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PAPER

Game Theory Algorithms for Resource Allocation 
in 5G MIMO

ABSTRACT
Efficient resource allocation is essential in 5G MIMO networks due to increasing demands for 
high-quality communications. This paper compares four game theory algorithms: Stackelberg, 
Nash Bargaining, Mean Field Game, and Potential Game, evaluating their effectiveness in 
allocating resources dynamically. A simulation environment is developed to represent realis-
tic user mobility by continuously updating user equipment (UE) positions. Each algorithm is 
assessed based on UE distribution, fairness, bandwidth consumption, and energy efficiency. 
The simulation results show clear differences among the algorithms, highlighting specific 
advantages and limitations that help inform resource allocation strategies in practical 5G net-
work scenarios.
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1	 INTRODUCTION

5G multiple input multiple output (MIMO) networks represent a significant 
advancement in wireless communication technologies, offering solutions designed 
to address rapidly growing demands for high data rates, extensive coverage, and 
improved reliability. These networks leverage advanced base station (BS) systems, 
multiple simultaneous data streams, and enhanced spectral efficiency to pro-
vide better user equipment (UE) experiences and support diverse, data-intensive 
applications. As emerging applications such as virtual reality, augmented reality, 
high-definition streaming, smart cities, and the Internet of Things (IoT) increase 
their demands on network resources, efficient and adaptive resource management 
becomes increasingly critical.

Efficient distribution of resources within 5G MIMO networks, particularly in 
dynamic scenarios characterized by mobile UEs, directly influences network per-
formance, UE fairness, and energy consumption. Current research recognizes that 
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traditional static allocation methods may not adequately address the challenges 
posed by UE mobility and dynamic channel conditions. Consequently, interest in 
adaptive resource allocation methods that can respond effectively to these dynamics 
has increased significantly.

In response to these challenges, this paper introduces a unified platform for 
examining multiple resource allocation game theory strategies within a single 5G 
MIMO environment. In particular, it implements four game-theoretic algorithms: 
Stackelberg [1], Nash Bargaining [2], Mean Field [3], and Potential Game [4]. Within 
each algorithm, UEs act as players competing to maximize their individual profit 
while considering factors such as distance, velocity, path loss, and signal-to-noise ratio 
(SNR). After every time interval, the algorithm assigns random movement directions 
based on initial velocities to each UE, recalculating distances to each BS. This allows 
for a more accurate observation of how mobility affects key performance metrics 
such as fairness, energy use, and user allocation. By evaluating all four algorithms 
under the same mobility conditions, the study highlights their individual advantages 
and weaknesses for each game theory algorithm in a practical setting. As a result, 
the findings offer useful guidance for researchers and network designers aiming 
to build better or combined strategies that are suited for dynamic and realistic 5G 
environments. Also, these four game theory algorithms cover the main approaches 
used for resource allocation in 5G MIMO networks. The Stackelberg game captures 
the leader–follower link between a BS and its UE, the Nash bargaining game frames 
cooperative negotiation to maintain fairness; the mean-field game scales to many 
UEs by reacting to their average behavior, and the potential game guides distributed 
choices toward a network-wide optimum. [5], [6], [7], [8].

The rest of this paper is organized as follows: Section 2 presents a review of 
recent research concerning resource allocation methods based on Game theory 
approaches in 5G MIMO systems. Section 3 introduces the mathematical algorithm 
employed in the simulation environment. Section 4 provides a detailed analysis of 
the algorithms used as the foundation for developing experimental scenarios. In 
Section 5, the simulation environment and methodology used to evaluate algorithm 
performance are described. Section 6 presents the simulation results along with a 
comprehensive analysis of the findings. Finally, Section 7 concludes the paper and 
identifies potential directions for future research.

2	 RELATED WORK

Recent studies have explored multiple approaches, ranging from optimization 
algorithms and heuristic methods to advanced strategies using game-theoretic prin-
ciples. This section briefly examines representative works that address different 
dimensions of resource allocation, providing a clear context for identifying how this 
current paper contributes uniquely, particularly by considering realistic UE mobility 
and dynamic channel conditions.

In the work presented by the authors in [9], a pilot allocation strategy based on 
coalitional game theory is developed to address pilot contamination challenges in 
distributed MIMO systems, a common problem exacerbated by increasing num-
bers of UE terminals in 5G networks. Their proposed algorithm transforms pilot 
allocation into an optimization problem aimed at minimizing the normalized mean 
squared error (NMSE) in channel estimation. By adopting a coalitional game frame-
work and designing a symmetric, additive separable preference function related to 
mean squared error (MSE), the researchers achieve results comparable to exhaustive 
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methods but with significantly reduced complexity. Simulation findings demon-
strate substantial improvements over random pilot reuse, highlighting the efficiency 
of game theory techniques in managing resource constraints in distributed MIMO 
scenarios.

The research in [10] introduces a dynamic resource allocation approach specifi-
cally designed for downlink scenarios in 5G radio-over-fiber (RoF) networks utilizing 
wavelength division multiplexing passive optical networks (WDM-PON) combined 
with multiple-UE MIMO (MU-MIMO). The proposed method focuses on efficiently 
reallocating wireless resource blocks (RB) within component carriers (CC), aiming to 
optimize wavelength usage, reduce system cost, and enhance throughput. To achieve 
this, a heuristic algorithm is developed to dynamically adjust RB assignments based 
on varying network demands. Simulation results presented by the author indicate 
that this method effectively reduces wavelength consumption and improves through-
put performance under diverse UE conditions and block error rates. The work high-
lights the potential benefits of dynamic resource reallocation strategies, particularly 
emphasizing their significance in managing resource utilization efficiently in com-
plex 5G scenarios involving MIMO technology and varying UE demands.

