N and measured in watts (or volts 

squared). The SNR or Carrier-to-Noise Ratio (CNR) is expressed as a linear power ratio 

of the communication signal to the noise and interference at the receiver, rather than in 

decibels. 

To efficiently allocate a specific frequency range from the antenna for each user 

without interference, variable B needs to be determined. This is achieved using a 

modified formula that considers the SNR value and a predefined threshold value for 

variable C. The term "pre-set" indicates that a randomly assigned bandwidth value is 

given to users of a particular service (during our simulations we define specific service, 

more information is section VI Simulation Environment and Table II). 

Finally, equations directly represent how the algorithm dynamically allocates UEs. 

Each game algorithms iteratively updates 𝛼𝑖,𝑗 by maximizing or adjusting profit, 

whether individually Potential Game and Mean Field Game, through pairwise 

negotiations Nash Bargaining, or leader–follower strategies Stackelberg. Penalty 

factors and SNR combinations differ by algorithms, but all share the same underlying 

profit function and constraints that account for distance, pathloss, and velocity. 

4 Algorithm Analysis 

This section provides a detailed analysis of the theoretical algorithm I used for 

modeling UE mobility and dynamically allocating resources within a multi BS 5G 

MIMO environment. The analysis follows the algorithm’s logical steps closely, 

outlining essential computations, processes, and interactions involved in its 

implementation.  
Algorithm I: A Dynamic Game-Theoretic Algorithm for Multi BSs n UE Allocation 

1. Step 1: Initialization & Parameter Configuration: 



2. In this step, the code reads the configuration constants that specify the number of UEs 
(N) and BSs (M), the total simulation time intervals, and the dataset paths for UE 
velocity, pathloss, SNR, and data rates. It also defines the resource array resources[j]. 
The dataset is then loaded into arrays for velocity, pathloss, uplink_SNR, 
downlink_SNR, data_rate, and BS locations. Finally, each UE’s initial position is 
randomized in a 2D plane. 

3. Step 2: Network Representation & Topology: 
4. The algorithm computes the distance matrix dᵢ,ⱼ in 2D from each UE i to each BS j. It 

associates each UE with velocity vᵢ and prepares data structures to store each 
algorithm’s time-varying results (fairness, latency, energy efficiency). These values 
are updated at each iteration of the selected game algorithms. 

5. Step 3 Implementing Each Game Theory Algorithms: 
6. Stackelberg Game: Iteratively updates a leader strategy (resource scaling) and a 

follower response (UE allocation). A smaller penalty_factor is often applied, reflecting 
a more optimistic assessment of distance–velocity costs. 

7. Nash Bargaining Game: Uses a log-based utility function and medium iteration count. 
It incorporates both uplink and downlink SNR in a combined form and reassigns 
allocations based on bargaining power. 

8. Mean Field Game (MFG): Treats each UE as responding to the average (mean field) 
of all allocations. Each UE updates its allocation by applying an exponential (softmax-
like) function to its utility. 

9. Potential Game: Aims to maximize global potential, defined as the sum of squares of 
UE utilities. Each UE tries different resource allocations that yield the highest increase 
in this potential. 

10. Step 4: Performance Evaluation & Metric Computation: 
11. For each algorithm, the algorithm computes UE distribution, Fairness, Bandwidth 

Consumption and Energy Efficiency. These metrics are stored and plotted over time. 
Allocation decisions follow mathematical equations, with UE movement affecting 
utility and assignment. While all algorithms share the core utility, differences in 
penalties, iterations, and updating rules impact UE distribution, fairness, Bandwidth 
Consumption, and energy efficiency. 

Initially, the algorithm starts by defining the simulation parameters, including the 

total number of UEs, the number of BSs, the simulation’s duration, and the file paths 

for datasets containing UE velocities, pathloss measurements, downlink SNR, and data 

rates. These datasets are structured into arrays to facilitate efficient computational 

handling. Additionally, each UE is assigned an initial random position within a two-

dimensional plane, forming the basis for initial connectivity and influencing subsequent 

resource allocation decisions. The available resources at each BS are also defined at 

this stage, establishing foundational constraints for allocation. 

