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PAPER

Performance Evaluation of Downlink/Uplink Decoupling 
in 5G Multiple Input Multiple Output Networks

ABSTRACT
In the landscape of 5G networks, efficient resource allocation (RA) stands as a critical factor in 
meeting the diverse demands of applications and users. This paper delves into optimizing RA 
within 5G Multiple Input Multiple Output (MIMO) networks by leveraging Downlink/Uplink 
Decoupling (DUDe) techniques. MIMO technology, enabling the simultaneous transmission 
of multiple data streams, holds promise for boosting spectral efficiency. However, accommo-
dating the dynamic and diverse user requirements poses a significant challenge in resource 
allocation. By employing advanced DUDe techniques, this study dynamically allocates 
resources in 5G MIMO Heterogeneous Networks (HetNets), seeking to enhance throughput, 
minimize latency, and optimize user satisfaction. The paper includes scenarios involving 
varying User Equipment (UE) densities and mobility to evaluate system performance under 
different load conditions. Through simulation-based analysis, this paper highlights the effi-
cacy of the proposed approach in significantly improving network performance, energy 
efficiency, and resource utilization.

KEYWORDS
downlink/uplink decoupling (DUDe), 5G networks, resource allocation (RA), multiple input 
multiple output (MIMO), heterogeneous networks (HetNets), energy efficiency

1	 INTRODUCTION

The advent of fifth-generation (5G) communication networks signifies a trans-
formative leap in connectivity, promising revolutionary advancements across 
industries and daily life. Among the pivotal challenges in maximizing the poten-
tial of 5G networks is the efficient allocation of resources, particularly within the 
domain of Multiple Input Multiple Output (MIMO) technology. MIMO’s capability 
to facilitate the concurrent transmission of multiple data streams through multi-
ple antennas presents an enticing avenue for augmenting spectral efficiency and 
accommodating the burgeoning demand for high data rates. However, the intricate 
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landscape of 5G networks, coupled with the ever-evolving and heterogeneous 
user requirements, poses a formidable hurdle in optimizing resource allocation. 
Traditional methodologies often falter in dynamically adapting to these diverse 
demands, necessitating innovative approaches to bolster resource utilization 
while ensuring optimal network performance and user experience. This paper 
embarks on a distinctive trajectory by promoting the application of Downlink/
Uplink Decoupling (DUDe) techniques for resource allocation (RA) within 5G MIMO 
networks. In traditional cellular systems, the assignment of User Equipment (UE) 
to the Base Stations (BSs) is based on the Downlink (DL) Signal to Noise Ratio (SNR) 
of the UE, and both DL-Uplink (UL) are connected to the same BS, a method known 
as Downlink/Uplink Coupling (DUCo), while in the case of DUDe the assignment of 
UEs UL and DL to the BS is based both on the UL SNR and DL SNR of the UE (and 
UL and DL can be connected in difference BSs). DUDe offers enhanced RA efficiency 
and network resource utilization. Additionally, DUDe lets a handset send its uplink 
traffic to the nearest small cell while still drawing DL data from the macro layer, 
expanding the uplink link budget without extra user-side power. Field trials report 
uplink-rate gains above 50% in dense 5G layouts, and the benefit grows when 
massive-MIMO receivers cancel intra-cell interference. In a smart classroom, that 
headroom lets every learner stream multi-view video from head-mounted cameras 
so instructors can respond in real time. During outdoor fieldwork, the same mech-
anism keeps sensor uploads steady while the device downloads augmented-reality 
overlays. Because DUDe reuses the phone’s existing 5G massive-MIMO antennas, 
campuses and micro-campuses can roll it out step by step and still give learners 
balanced two-way media even where budgets are tight. For additional information 
refer to [1], [2], and [3].

The unique proposition lies in the decoupling of DL and uplink resources, 
aiming to dynamically allocate resources to maximize throughput, minimize 
latency, and elevate user satisfaction levels. Ultimately, this study contributes to 
the ongoing discourse in the domain of 5G network enhancement by shedding 
light on the transformative capabilities of MIMO technology in refining RA strate-
gies using DeepMIMO [4], a data generator for mmWave/massive MIMO channels, 
resulting in an upgraded simulation tool that offers more accurate and realistic 
representations of 5G network challenges. By providing empirical insights into the 
effectiveness of DeepMIMO-enhanced resource allocation, this study aspires to cat-
alyze the development of more efficient and adaptive 5G network infrastructures 
[5], [6], [7], [8].

While the separation of DL and UL improves load balancing and link quality, it 
raises several implementation challenges. Channel-state information must be shared 
across two serving cells, adding fronthaul signalling and latency; uplink channel 
estimates collected at a small cell are no longer directly usable for the DL handled 
by a macro cell, so extra sounding or coordinated pilots are needed; and tight time 
alignment is required to keep hybrid-ARQ and control signalling coherent across 
tiers. These practical concerns set DUDe apart from DUCo and frame the design 
choices analyzed in this work.