Authors in [11] propose a generalized resource allocation framework tailored 
for MU-MIMO systems utilizing orthogonal frequency division multiple access 
(OFDMA). The presented strategy addresses key challenges associated with spa-
tial multiplexing, particularly focusing on efficient co-scheduling of multiple UEs 
to increase system capacity while preserving fairness among UEs. Central to this 
approach is a scheduling algorithm that dynamically allocates resources by con-
sidering both transmitting power distribution and inter-UE interference, crucial 
factors that impact overall performance. Simulation results based on the SCM-5G 
channel model demonstrate that the proposed framework successfully achieves a 
beneficial trade-off between increased network capacity and sustained UE fairness. 
Moreover, the findings emphasize the necessity of precise resource allocation strat-
egies in MU-MIMO systems, reinforcing that capacity improvements gained through 
advanced BS systems must be managed carefully to ensure balanced throughput 
among UEs.

The manuscript in [12] investigates resource allocation strategies for down-
link transmission in cell-free massive MIMO networks. The work specifically aims 
to maximize the minimum achievable data rate across UE, focusing on optimal 
transmit precoding and power allocation strategies. The author tackles the inher-
ent non-convexity of this optimization problem by employing the uplink-downlink 
duality principle, proposing an iterative algorithm to achieve efficient and practical 
solutions. The analysis further incorporates the impact of channel estimation errors, 
deriving a lower bound for network capacity. Through comprehensive system-level 
evaluations, the author demonstrates that the proposed algorithm significantly sur-
passes traditional allocation methods, validating its practicality and effectiveness in 
realistic wireless communication environments.

Unlike previous studies, which often keep UEs fixed or consider limited random 
movements, this paper explicitly incorporates realistic mobility in two dimensions. 
Thus, intervals show how UE mobility impacts performance aspects such as fair-
ness, energy efficiency, and UE distribution. By directly comparing these four algo-
rithms side by side, this work provides clear insights into each algorithm’s practical 
strengths and limitations when mobility is realistically considered. Researchers and 
engineers can therefore easily understand the effectiveness of each method, sup-
porting the development of improved or hybrid strategies tailored specifically for 
dynamic and realistic 5G deployment scenarios.
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3	 MATHEMATICAL MODEL

This section defines mathematically the problem of dynamic UE allocation using 
principles from game theory. In this scenario, each UE, denoted by index i, selects a 
fraction of its allocation to each available BS, indicated by index j, aiming to optimize 
its individual or global profit. Several parameters, such as distance, pathloss, data 
rate, SNR, and UE velocity, are factored into the profit calculation. Four game-theoretic 
algorithms Stackelberg, Nash Bargaining, Mean Field, and Potential Game are applied 
to distribute a total of 1810 UEs among 7 BSs throughout 50 distinct time intervals.

Formally, let the set of UEs be represented by U = {1, 2, …, N} with U = 1810, and 
let the set of BSs be denoted by B = {1, 2, …, M} with B = 7. The allocation fraction 
aij represents the portion of UE i’s total allocation assigned specifically to BS j. To 
ensure consistency and resource utilization constraints, we enforce the following 
normalization constraint across all BSs for each UE:

	
j

M

ij
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The variables utilized in calculating the profit are clearly defined. The distance 
from UE i to BS j is dij, based on their two-dimensional positions. Pathloss between 
UE i and BS j is represented as PLij, and the corresponding SNR (uplink, downlink, 
or a combination of both) is denoted SNRij. Additionally, DRij indicates the data rate 
for UE i from BS j, while vi describes UE i’s velocity. A constant factor, referred to as 
the penalty factor, modifies the utility calculation based on distance and velocity. 
Meanwhile, the resource parameter resources [j], associated with BS j, is scaled itera-
tively by the game-theoretic algorithms. The profit function is formulated as follows, 
using a small constant ε > 0 to prevent division by zero:
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The total profit for UE i across all BSs is simply the sum of the profits associated 
with each BS j. In numerical computations, introducing a small positive constant, 
commonly referred to as epsilon (ε), is a standard technique to maintain numerical 
stability. This approach prevents issues like division by zero when variables such as 
a user’s distance (dij) or velocity (vᵢ) are extremely small or zero. By adding ε (typi-
cally around 10−⁸ or smaller) to the denominator, computations avoid instability and 
infinite values without significantly affecting the model’s accuracy. This practice is 
widely adopted in numerical simulations to ensure robust and reliable calculations.

Each of the four game-theoretic algorithms employs the above profit function 
and the allocation constraint, but they differ in the method by which they itera-
tively update allocations. In the Stackelberg Game, a leader BS iteratively adjusts its 
resource scaling strategy, and follower UEs subsequently adapt their allocations, typ-
ically using a lower penalty factor. The Nash Bargaining Game introduces a logarith-
mic transformation to balance utility across UEs and BSs, commonly using moderate 
penalty factors. The mean field game presumes each UE responds independently 
to the average allocations of other UEs, updating its choice using an exponential or 
softmax function. Lastly, the Potential Game maximizes a global potential, measured 
as the sum of squared UE profits, thus guiding allocations toward resources with 
collectively greater utilities.
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Also, other performance metrics are calculated to evaluate allocation effective-
ness. The fairness index is a dimensionless measure, defined as follows:
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Energy efficiency is defined as follows:
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where, di, is the average distance of UE i to the BSs, and power_factor can differ 
per algorithms [13], [14].