Following initialization, the algorithm builds the network representation by 

accurately calculating distances between each UE and every BS. These distances are 

continuously updated and play a critical role in determining signal strength, potential 

interference, and overall connectivity quality. Additionally, UE velocities assigned 

randomly and updated at each simulation interval introduce realistic UE movement 

scenarios. Such movements significantly impact the quality of the network’s channel 

conditions, making resource allocation decisions dynamic and responsive to changes in 

UE distribution and connectivity. Data structures are simultaneously prepared to track 

key performance indicators throughout the simulation, including fairness and energy 

efficiency. 



The algorithm then individually applies four distinct game-theoretic algorithms to 

address the resource allocation problem. First, the Stackelberg game algorithm is 

implemented, adopting a leader-follower structure. Here, BSs act as leaders adjusting 

the allocation of available resources strategically, while UEs function as followers, 

responding to these allocation strategies. A penalty factor reflecting distance-velocity 

relationships guides UE decision-making, typically set low to encourage more 

optimistic resource allocation even under challenging connectivity scenarios. 

Next, the Nash Bargaining game algorithm is implemented, relying on a bargaining-

based utility approach. This algorithm integrates both uplink and downlink signal 

qualities into a unified, logarithmic-based utility function, facilitating cooperative 

interactions among UEs. Resource allocation occurs through negotiation, ensuring 

balanced benefits and equitable distribution among the UE, especially under changing 

connectivity conditions. 

Subsequently, the Mean Field Game approach is employed, wherein each UE 

independently optimizes its resource allocation decisions based on the collective 

behavior of other UE. In this scenario, every UE considers the overall average (mean 

field) allocation within the network to adapt its individual resource demands 

accordingly. The allocation updates are made through exponential decision rules, 

allowing smooth adaptation to dynamic network states. 

Finally, the Potential Game algorithm focuses explicitly on optimizing a global 

system objective, specifically defined as the cumulative squared utilities of all UEs. 

Under this algorithm, each UE explores alternative allocation possibilities, selecting 

those that offer the most significant increase in the global potential value. This 

collective optimization approach helps achieve desirable system-wide outcomes, 

enhancing overall network performance. 

The final stage of the algorithm involves rigorous performance evaluation. The 

algorithm computes and tracks fairness, latency, energy efficiency, and load balancing 

throughout the entire simulation. Continuously updating these performance metrics, the 

algorithm enables an extensive comparative analysis of the four implemented game-

theoretic approaches. This structured approach highlights the adaptability and 

effectiveness of each algorithm in realistic mobility scenarios, facilitating deeper 

understanding of their respective strengths, limitations, and practical implications in 

dynamic 5G MIMO network environments. 

5 Simulation Environment 

In this section, the simulation environment used in the presented experiments is 

described. The network structure, including BS positioning and UE distribution, is 

adapted from a simplified scenario based on the DeepMIMO dataset [16]. The specific 

topology implemented is illustrated in Fig. 1. The UEs appear in a straight horizontal 

line because this layout comes directly from the DeepMIMO dataset rather than any 

custom placement. The DeepMIMO O1 scenario defines user locations on a uniform 

grid along the main street, with 1810 rows (R1–R1810) of UEs, each row consisting of 

181 UEs positioned at the same y-coordinate, aligned horizontally. Using the default 



dataset parameters, selected the primary street grid 1 thus, the UE positions in our 

experiment naturally form a horizontal line segment in the topology. This linear 

arrangement is an inherent property of the DeepMIMO scenario’s predefined geometry, 

as each “row” represents a group of UEs uniformly spaced along a line. The 

experimental setup represents an urban scenario simplified into a smaller scale 5G 

MIMO system.  

 

Fig.1. Topology of Simulation. 