In this study, mobility scenarios are conducted to examine the network’s 
performance in environments where the UEs are in motion. By simulating different 
mobility conditions, the network’s ability to adapt to the changing positions of UEs 
while maintaining efficiency and performance is evaluated. Along with mobility, 
high-density scenarios are also considered, allowing for a comprehensive assess-
ment of DUDe techniques. This combination of mobility and density scenarios 
provides valuable insights into DUDe’s adaptability and effectiveness in real-world 
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settings, offering a thorough evaluation of its potential to optimize RA and enhance 
network performance in diverse 5G environments. These scenarios not only validate 
the proposed algorithm but also deepen the understanding of how DUDe improves 
resource utilization under varying conditions.

Finally, this study explores the impact of varying power levels on energy 
efficiency and power consumption within 5G MIMO networks. By examining the 
relationship between transmitting power, energy efficiency, and the overall power 
requirements of the network, further insights are gained into the balance between 
supporting higher data rates and maintaining efficient power usage. This aspect 
of the study is crucial in understanding how increased user demand, paired with 
elevated transmission power, influences both the performance and sustainability of 
the network. The findings from this analysis are integral in guiding future designs 
of energy-efficient 5G networks that can adapt to growing user densities while 
minimizing power consumption.

The rest of the paper is organized as follows: Section 2 presents various research 
studies that utilize DUDe and MIMO technologies for their respective applications. 
Section 3 introduces the mathematical model utilized in the simulation environ-
ment. Section 4 delves into the algorithm analysis that forms the basis for construct-
ing experiment scenarios. Section 5 outlines the simulation setup and methodology 
employed to assess the performance of DUDe in the MIMO 5G Heterogeneous Network 
(HetNet). Section 6 presents the simulation results and provides a comprehensive 
analysis of the findings. Section 7 presents the conclusions, and lastly, section VIII 
offers insights into potential avenues for future research.

2	 RELATED WORK

Looking at the literature, important research highlights the benefits of applying 
DUDe in 5G MIMO networks. Studies show that DUDe enhances network perfor-
mance by allowing separate handling of DL and UL connections, improving flexibility 
and resource efficiency.

Moreover, the implementation of DUDe not only facilitates the seamless 
integration of new users into the network but also ensures uninterrupted service. 
The smoother distribution not only guarantees available capacity (C) for BSs but also 
prevents them from reaching their C limits, even when dealing with a substantial 
number of users. This approach not only enhances network C but also contributes to 
a more robust and interference-resistant communication environment for users. The 
existing literature on enhancing RA in heterogeneous networks (HetNets) and MIMO 
5G networks encompasses a range of innovative approaches. Authors in [9] extend 
DUDe association to a two-tier wireless-powered HetNet that pairs massive MIMO 
macrocells with full duplex small cells. They introduce mean-maximum-power and 
maximum-power harvesting rules, then use stochastic geometry to obtain closed-
form expressions for harvested energy and UL/DL coverage. The analysis reveals an 
optimal small-cell density and shows energy-efficiency gains of roughly 1.4× over 
conventional coupled association and networks without wireless power transfer, 
while also mapping how macrocell power, antenna count, and self-interference 
affect these gains. The work provides a tractable baseline for designing energy-aware 
DUDe deployments in full-duplex HetNets.

The authors of [10] explored DUDe as a bandwidth-optimization tool. Allowing 
each user to attach to separate BSs for the two links lets the scheduler adjust the 
spectrum to real-time traffic and channel conditions. Simulations showed that 
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DUDe eases macro-cell congestion, evens out user distribution across antennas, 
and boosts end-to-end throughput over traditional coupled allocation. The anal-
ysis also pinpoints system factors that shape these gains and suggests extending 
the approach to multi-access scenarios and joint optimization with complemen-
tary techniques. Paper [11], study measures the energy cost of DUDe in 5G by 
accounting for each BSs power draw and the signaling overhead between cells 
and users. Simulations across a range of user densities, cell layouts, and traffic 
profiles show that DUDe reduces total network consumption compared with con-
ventional coupled access, mainly by reallocating uplink traffic to less-loaded sites. 
The authors also map how configuration choices—such as base-station density and 
traffic mix—shape these savings, offering practical guidelines for energy-aware 
network planning.

Paper [12] delves into cell-free massive MIMO, a promising architecture for 
5G networks that addresses RA challenges in DL networks. The paper presents an 
iterative algorithm that efficiently handles the optimization problem posed by cou-
pled interference among UE, demonstrating the effectiveness of the algorithm in 
practical scenarios. Paper [13] focuses on the need for high energy efficiency in 
future wireless networks to achieve net-zero greenhouse gas emissions. The paper 
proposes a power consumption model that considers the effects of carrier aggre-
gation and spatial layering on 5G network power consumption, advocating for the 
optimization of active antennas and physical resource blocks to enhance energy 
efficiency.