Thus, for bandwidth allocation, we calculate the maximum needs in Mbps of 
each UE in each BS, using the Shannon-Hartley theorem [15]. The Shannon-Hartley 
theorem is a principle used to determine the maximum theoretical rate at which 
information can be transmitted over a communication channel with a given band-
width, accounting for the presence of noise. It is an application of the noisy-channel 
coding theorem and is commonly applied to continuous analog communication 
channels affected by Gaussian noise. This theorem establishes the channel capacity, 
which refers to the maximum amount of error-free information that can be trans-
mitted per unit time, given a specific bandwidth and assuming limited signal power 
and knowledge of the noise properties. Named after Claude Shannon and Ralph 
Hartley, the theorem is an important concept in information theory and is widely 
utilized in the design and analysis of communication systems. In practical terms, the 
Shannon-Hartley theorem allows communication system designers to optimize their 
systems by finding the optimal balance between information transfer rate and error 
minimization. By mathematically relating the channel capacity (denoted as C), the 
signal power (S), the noise power (N), and the bandwidth, the theorem provides a 
framework for maximizing information transfer while considering the limitations 
imposed by noise and available bandwidth. This is particularly relevant in scenarios 
where the channel is subject to additive white Gaussian noise (AWGN). In essence, 
the Shannon-Hartley theorem provides a valuable tool for understanding and 
designing communication systems, enabling engineers to determine the maximum 
amount of reliable information that can be transmitted through an analog commu-
nication channel in the presence of noise. By optimizing the factors involved, such 
as signal power and bandwidth, communication systems can be designed to achieve 
efficient and effective data transmission while minimizing errors.

	 C = Blog2(1 + S/N)	 (5)

The channel capacity, denoted as C in bits per second, represents the maximum 
achievable net bit rate without using error-correction codes. The channel’s band-
width, denoted as B and measured in hertz, refers to the passband bandwidth for 
a bandpass signal. The average received signal power, denoted as S and measured 
in watts (or volts squared), is the average power of the signal over the bandwidth. 
In carrier-modulated passband transmission, it is often referred to as C. The aver-
age power of noise and interference over the bandwidth is represented as N and 
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measured in watts (or volts squared). The SNR or carrier-to-noise ratio (CNR), is 
expressed as a linear power ratio of the communication signal to the noise and inter-
ference at the receiver, rather than in decibels.

To efficiently allocate a specific frequency range from the antenna for each user 
without interference, variable B needs to be determined. This is achieved using a 
modified formula that considers the SNR value and a predefined threshold value for 
variable C. The term “pre-set” indicates that a randomly assigned bandwidth value 
is given to users of a particular service (during our simulations we define a specific 
service, more information is presented in section VI Simulation Environment and 
Table II).

Finally, equations directly represent how the algorithm dynamically allocates 
UEs. Each game algorithm iteratively updates αi, by maximizing or adjusting profit, 
whether individually Potential Game and Mean Field Game, through pairwise nego-
tiations Nash Bargaining, or leader–follower strategies Stackelberg. Penalty factors 
and SNR combinations differ by algorithms, but all share the same underlying profit 
function and constraints that account for distance, pathloss, and velocity.

4	 ALGORITHM ANALYSIS

This section provides a detailed analysis of the theoretical algorithm 1 used 
for modeling UE mobility and dynamically allocating resources within a multi-BS 
5G MIMO environment. The analysis follows the algorithm’s logical steps closely, 
outlining essential computations, processes, and interactions involved in its 
implementation.

Algorithm 1: A Dynamic Game-Theoretic Algorithm for Multi BSs n UE Allocation

1.	  Step 1: Initialization & Parameter Configuration:
2.	  �In this step, the code reads the configuration constants that specify the number of UEs (N) and 

BSs (M), the total simulation time intervals, and the dataset paths for UE velocity, pathloss, SNR, and  
data rates. It also defines the resource array resources[j]. The dataset is then loaded into arrays for 
velocity, pathloss, uplink_SNR, downlink_SNR, data_rate, and BS locations. Finally, each UE’s initial 
position is randomized in a 2D plane.

3.	  Step 2: Network Representation & Topology:
4.	  �The algorithm computes the distance matrix di,j in 2D from each UE i to each BS j. It associates each 

UE with velocity vi and prepares data structures to store each algorithm’s time-varying results 
(fairness, latency, energy efficiency). These values are updated at each iteration of the selected 
game algorithms.

5.	  Step 3 Implementing Each Game Theory Algorithms:
6.	  �Stackelberg Game: Iteratively updates a leader strategy (resource scaling) and a follower response 

(UE allocation). A smaller penalty_factor is often applied, reflecting a more optimistic assessment of 
distance–velocity costs.

7.	  �Nash Bargaining Game: Uses a log-based utility function and medium iteration count. It 
incorporates both uplink and downlink SNR in a combined form and reassigns allocations based 
on bargaining power.

8.	  �Mean Field Game (MFG): Treats each UE as responding to the average (mean field) of all 
allocations. Each UE updates its allocation by applying an exponential (softmax-like) function to 
its utility.

9.	  �Potential Game: Aims to maximize global potential, defined as the sum of squares of UE utilities. 
Each UE tries different resource allocations that yield the highest increase in this potential.

	10.   Step 4: Performance Evaluation & Metric Computation:
	11.   �For each algorithm, the algorithm computes UE distribution, Fairness, Bandwidth Consumption 

and Energy Efficiency. These metrics are stored and plotted over time. Allocation decisions follow 
mathematical equations, with UE movement affecting utility and assignment. While all algorithms 
share the core utility, differences in penalties, iterations, and updating rules impact UE distribution, 
fairness, Bandwidth Consumption, and energy efficiency.
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Initially, the algorithm starts by defining the simulation parameters, including the 
total number of UEs, the number of BSs, the simulation’s duration, and the file paths 
for datasets containing UE velocities, pathloss measurements, downlink SNR, and 
data rates. These datasets are structured into arrays to facilitate efficient computa-
tional handling. Additionally, each UE is assigned an initial random position within 
a two-dimensional plane, forming the basis for initial connectivity and influencing 
subsequent resource allocation decisions. The available resources at each BS are 
also defined at this stage, establishing foundational constraints for allocation.