In addition, the topology consists of 7 BSs, strategically positioned to ensure 

optimal coverage within the defined area. Each BS is positioned at a height of 6 meters, 

establishing uniform vertical alignment across the network. According to the chosen 

scenario, seven BSs are arranged in a defined symmetrical pattern. Specifically, the 

BSs form a structured distribution consisting of two vertical groups, each containing 

three BSs, aligned symmetrically along both sides of the topology. Additionally, one 

BS is positioned individually, located centrally at the top, ensuring coverage from the 

upper central side. This symmetrical yet non-centralized arrangement provides 

balanced coverage of the experimental area, allowing for accurate evaluation of 

resource allocation strategies under realistic yet simplified network conditions. 

For the experimental simulations, three distinct datasets, each containing different 

UE densities specifically, 362, 543, and 905 UEs are used separately within the same 

topology. These datasets are subsequently merged into one larger, comprehensive 

dataset. Combining these datasets allows the conducted experiments to reflect realistic 

scenarios involving varying UEs densities, facilitating deeper and more comprehensive 

analyses of resource allocation strategies. Note also, that the operating frequency of the 

network in which simulations were implemented is at 140 GHz, the Number of 5G NR 

resource blocks is 60 and 5G Subcarrier spacing in kHz is 120. 

After completing the simulation intervals and updating UEs’ velocities and 

directions randomly, the distribution of UEs transforms significantly. As illustrated in 

Fig. 2, the final positions of the UEs spread radially outward from the central area, 

evenly dispersing around the BSs. The resultant UE distribution closely resembles 

realistic urban scenarios, capturing UE mobility and spatial diversity effectively. UEs 

occupy positions around all seven BSs, reflecting a balanced distribution pattern across 

the entire defined topology area. This dynamic change in UE positions results in varied 

and realistic distances and connectivity conditions, allowing the experimental 



algorithms to be evaluated comprehensively in terms of adaptability, performance, and 

robustness under changing UE distributions. 

 

Fig.2. Topology of Final UEs Positions. 

In addition to the spatial arrangements described, critical technical parameters are 

predefined to achieve accurate and consistent simulations. Specifically, the BS transmit 

power is fixed at 45 dBm, with each BS equipped with BS gain of 21 dBi. The 

bandwidth capacity allocated for each BS is 400 MHz. Moreover, as previously stated, 

the simulations involve combined scenarios from the three datasets containing 362, 

543, and 905 UEs, respectively. The transmit power for all UEs is consistently set at 20 

dBm. The complete set of the simulation parameters is summarized concisely in Table 

1. 

Table 1. SIMULATION PARAMETERS 

Parameter Value 

Transmit power(dbm) 45 dbm 

BS height (m) 6 m 

BS/UE gain (dbi) 21 dbi, 0 dbi 

Bandwidth (MHz) 400 Mhz 

Number Of UEs 362,543, 905 

Power Noise Pnoise= -74+10log(Bandwidth(hz)) 

Number of Resource Blocks 60 

Subcarrier Spacing 120 kHz 

Frequency 140 GHz 

This defined simulation environment, along with dynamically evolving UE 

distributions, enables effective and thorough analysis of each game-theoretic 

algorithm’s adaptability and robustness under realistic conditions. Finally, each UE is 



randomly generated and assigned to one of the services defined in Table 2, which 

outlines the downstream and upstream demand requirements for each service. 

Table 2. TYPE OF SERVICES 

Services Downstream Upsteam 

Browsing/Email 5 Mbps 2 Mbps 

HDTV 16 Mbps 0.5 Mbps 

Video Streaming 25 Mbps 1 Mbps 

Podcasts 2 Mbps 0.5 Mbps 

VoIP 1 Mbps 1 Mbps 

6 Performance Evaluation 

This section analyzes the performance evaluation results obtained by applying four 

distinct game-theoretic algorithms Potential Game, Mean Field Game, Nash 

Bargaining, and Stackelberg Game in the described 5G MIMO scenario. The primary 

aim is to examine how effectively each algorithm allocates UEs to BS over time. UE 

distributions generated by these methods are compared based on their average 

allocations across the entire simulation period. Understanding these distributions 

clarifies how each approach manages resources under realistic mobility and network 

dynamics. Furthermore, examining these distributions highlights the inherent trade-offs 

among fairness, throughput optimization, present in each algorithm. 

Beginning with the Nash Bargaining algorithm, as shown in Fig. 3, the UE 

distribution remains uneven, with some BSs becoming significantly more loaded than 

others. At the end of the simulation, BS2 has the highest number of connected users, 

reaching around 580 users. In contrast, BS3 only serves about 30 users, which is a very 

small portion of the total. The other BSs vary between 210 and 360 users. This pattern 

suggests that the leader-follower mechanism in Stackelberg allows certain BSs those 

offering better performance conditions to attract and retain more users. However, this 

behavior does not always result in balanced use of all available resources. The 

imbalance can lead to congestion in the most popular cells and underuse of others. 

While the algorithm does adapt during the simulation, it still leaves certain stations, like 

BS3, almost empty. 

The Stackelberg algorithm the UE distribution (Fig. 3) remains uneven, with some 

BSs becoming significantly more loaded than others. At the end of the simulation, BS2 

has the highest number of connected users, reaching around 580 users. In contrast, BS3 

only serves about 30 users, which is a very small portion of the total. The other BSs 

vary between 210 and 360 users. This pattern suggests that the leader-follower 

mechanism in Stackelberg allows certain BSs those offering better performance 

conditions to attract and retain more users. However, this behavior does not always 

result in balanced use of all available resources. The imbalance can lead to congestion 

in the most popular cells and underuse of others. While the algorithm does adapt during 



the simulation, it still leaves certain stations, like BS3, almost empty. As seen in the 

fairness results, this uneven distribution lowers the fairness index and allows for 

unequal service quality across the network. 

 

Fig.3. UE distribution over time for Game Theory Algorithms. 

The Mean Field Game algorithm (Fig. 3) produces a slightly more balanced 

outcome but still shows noticeable skew. BS2 stands out with the highest load, reaching 

close to 580 users, while BS1 and BS6 have around 460 and 330 users respectively. In 

contrast, BS3 and BS5 serve very few users, with BS3 having around 30 and BS5 only 

about 50. The remaining BSs BS4 and BS7 handle around 250 and 120 users each. The 

fact that a few BSs attract the majority of the users, while others remain mostly 

underused, suggests that although each user acts independently in this algorithm, many 

of them are still drawn to a small number of stations that consistently offer better 

conditions. This self-organizing behavior helps avoid the extreme overconcentration 

seen in Potential, but it still does not ensure even resource usage. 

Contrasting sharply with these balanced approaches is the Potential Game algorithm 

(Fig. 3), which shows a skewed distribution. Initially, BS 1 already holds around 930 

UEs, dramatically overshadowing all other stations. Instead of correcting this 

imbalance, the algorithm further concentrates UEs over time, culminating in 

approximately 1450 UEs (around 80% of all UEs) allocated to BS 1 by the end. Other 

BSs are severely underutilized, each connecting fewer than 100 UEs. This drastic 

unevenness aligns with Potential Game's observed tendency toward heavy resource 

concentration, resulting in the lowest fairness values and highlighting potential 

congestion risks. 

By comparing all these outcomes, the Mean Field Game algorithm stands out as the 

most effective algorithm for distribution of UE. It maintains balanced resource 

utilization throughout the simulation, thereby preventing significant congestion and 

ensuring equitable UE experiences. Stackelberg and Nash Bargaining approaches also 



perform well, demonstrating flexibility and adaptability but with slightly less 

consistency than the Mean Field approach. In contrast, the Potential Game’s extreme 

concentration strategy, while potentially optimizing specific criteria, reveals significant 

practical drawbacks concerning fairness and operational stability. Thus, the 

comprehensive evaluation of these distribution patterns underscores the importance of 

selecting an appropriate game-theoretic approach depending on network performance 

goals, emphasizing balanced resource allocation as key to sustainable and efficient 

network operations. 