Following initialization, the algorithm builds the network representation by accu-
rately calculating distances between each UE and every BS. These distances are con-
tinuously updated and play a critical role in determining signal strength, potential 
interference, and overall connectivity quality. Additionally, UE velocities assigned 
randomly and updated at each simulation interval introduce realistic UE move-
ment scenarios. Such movements significantly impact the quality of the network’s 
channel conditions, making resource allocation decisions dynamic and responsive 
to changes in UE distribution and connectivity. Data structures are simultaneously 
prepared to track key performance indicators throughout the simulation, including 
fairness and energy efficiency.

The algorithm then individually applies four distinct game-theoretic algorithms 
to address the resource allocation problem. First, the Stackelberg game algorithm is 
implemented, adopting a leader-follower structure. Here, BSs act as leaders, adjust-
ing the allocation of available resources strategically, while UEs function as followers, 
responding to these allocation strategies. A penalty factor reflecting distance-velocity 
relationships guides UE decision-making, typically set low to encourage more opti-
mistic resource allocation even under challenging connectivity scenarios.

Next, the Nash Bargaining Game algorithm is implemented, relying on a 
bargaining-based utility approach. This algorithm integrates both uplink and down-
link signal qualities into a unified, logarithmic-based utility function, facilitating 
cooperative interactions among UEs. Resource allocation occurs through negotia-
tion, ensuring balanced benefits and equitable distribution among the UE, especially 
under changing connectivity conditions.

Subsequently, the mean field game approach is employed, wherein each UE inde-
pendently optimizes its resource allocation decisions based on the collective behav-
ior of other UE. In this scenario, every UE considers the overall average (mean field) 
allocation within the network to adapt its individual resource demands accord-
ingly. The allocation updates are made through exponential decision rules, allowing 
smooth adaptation to dynamic network states.

Finally, the potential game algorithm focuses explicitly on optimizing a global 
system objective, specifically defined as the cumulative squared utilities of all UEs. 
Under this algorithm, each UE explores alternative allocation possibilities, select-
ing those that offer the most significant increase in the global potential value. This 
collective optimization approach helps achieve desirable system-wide outcomes, 
enhancing overall network performance.

The final stage of the algorithm involves rigorous performance evaluation. The 
algorithm computes and tracks fairness, latency, energy efficiency, and load balanc-
ing throughout the entire simulation. Continuously updating these performance 
metrics, the algorithm enables an extensive comparative analysis of the four imple-
mented game-theoretic approaches. This structured approach highlights the adapt-
ability and effectiveness of each algorithm in realistic mobility scenarios, facilitating 
a deeper understanding of their respective strengths, limitations, and practical 
implications in dynamic 5G MIMO network environments.
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5	 SIMULATION ENVIRONMENT

In this section, the simulation environment used in the presented experiments is 
described. The network structure, including BS positioning and UE distribution, is 
adapted from a simplified scenario based on the DeepMIMO dataset [16]. The spe-
cific topology implemented is illustrated in Figure 1. The UEs appear in a straight 
horizontal line because this layout comes directly from the DeepMIMO dataset 
rather than any custom placement. The DeepMIMO O1 scenario defines user loca-
tions on a uniform grid along the main street, with 1810 rows (R1–R1810) of UEs, 
each row consisting of 181 UEs positioned at the same y-coordinate, aligned hor-
izontally. Using the default dataset parameters, selected the primary street grid 1 
thus, the UE positions in our experiment naturally form a horizontal line segment 
in the topology. This linear arrangement is an inherent property of the DeepMIMO 
scenario’s predefined geometry, as each “row” represents a group of UEs uniformly 
spaced along a line. The experimental setup represents an urban scenario simplified 
into a smaller scale 5G MIMO system.

Fig. 1. Topology of simulation

In addition, the topology consists of 7 BSs, strategically positioned to ensure opti-
mal coverage within the defined area. Each BS is positioned at a height of 6 meters, 
establishing uniform vertical alignment across the network. According to the chosen 
scenario, seven BSs are arranged in a defined symmetrical pattern. Specifically, the 
BSs form a structured distribution consisting of two vertical groups, each containing 
three BSs, aligned symmetrically along both sides of the topology. Additionally, one 
BS is positioned individually, located centrally at the top, ensuring coverage from 
the upper central side. This symmetrical yet non-centralized arrangement provides 
balanced coverage of the experimental area, allowing for accurate evaluation of 
resource allocation strategies under realistic yet simplified network conditions.

For the experimental simulations, three distinct datasets, each containing dif-
ferent UE densities specifically, 362, 543, and 905 UEs are used separately within 
the same topology. These datasets are subsequently merged into one larger, com-
prehensive dataset. Combining these datasets allows the conducted experiments to 
reflect realistic scenarios involving varying UEs densities, facilitating deeper and 
more comprehensive analyses of resource allocation strategies. Note also that the 
operating frequency of the network in which simulations were implemented is at 
140 GHz, the number of 5G NR RB is 60, and the 5G subcarrier spacing in kHz is 120.
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After completing the simulation intervals and updating UEs’ velocities and direc-
tions randomly, the distribution of UEs transforms significantly. As illustrated in 
Figure 2, the final positions of the UEs spread radially outward from the central 
area, evenly dispersing around the BSs. The resultant UE distribution closely resem-
bles realistic urban scenarios, capturing UE mobility and spatial diversity effectively. 
UEs occupy positions around all seven BSs, reflecting a balanced distribution pat-
tern across the entire defined topology area. This dynamic change in UE positions 
results in varied and realistic distances and connectivity conditions, allowing the 
experimental algorithms to be evaluated comprehensively in terms of adaptability, 
performance, and robustness under changing UE distributions.

Fig. 2. Topology of final UEs positions

In addition to the spatial arrangements described, critical technical parameters are 
predefined to achieve accurate and consistent simulations. Specifically, the BS trans-
mit power is fixed at 45 dBm, with each BS equipped with BS gain of 21 dBi. The band-
width capacity allocated for each BS is 400 MHz. Moreover, as previously stated, the 
simulations involve combined scenarios from the three datasets containing 362, 543, 
and 905 UEs, respectively. The transmit power for all UEs is consistently set at 20 dBm. 
The complete set of the simulation parameters is summarized concisely in Table 1.

Table 1. Simulation parameters

Parameter Value

Transmit power (dbm) 45 dbm

BS height (m) 6 m

BS/UE gain (dbi) 21 dbi, 0 dbi

Bandwidth (MHz) 400 Mhz

Number of UEs 362, 543, 905

Power Noise Pnoise = −74 + 10log(Bandwidth(hz))

Number of Resource Blocks 60

Subcarrier Spacing 120 kHz

Frequency 140 GHz
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This defined simulation environment, along with dynamically evolving UE distri-
butions, enables effective and thorough analysis of each game-theoretic algorithm’s 
adaptability and robustness under realistic conditions. Finally, each UE is randomly 
generated and assigned to one of the services defined in Table 2, which outlines the 
downstream and upstream demand requirements for each service.

Table 2. Type of services

Services Downstream Upstream

Browsing/Email 5 Mbps 2 Mbps

HDTV 16 Mbps 0.5 Mbps

Video Streaming 25 Mbps 1 Mbps

Podcasts 2 Mbps 0.5 Mbps

VoIP 1 Mbps 1 Mbps

6	 PERFORMANCE EVALUATION

This section analyzes the performance evaluation results obtained by applying 
four distinct game-theoretic algorithms potential game, mean field game, Nash 
bargaining, and Stackelberg Game in the described 5G MIMO scenario. The pri-
mary aim is to examine how effectively each algorithm allocates UEs to BS over 
time. UE distributions generated by these methods are compared based on their 
average allocations across the entire simulation period. Understanding these dis-
tributions clarifies how each approach manages resources under realistic mobility 
and network dynamics. Furthermore, examining these distributions highlights the 
inherent trade-offs among fairness and throughput optimization present in each 
algorithm.

Beginning with the Nash Bargaining algorithm, as shown in Figure 3, the UE 
distribution remains uneven, with some BSs becoming significantly more loaded 
than others. At the end of the simulation, BS2 has the highest number of connected 
users, reaching around 580 users. In contrast, BS3 only serves about 30 users, which 
is a very small portion of the total. The other BSs vary between 210 and 360 users. 
This pattern suggests that the leader-follower mechanism in Stackelberg allows cer-
tain BSs those offering better performance conditions to attract and retain more 
users. However, this behavior does not always result in balanced use of all avail-
able resources. The imbalance can lead to congestion in the most popular cells and 
underuse of others. While the algorithm does adapt during the simulation, it still 
leaves certain stations, such as, BS3, almost empty.

The Stackelberg algorithm, the UE distribution (see Figure 3) remains uneven, 
with some BSs becoming significantly more loaded than others. At the end of the 
simulation, BS2 has the highest number of connected users, reaching around 580 
users. In contrast, BS3 only serves about 30 users, which is a very small portion 
of the total. The other BSs vary between 210 and 360 users. This pattern suggests 
that the leader-follower mechanism in Stackelberg allows certain BSs those offer-
ing better performance conditions to attract and retain more users. However, this 
behavior does not always result in balanced use of all available resources. The 
imbalance can lead to congestion in the most popular cells and underuse of oth-
ers. While the algorithm does adapt during the simulation, it still leaves certain 
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stations, like BS3, almost empty. As seen in the fairness results, this uneven dis-
tribution lowers the fairness index and allows for unequal service quality across 
the network.

Fig. 3. UE distribution over time for Game Theory algorithms

The mean field game algorithm (see Figure 3) produces a slightly more balanced 
outcome but still shows noticeable skew. BS2 stands out with the highest load, 
reaching close to 580 users, while BS1 and BS6 have around 460 and 330 users, 
respectively. In contrast, BS3 and BS5 serve very few users, with BS3 having around 
30 and BS5 only about 50. The remaining BSs, BS4 and BS7 handle around 250 and 
120 users each. The fact that a few BSs attract the majority of the users, while oth-
ers remain mostly underused, suggests that although each user acts independently 
in this algorithm, many of them are still drawn to a small number of stations that 
consistently offer better conditions. This self-organizing behavior helps avoid 
the extreme overconcentration seen in Potential, but it still does not ensure even 
resource usage.