Another essential aspect of resource allocation analysis is fairness, a metric 

indicating how evenly UEs are allocated across BSs during the simulation, as shown in 

Fig. 4. Fairness is quantified through an index ranging from 0 to 1, with values closer 

to 1 representing a more uniform distribution and as a consequence such values indicate 

indicates a perfect Fairness. Observing the fairness index allows for an understanding 

of whether BSs are equally utilized or if certain BSs disproportionately serve most of 

the UEs. This assessment reveals fundamental characteristics of each allocation 

algorithm. 

 

Fig.4. Fairness Index over time for Game Theory Algorithms. 

The fairness index for the Stackelberg Game algorithm (Fig. 4) begins high, slightly 

above 0.625, and quickly rises slightly higher within the first intervals, reaching 

approximately 0.65. After this early peak, a gradual downward trend occurs due to the 

algorithm’s leader–follower dynamics, which progressively concentrate UE 

assignments toward a select few BSs deemed optimal. By the midpoint of the 

simulation, the fairness index has declined to about 0.55 and continues decreasing 

toward the end, eventually reaching below 0.50. This moderate decline illustrates that 

the Stackelberg algorithm achieves a reasonable balance, centralizing resource 

utilization without creating the extreme imbalances seen in the Potential Game. 

Analyzing the Nash Bargaining Game algorithm (Fig. 4), the fairness index shows 

a moderate starting point around 0.60, occasionally spiking up to about 0.65 during 



early intervals. As the simulation proceeds, however, fairness gradually declines, 

reaching approximately 0.45 near the end of the simulation. The Nash Bargaining 

algorithm attempts to balance UE utilities and BS loads. However, dynamic movements 

of UEs inevitably lead to certain BSs becoming preferable, thus increasing UE 

concentrations on these resources. While the distribution never becomes extremely 

skewed, fairness does decrease over time, settling into a moderate range reflective of a 

balanced yet uneven UE allocation.  

In contrast, the Mean Field Game algorithm (Fig. 4) maintains higher fairness 

throughout most of the simulation. Initially starting at slightly below 0.64, fairness rises 

slightly, reaching a peak around 0.65 within the first few intervals. However, over time, 

minor fluctuations, and the continuous mobility of UEs lead to a gradual decrease, 

settling below 0.58 toward the final intervals. Despite this mild decline, the fairness 

index remains high, demonstrating the Mean Field Game's objective to maintain an 

even distribution across BSs and avoid significant UE clustering on specific resources. 

Thus, the Mean Field Game algorithm, known for promoting balanced UE 

distributions, maintains consistently higher fairness values. 

For the Potential Game algorithm (Fig. 4), the fairness index begins around 0.62, 

indicating initially moderate balance. As the simulation progresses, fairness declines 

noticeably, dropping gradually below 0.50 after approximately 20 time intervals, and 

eventually reaching near 0.40 by the end of the simulation. This drop occurs because 

the Potential Game algorithm progressively directs UEs towards the single BS offering 

the highest potential benefit (e.g., lowest path loss or highest SNR). Such heavy 

concentration results in lower fairness, reflecting the strong preference for throughput 

optimization over balanced UE distribution. Also, the Potential Game typically 

produces significant UE concentration on very few BSs, naturally resulting in a lower 

fairness index over time. 

The fairness analysis provides essential clarity for understanding each algorithm’s 

inherent behavior and effectiveness. Networks prioritizing throughput maximization 

might find the Potential Game suitable despite fairness loss, whereas scenarios 

demanding fair and balanced UE allocations would benefit most from Mean Field. For 

balanced scenarios requiring moderate fairness alongside performance optimization, 

Nash Bargaining and Stackelberg emerge as practical choices, aligning their 

distribution patterns with intermediate fairness outcomes. It is important to note that, 

Nash Bargaining and Stackelberg Games fall between these extremes, achieving 

moderate fairness scores due to their partial UE concentration on specific BSs. Such 

behaviors underline the inherent differences among these algorithms in balancing 

throughput optimization against equitable resource distribution. 

Proceeding with the analysis of bandwidth consumption, we observe distinct and 

algorithm-specific patterns throughout the simulation, which directly reflect the 

internal logic of each game-theoretic approach, as shown in Fig. 5. To accurately 

determine the Mbps demand of each UE and calculate the required bandwidth per base 

station, we apply the Shannon-Hartley theorem, which is also analytically presented in 

the mathematical algorithm section. 