Contrasting sharply with these balanced approaches is the Potential Game algo-
rithm (see Figure 3), which shows a skewed distribution. Initially, BS 1 already holds 
around 930 UEs, dramatically overshadowing all other stations. Instead of correct-
ing this imbalance, the algorithm further concentrates UEs over time, culminating in 
approximately 1450 UEs (around 80% of all UEs) allocated to BS 1 by the end. Other 
BSs are severely underutilized, each connecting fewer than 100 UEs. This drastic 
unevenness aligns with Potential Game’s observed tendency toward heavy resource 
concentration, resulting in the lowest fairness values and highlighting potential con-
gestion risks.
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By comparing all these outcomes, the mean field game algorithm stands out as 
the most effective algorithm for distribution of UE. It maintains balanced resource 
utilization throughout the simulation, thereby preventing significant congestion and 
ensuring equitable UE experiences. Stackelberg and Nash Bargaining approaches 
also perform well, demonstrating flexibility and adaptability but with slightly less 
consistency than the mean field approach. In contrast, the Potential Game’s extreme 
concentration strategy, while potentially optimizing specific criteria, reveals signif-
icant practical drawbacks concerning fairness and operational stability. Thus, the 
comprehensive evaluation of these distribution patterns underscores the impor-
tance of selecting an appropriate game-theoretic approach depending on network 
performance goals, emphasizing balanced resource allocation as key to sustainable 
and efficient network operations.

Another essential aspect of resource allocation analysis is fairness, a metric indi-
cating how evenly UEs are allocated across BSs during the simulation, as shown in 
Figure 4. Fairness is quantified through an index ranging from 0 to 1, with values 
closer to 1 representing a more uniform distribution, and as a consequence, such 
values indicate indicates a perfect fairness. Observing the fairness index allows for 
an understanding of whether BSs are equally utilized or if certain BSs disproportion-
ately serve most of the UEs. This assessment reveals fundamental characteristics of 
each allocation algorithm.

Fig. 4. Fairness Index over time for Game Theory algorithms
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The fairness index for the Stackelberg Game algorithm (see Figure 4) begins 
high, slightly above 0.625, and quickly rises slightly higher within the first inter-
vals, reaching approximately 0.65. After this early peak, a gradual downward 
trend occurs due to the algorithm’s leader–follower dynamics, which progressively 
concentrate UE assignments toward a select few BSs deemed optimal. By the mid-
point of the simulation, the fairness index has declined to about 0.55 and continues 
decreasing toward the end, eventually reaching below 0.50. This moderate decline 
illustrates that the Stackelberg algorithm achieves a reasonable balance, central-
izing resource utilization without creating the extreme imbalances seen in the 
potential game.

Analyzing the Nash Bargaining Game algorithm (see Figure 4), the fairness index 
shows a moderate starting point around 0.60, occasionally spiking up to about 
0.65 during early intervals. As the simulation proceeds, however, fairness grad-
ually declines, reaching approximately 0.45 near the end of the simulation. The 
Nash Bargaining algorithm attempts to balance UE utilities and BS loads. However, 
dynamic movements of UEs inevitably lead to certain BSs becoming preferable, 
thus increasing UE concentrations on these resources. While the distribution never 
becomes extremely skewed, fairness does decrease over time, settling into a moder-
ate range reflective of a balanced yet uneven UE allocation.

In contrast, the mean field game algorithm (see Figure 4) maintains higher fair-
ness throughout most of the simulation. Initially starting at slightly below 0.64, 
fairness rises slightly, reaching a peak around 0.65 within the first few intervals. 
However, over time, minor fluctuations, and the continuous mobility of UEs lead 
to a gradual decrease, settling below 0.58 toward the final intervals. Despite this 
mild decline, the fairness index remains high, demonstrating the mean field 
game’s objective to maintain an even distribution across BSs and avoid signifi-
cant UE clustering on specific resources. Thus, the mean field game algorithm, 
known for promoting balanced UE distributions, maintains consistently higher 
fairness values.

For the potential game algorithm (see Figure 4), the fairness index begins around 
0.62, indicating initially moderate balance. As the simulation progresses, fairness 
declines noticeably, dropping gradually below 0.50 after approximately 20 times 
intervals and eventually reaching near 0.40 by the end of the simulation. This drop 
occurs because the potential game algorithm progressively directs UEs towards the 
single BS offering the highest potential benefit (e.g., lowest path loss or highest SNR). 
Such heavy concentration results in lower fairness, reflecting the strong preference 
for throughput optimization over balanced UE distribution. Also, the potential game 
typically produces significant UE concentration on very few BSs, naturally resulting 
in a lower fairness index over time.

The fairness analysis provides essential clarity for understanding each algorithm’s 
inherent behavior and effectiveness. Networks prioritizing throughput maximiza-
tion might find the potential game suitable despite fairness loss, whereas scenarios 
demanding fair and balanced UE allocations would benefit most from mean field. 
For balanced scenarios requiring moderate fairness alongside performance optimi-
zation, Nash Bargaining and Stackelberg emerge as practical choices, aligning their 
distribution patterns with intermediate fairness outcomes. It is important to note 
that, Nash Bargaining and Stackelberg Games fall between these extremes, achiev-
ing moderate fairness scores due to their partial UE concentration on specific BSs. 
Such behaviors underline the inherent differences among these algorithms in bal-
ancing throughput optimization against equitable resource distribution.
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Proceeding with the analysis of bandwidth consumption, we observe distinct 
and algorithm-specific patterns throughout the simulation, which directly reflect the 
internal logic of each game-theoretic approach, as shown in Figure 5. To accurately 
determine the Mbps demand of each UE and calculate the required bandwidth 
per BS, we apply the Shannon-Hartley theorem, which is also analytically presented 
in the mathematical algorithm section.

Fig. 5. Bandwidth Consumption for Game Theory algorithms

In the Stackelberg algorithm (see Figure 5), bandwidth consumption begins just 
under 395 Mbps and steadily declines across the simulation period. By the final 
interval, the usage drops to about 342 Mbps. This pattern reflects the algorithm’s 
leader–follower strategy. Early in the simulation, resource allocation is aggressively 
optimized as users quickly attach to the most beneficial BS. However, as users begin 
to move, this controlled advantage diminishes. Towers that initially attracted higher 
loads may no longer be optimal due to increased distance or mobility-induced deg-
radation, leading to a gradual reduction in bandwidth efficiency.

The Nash Bargaining algorithm (see Figure 5) starts slightly lower, near 348 Mbps, 
and also exhibits a downward trend, reaching approximately 277 Mbps by the end. 
This consistent decline mirrors the fairness-oriented mechanism of Nash Bargaining. 
Although the algorithm initially provides a balanced allocation that supports effi-
cient use of resources, it is not highly responsive to continued user mobility. As users 
move away from their ideal locations, the equal-load distribution becomes less effec-
tive in maintaining high throughput, and consequently, bandwidth consumption 
reduces steadily.
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For the mean field game algorithm (see Figure 5), the bandwidth consumption 
remains extremely stable throughout the simulation. Starting around 120 Mbps, it 
fluctuates slightly but shows no clear upward or downward trend. This behavior 
corresponds with the decentralized logic of the algorithm. Since each user acts inde-
pendently while considering the overall network state, the outcome is a stable and 
near-uniform distribution. This uniformity, although fair, results in relatively low 
but consistent bandwidth usage reflecting a cautious allocation that favors system 
robustness over instantaneous performance peaks.

The potential game algorithm (see Figure 5) displays a highly variable band-
width pattern. Usage oscillates between approximately 82 Mbps and 123 Mbps 
over the intervals. These fluctuations stem from the algorithm’s global optimiza-
tion objective. Unlike the other algorithms, potential game allows users to con-
centrate heavily on one or two highly efficient BS, maximizing localized utility. 
However, this approach is very sensitive to mobility. As users shift positions, the 
ideal assignment changes, causing abrupt swings in demand and utilization. These 
bursts of high efficiency are interspersed with periods of underutilization, result-
ing in the observed irregular pattern. Collectively, these bandwidth consumption 
results align closely with the previously observed distribution patterns and fair-
ness. Highly concentrated algorithms, such as the Potential Game, show minimal 
bandwidth usage due to focusing UE allocations primarily on one or two BSs, 
resulting in sharply reduced fairness. Conversely, uniformly distributed algorithms 
like the Mean Field Game consistently maximize bandwidth usage by even uti-
lizing all available BSs, maintaining stable and high fairness levels. Intermediate 
approaches like Nash Bargaining and Stackelberg balance resource distribution 
and concentration, which explains their fluctuating but rising bandwidth con-
sumption over time. Each algorithm’s bandwidth utilization highlights its under-
lying resource allocation strategy, reflecting essential trade-offs between achieving 
equitable UE distribution and maximizing BS utilization efficiency under dynamic 
UE mobility conditions.

The evaluation continues by examining the energy efficiency of each game the-
ory algorithm over the simulation’s time intervals, as shown in Figure 6. Energy effi-
ciency reflects the ability of each algorithm to effectively manage available resources, 
balancing data throughput and power consumption in the presence of user mobility 
and varying antenna assignments. A detailed exploration of the energy efficiency 
trends reveals how each game algorithm behaves when facing dynamic user distri-
butions and distance variations, further enhancing the understanding of their oper-
ational characteristics.

Starting with the Stackelberg Game algorithm scenario (see Figure 6) a differ-
ent pattern, starting from 2.3 × 10-6 and consistently climbing to a peak of about 
3.0 × 10-6 near intervals 15–20. This peak highlights the algorithm’s initial capability 
of efficiently managing user allocations in a leader–follower dynamic, where users 
are optimally matched to antennas. Following this plateau, however, the efficiency 
declines, eventually reaching around 2.2 × 10-6 by the simulation’s end. This trajec-
tory aligns with Stackelberg’s moderate skew toward a select few antennas, optimiz-
ing performance initially but suffering as users drift away, thus increasing overall 
power usage disproportionately.
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Fig. 6. Energy efficiency over time for Game Theory algorithms

The Nash Bargaining Game algorithm (see Figure 6) presents an interesting fluc-
tuation. Initially beginning at about 1.4 × 10−6, efficiency fluctuates briefly before 
rising sharply to a peak of roughly 2.3–2.4 × 10−6 between intervals 15 and 20. This 
peak suggests a transient optimization wherein users align efficiently with anten-
nas, yielding favorable throughput-to-power ratios. Beyond this peak, however, a 
gradual decline sets in as user mobility leads to increased distances from chosen 
antennas. Eventually, efficiency settles back down to around 1.6 × 10−6. This dynamic 
corresponds well to Nash Bargaining’s intermediate distribution and fairness results, 
reflecting a balance between concentration and uniformity that initially boosts effi-
ciency before mobility introduces inefficiencies.

Moving to the mean field game algorithm (see Figure 6), energy efficiency begins 
steadily around 1.0 × 10−6 and exhibits a mild increase early on, reaching around 
1.01 × 10−6 at about interval 10. This modest rise represents the equilibrium distri-
bution of users evenly across all antennas. Nevertheless, as users continue to move 
randomly throughout the simulation, the uniform distribution cannot maintain 
optimal user-antenna proximities. Consequently, energy efficiency gradually dimin-
ishes, falling to approximately 0.85 × 10−6 by interval 30 and further down to around 
0.70 × 10−6 by the simulation’s conclusion. This decline mirrors Mean Field’s charac-
teristic high fairness, which, while distributing resources uniformly, is less respon-
sive to individual user movements that could enhance efficiency.
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Finally, the potential game algorithm (see Figure 6) the initial energy effi-
ciency starts around 1.7 × 10−5. In the early intervals, the efficiency remains rel-
atively stable. However, as the simulation progresses and users move away from 
their initially favorable antennas, the energy efficiency begins a notable decline. 
By mid-simulation (around interval 20–30), efficiency dips noticeably to 1.4 × 10−5, 
ultimately concluding below 1.1 × 10−5 towards the end. This significant drop aligns 
directly with the previously observed distribution pattern where a vast majority of 
users were concentrated on just one or two antennas. Such heavy centralization ini-
tially offers acceptable efficiency but deteriorates quickly when user mobility causes 
significant distances to their chosen antennas, thus increasing power consumption 
disproportionately relative to data throughput.