 

Fig.5. Bandwidth Consumption for Game Theory Algorithms. 

In the Stackelberg algorithm (Fig. 5), bandwidth consumption begins just under 395 

Mbps and steadily declines across the simulation period. By the final interval, the usage 

drops to about 342 Mbps. This pattern reflects the algorithm's leader–follower strategy. 

Early in the simulation, resource allocation is aggressively optimized as users quickly 

attach to the most beneficial base stations. However, as users begin to move, this 

controlled advantage diminishes. Towers that initially attracted higher loads may no 

longer be optimal due to increased distance or mobility-induced degradation, leading 

to a gradual reduction in bandwidth efficiency. 

The Nash Bargaining algorithm (Fig. 5) starts slightly lower, near 348 Mbps, and 

also exhibits a downward trend, reaching approximately 277 Mbps by the end. This 

consistent decline mirrors the fairness-oriented mechanism of Nash Bargaining. 

Although the algorithm initially provides a balanced allocation that supports efficient 

use of resources, it is not highly responsive to continued user mobility. As users move 

away from their ideal locations, the equal-load distribution becomes less effective in 

maintaining high throughput, and consequently, bandwidth consumption reduces 

steadily. 

For the Mean Field Game algorithm (Fig. 5), the bandwidth consumption remains 

extremely stable throughout the simulation. Starting around 120 Mbps, it fluctuates 

slightly but shows no clear upward or downward trend. This behavior corresponds with 

the decentralized logic of the algorithm. Since each user acts independently while 

considering the overall network state, the outcome is a stable and near-uniform 

distribution. This uniformity, although fair, results in relatively low but consistent 

bandwidth usage reflecting a cautious allocation that favors system robustness over 

instantaneous performance peaks. 

The Potential Game algorithm (Fig. 5) displays a highly variable bandwidth pattern. 

Usage oscillates between approximately 82 Mbps and 123 Mbps over the intervals. 



These fluctuations stem from the algorithm’s global optimization objective. Unlike the 

other algorithms, Potential Game allows users to concentrate heavily on one or two 

highly efficient base stations, maximizing localized utility. However, this approach is 

very sensitive to mobility. As users shift positions, the ideal assignment changes, 

causing abrupt swings in demand and utilization. These bursts of high efficiency are 

interspersed with periods of underutilization, resulting in the observed irregular pattern. 

Collectively, these bandwidth consumption results align closely with the previously 

observed distribution patterns and fairness. Highly concentrated algorithms, such as the 

Potential Game, show minimal bandwidth usage due to focusing UE allocations 

primarily on one or two BSs, resulting in sharply reduced fairness. Conversely, 

uniformly distributed algorithms like the Mean Field Game consistently maximize 

bandwidth usage by even utilizing all available BSs, maintaining stable and high 

fairness levels. Intermediate approaches like Nash Bargaining and Stackelberg balance 

resource distribution and concentration, which explains their fluctuating but rising 

bandwidth consumption over time. Each algorithm’s bandwidth utilization highlights 

its underlying resource allocation strategy, reflecting essential trade-offs between 

achieving equitable UE distribution and maximizing BS utilization efficiency under 

dynamic UE mobility conditions. 

The evaluation continues by examining the energy efficiency of each game theory 

algorithm over the simulation's time intervals, as shown in Fig. 6. Energy efficiency 

reflects the ability of each algorithm to effectively manage available resources, 

balancing data throughput and power consumption in the presence of user mobility and 

varying antenna assignments. A detailed exploration of the energy efficiency trends 

reveals how each game algorithm behaves when facing dynamic user distributions and 

distance variations, further enhancing the understanding of their operational 

characteristics. 

Starting with the Stackelberg Game algorithm scenario (Fig. 6) a different pattern, 

starting from 2.3×10⁻⁶ and consistently climbing to a peak of about 3.0×10⁻⁶ near 

intervals 15–20. This peak highlights the algorithm's initial capability of efficiently 

managing user allocations in a leader–follower dynamic, where users are optimally 

matched to antennas. Following this plateau, however, the efficiency declines, 

eventually reaching around 2.2×10⁻⁶ by the simulation’s end. This trajectory aligns with 

Stackelberg’s moderate skew toward a select few antennas, optimizing performance 

initially but suffering as users drift away, thus increasing overall power usage 

disproportionately. 



 

Fig.6. Energy Efficiency Over Time for Game Theory Algorithms. 

The Nash Bargaining Game algorithm (Fig. 6) presents an interesting fluctuation. 

Initially beginning at about 1.4×10⁻⁶, efficiency fluctuates briefly before rising sharply 

to a peak of roughly 2.3–2.4×10⁻⁶ between intervals 15 and 20. This peak suggests a 

transient optimization wherein users align efficiently with antennas yielding favorable 

throughput-to-power ratios. Beyond this peak, however, a gradual decline sets in as 

user mobility leads to increased distances from chosen antennas. Eventually, efficiency 

settles back down to around 1.6×10⁻⁶. This dynamic corresponds well to Nash 

Bargaining’s intermediate distribution and fairness results, reflecting a balance between 

concentration and uniformity that initially boosts efficiency before mobility introduces 

inefficiencies. 

Moving to the Mean Field Game algorithm (Fig. 6), energy efficiency begins 

steadily around 1.0×10⁻⁶ and exhibits a mild increase early on, reaching around 

1.01×10⁻⁶ at about interval 10. This modest rise represents the equilibrium distribution 

of users evenly across all antennas. Nevertheless, as users continue to move randomly 

throughout the simulation, the uniform distribution cannot maintain optimal user-

antenna proximities. Consequently, energy efficiency gradually diminishes, falling to 

approximately 0.85×10⁻⁶ by interval 30 and further down to around 0.70×10⁻⁶ by the 

simulation’s conclusion. This decline mirrors Mean Field’s characteristic high fairness, 

which, while distributing resources uniformly, is less responsive to individual user 

movements that could enhance efficiency. 

Finally, the Potential Game algorithm (Fig. 6) the initial energy efficiency starts 

around 1.7×10⁻⁵. In the early intervals, the efficiency remains relatively stable. 

However, as the simulation progresses and users move away from their initially 

favorable antennas, the energy efficiency begins a notable decline. By mid-simulation 

(around interval 20–30), efficiency dips noticeably to 1.4×10⁻⁵, ultimately concluding 

below 1.1×10⁻⁵ towards the end. This significant drop aligns directly with the 



previously observed distribution pattern where a vast majority of users were 

concentrated on just one or two antennas. Such heavy centralization initially offers 

acceptable efficiency but deteriorates quickly when user mobility causes significant 

distances to their chosen antennas, thus increasing power consumption 

disproportionately relative to data throughput. 

These results collectively emphasize the consistent connection between user 

distributions, fairness, and energy efficiency. The more skewed an algorithm’s user 

distribution such as the Potential Game the steeper its decline in efficiency becomes 

due to increased distances and resulting power demands. Meanwhile, Mean Field's 

uniform distribution, despite offering high fairness, cannot entirely prevent efficiency 

decline due to continuous user mobility. Nash Bargaining and Stackelberg represent 

intermediate strategies, providing moderate fairness and distribution skew, resulting in 

efficiency trends that start strong but weaken over time. Therefore, each game-theoretic 

algorithm’s approach directly influences its energy efficiency trajectory, revealing how 

effectively each balances resource utilization, mobility, and fairness under dynamic 

conditions. 

7 Conclusion and Future Work 

In this research, we examined four distinct game-theory approaches Potential Game, 

Mean Field Game, Nash Bargaining Game, and Stackelberg Game to address the 

challenge of dynamically allocating a large number of UEs 1810 to seven BSs over 50 

discrete time intervals. The main goal was to observe how each theoretical algorithm 

handles the dynamic distribution of UEs and resource allocation, influenced by key 

parameters such as UE positions, signal quality, and mobility. 