These results collectively emphasize the consistent connection between user distribu-
tions, fairness, and energy efficiency. The more skewed an algorithm’s user distribution 
such as the potential game the steeper its decline in efficiency becomes due to increased 
distances and resulting power demands. Meanwhile, Mean Field’s uniform distribution, 
despite offering high fairness, cannot entirely prevent efficiency decline due to contin-
uous user mobility. Nash Bargaining and Stackelberg represent intermediate strategies, 
providing moderate fairness and distribution skew, resulting in efficiency trends that 
start strong but weaken over time. Therefore, each game-theoretic algorithm’s approach 
directly influences its energy efficiency trajectory, revealing how effectively each bal-
ances resource utilization, mobility, and fairness under dynamic conditions.

7	 CONCLUSION AND FUTURE WORK

In this research, we examined four distinct game-theory approaches potential 
game, mean field game, Nash Bargaining game, and Stackelberg game to address the 
challenge of dynamically allocating a large number of UEs 1810 to seven BSs over 
50 discrete time intervals. The main goal was to observe how each theoretical algo-
rithm handles the dynamic distribution of UEs and resource allocation, influenced 
by key parameters such as UE positions, signal quality, and mobility.

Furthermore, before presenting the final conclusions, some limitations of the 
simulation setup must be acknowledged. The simulation rely on a synthetic dataset, 
which provides controlled channel data but omits many real-world effects such as 
irregular fading patterns, user hotspots, and hardware impairments. User mobil-
ity is represented as two-dimensional motion at a fixed speed; actual users pause, 
change direction, and vary speed, which can shift allocation performance. The 
model also excludes inter-cell interference coordination, MAC-layer scheduling, and 
device-level power costs, so the reported fairness, bandwidth, and energy metrics 
are comparative rather than absolute.

The Potential Game tends to concentrate UEs heavily on a limited number of BSs, 
typically achieving high throughput initially. However, this approach results in sig-
nificant drawbacks: as UEs move overtime, the distance to their originally optimal 
BS increases, causing a notable drop in fairness and quality of service. Bandwidth 
utilization remains minimal, primarily due to reliance on a few BSs, leaving most 
network resources underutilized.

In contrast, the mean field game takes a completely different route by uniformly 
distributing UEs across all available BSs from the start. While this ensures stable and 
high fairness, it provides modest performance regarding throughput and quality of 
service. Bandwidth is maximally utilized since every BS serves UEs continuously, 
yet energy efficiency and the fraction of UEs surpassing quality thresholds remain 
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low, as the uniform spread does not specifically cater to UEs’ individual needs or 
movements.

The Nash Bargaining game offers a balanced middle ground. UEs negotiate to 
find allocations beneficial for all parties, initially producing a promising increase in 
both throughput and the number of satisfied UEs. Over time, UE mobility introduces 
fluctuations in bandwidth consumption and throughput, resulting in moderate fair-
ness and performance metrics. This strategy effectively balances the need for net-
work fairness against the desire for high individual throughput.

Finally, the Stackelberg Game introduces a hierarchical approach, with a leading 
BS influencing UE decisions. This results in gradually improving performance, nota-
bly high throughput, and increased UE satisfaction early in the simulation. Despite 
initial successes, as UEs inevitably drift further from the chosen BSs, efficiency and 
satisfaction slightly decline, demonstrating the trade-off between initial optimal allo-
cation and the limitations imposed by UE mobility.

Overall, these simulations highlight the fundamental trade-offs involved in 
dynamic UE allocation for wireless networks. Each game-theoretic algorithm 
uniquely balances the competing priorities of fairness, resource utilization, through-
put, and service quality, illustrating the complexities of achieving sustained perfor-
mance in real-world mobile environments. The results emphasize the importance 
of selecting an allocation strategy aligned with specific network objectives, mobility 
patterns, and service quality requirements.

In future research, the study presented can be significantly enhanced by incor-
porating machine learning (ML) techniques [17]. Specifically, ML methods can be 
employed to predict the optimal movement directions and connectivity choices of 
UEs in dynamic wireless network environments. Through the integration of predic-
tive algorithms, such as neural networks or reinforcement learning approaches, it 
would be possible to proactively determine UE trajectories and anticipate changes 
in signal quality, distance, and network load. This evolution would allow network 
resources to be allocated not merely based on the current state of the system, but on 
accurately predicted future conditions. As a result, resource allocation algorithms 
could become more adaptive, improving the quality of service by dynamically reas-
signing UEs to BSs before significant performance degradation occurs due to UE 
mobility. Additionally, future studies might explore hybrid solutions that combine 
predictive ML methods with game-theoretic approaches. Such hybrid systems could 
leverage the strengths of each method utilizing game theory’s strategic resource 
distribution capabilities alongside MLs predictive accuracy to achieve robust and 
efficient network performance under a wider range of mobility scenarios and 
UE behaviors.

Finally, expanding the experimental scenarios to include varying numbers of 
UEs, different mobility patterns, and diverse environmental conditions would fur-
ther validate the flexibility and reliability of the proposed ML-enhanced allocation 
strategies. This comprehensive future direction promises substantial improvements 
in practical applicability, network responsiveness, and UE experience in dynami-
cally changing wireless communication networks.
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