Furthermore, before presenting the final conclusions, some limitations of the 

simulation setup must be acknowledged. The simulation rely on a synthetic dataset, 

which provides controlled channel data but omits many real-world effects such as 

irregular fading patterns, user hotspots, and hardware impairments. User mobility is 

represented as two dimensional motion at a fixed speed; actual users pause, change 

direction, and vary speed, which can shift allocation performance. The model also 

excludes inter-cell interference coordination, MAC-layer scheduling, and device-level 

power costs, so the reported fairness, bandwidth, and energy metrics are comparative 

rather than absolute. 

The Potential Game tends to concentrate UEs heavily on a limited number of BSs, 

typically achieving high throughput initially. However, this approach results in 

significant drawbacks: as UEs move overtime, the distance to their originally optimal 

BS increases, causing a notable drop in fairness and quality of service. Bandwidth 

utilization remains minimal, primarily due to reliance on a few BSs, leaving most 

network resources underutilized. 

In contrast, the Mean Field Game takes a completely different route by uniformly 

distributing UEs across all available BSs from the start. While this ensures stable and 

high fairness, it provides modest performance regarding throughput and quality of 

service. Bandwidth is maximally utilized since every BS serves UEs continuously, yet 



energy efficiency and the fraction of UEs surpassing quality thresholds remain low, as 

the uniform spread does not specifically cater to UEs' individual needs or movements. 

The Nash Bargaining Game offers a balanced middle ground. UEs negotiate to find 

allocations beneficial for all parties, initially producing a promising increase in both 

throughput and the number of satisfied UEs. Over time, UE mobility introduces 

fluctuations in bandwidth consumption and throughput, resulting in moderate fairness 

and performance metrics. This strategy effectively balances the need for network 

fairness against the desire for high individual throughput. 

Finally, the Stackelberg Game introduces a hierarchical approach, with a leading 

BS influencing UE decisions. This results in gradually improving performance, notably 

high throughput, and increased UE satisfaction early in the simulation. Despite initial 

successes, as UEs inevitably drift further from the chosen BSs, efficiency and 

satisfaction slightly decline, demonstrating the trade-off between initial optimal 

allocation and the limitations imposed by UE mobility. 

Overall, these simulations highlight the fundamental trade-offs involved in dynamic 

UE allocation for wireless networks. Each game-theoretic algorithm uniquely balances 

the competing priorities of fairness, resource utilization, throughput, and service 

quality, illustrating the complexities of achieving sustained performance in real-world 

mobile environments. The results emphasize the importance of selecting an allocation 

strategy aligned with specific network objectives, mobility patterns, and service quality 

requirements. 

In future research, the study presented can be significantly enhanced by 

incorporating Machine Learning (ML) techniques [17]. Specifically, ML methods can 

be employed to predict the optimal movement directions and connectivity choices of 

UEs in dynamic wireless network environments. Through the integration of predictive 

algorithms, such as neural networks or reinforcement learning approaches, it would be 

possible to proactively determine UE trajectories and anticipate changes in signal 

quality, distance, and network load. This evolution would allow network resources to 

be allocated not merely based on the current state of the system, but on accurately 

predicted future conditions. As a result, resource allocation algorithms could become 

more adaptive, improving the quality of service by dynamically reassigning UEs to BSs 

before significant performance degradation occurs due to UE mobility. Additionally, 

future studies might explore hybrid solutions that combine predictive ML methods with 

game-theoretic approaches. Such hybrid systems could leverage the strengths of each 

method utilizing game theory’s strategic resource distribution capabilities alongside 

machine learning’s predictive accuracy to achieve robust and efficient network 

performance under a wider range of mobility scenarios and UE behaviors. 

Finally, expanding the experimental scenarios to include varying numbers of UEs, 

different mobility patterns, and diverse environmental conditions would further 

validate the flexibility and reliability of the proposed ML-enhanced allocation 

strategies. This comprehensive future direction promises substantial improvements in 

practical applicability, network responsiveness, and UE experience in dynamically 

changing wireless communication networks. 
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