Paper [14] constitutes a notable contribution to RA in 5G-NR systems and is 
presented in the work on DL RA for 5G-NR massive MIMO systems. This study 
addresses the challenges posed by beamforming and spatial multiplexing in 
5G-NR, which require optimized RA across time, frequency, and space to fully real-
ize the C gains from massive MIMO. Unlike traditional 4G-LTE algorithms, which 
do not account for the dual-channel nature of 5G-NR, this work proposes a joint 
allocation scheme for both control and shared channels. The authors formulate the 
problem as an integer linear program and propose suboptimal and approxima-
tion algorithms for practical implementation. Simulation results demonstrate that 
the proposed algorithms significantly outperform baseline approaches in terms of 
sum-throughput and fairness, offering a promising solution for enhancing RA in 
5G-NR networks.

Another significant contribution to RA in 5G heterogeneous networks is presented 
in research [15], which focuses on the joint optimization of RA, User Association (UA) 
and Power Control (PC) for LTE-A networks. This study addresses the complexities of 
optimizing multiple parameters simultaneously, such as energy efficiency, spectrum 
efficiency, and queue length in MIMO-based systems. By utilizing a mixed-integer 
programming model and a Drift-Plus-Penalty (DPP) approach for Lyapunov optimi-
zation, the authors propose a solution for DL transmission RA that accounts for both 
macro and small cells. The work introduces a reduced problem approach through 
linear relaxation, making it more computationally efficient even for NP-hard 
problems. Numerical results demonstrate that the proposed framework effectively 
balances energy and spectrum efficiency while outperforming traditional greedy 
algorithms in terms of performance metrics.

In recent research [16], a DUDe access scheme for Unmanned Aerial Vehicle (UAV) 
communication systems was proposed, focusing on minimizing interference by sep-
arating the control and data links of UAVs and decoupling the uplinks and downlinks 
of ground users onto different BSs and frequencies. To address power constraints, 
two reinforcement learning-based power allocation schemes, Q-Learning (QL) 
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and Deep Q-Learning (DQL), were introduced to optimize communication energy 
efficiency. Compared with traditional fractional power control schemes, the DUDe 
approach with QL and DQL demonstrated significantly higher energy efficiency and 
sum rates, with improvements of 80%–100% in the Ultra High Frequency (UHF) band 
and 160%–170% in the mmWave band. The study concluded that while QL and DQL 
can achieve near-optimal energy efficiency, DQL outperforms QL due to its ability to 
handle a larger state space, highlighting the effectiveness of reinforcement learning 
in optimizing RA within the DUDe framework for 5G networks.

Unlike previous works that primarily focus on traditional RA algorithms, this 
study leverages DUDe techniques to dynamically adapt to changing network 
conditions and user demands. This innovation allows for more flexible and adaptive 
RA strategies, enabling the network to efficiently utilize available resources while 
meeting the diverse requirements of different users. The only similar research that 
was found is presented in [17], with the difference being that this study focuses 
on bandwidth allocation among BS, whereas the work [17] aims at optimizing the 
spectrum efficiency of the BS.

3	 MATHEMATICAL MODEL

This section provides an overview of the mathematical model used in the exper-
iments. Initially, to determine the minimum distance between UEs and various BS 
antennas, the model outlined in TR 38.901 Section 7.4.1 [18] is employed. The follow-
ing equations, 1 to 3, calculate the pathloss for each UE; however, a detailed analysis 
of these equations lies beyond the scope of this paper.
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	 PL2 = PL1(dBP) + 40 log10(d3D/dBP)	 (3)

Once the pathloss is determined through the 5G Matlab model, which includes 
the aforementioned functions and equations, the SNR is calculated to determine 
the closest antenna for establishing connections. The SNR mathematical expression 
involves measuring both signal power and noise power at the same or equivalent 
points in the system and within the same bandwidth. The mathematical expression 
for SNR is as follows:

	 SNR = Psignal/Pnoise	 (4)

For scenarios involving bandwidth allocation, the maximum bandwidth limit for 
UEs for each antenna, is computed, using the Shannon-Hartley theorem Σϕάλμα! 
Το αρχείo προέ λευσης της αναϕοράς δεν βρέ θηκε [19]. This theorem establishes the 
maximum error-free information transmission rate over a communication channel 
with a given bandwidth, considering noise presence. It aids in optimizing communi-
cation system design by finding the balance between information transfer rate and 
error minimization.

	 C = Blog2(1 + S/N)	 (5)
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The channel C, measured in bits per second, represents the maximum achievable 
net bit rate without error-correction codes. Bandwidth (B) denotes the passband 
bandwidth for a bandpass signal. The SNR, expressed as a linear power ratio, 
compares communication signal power to noise power at the receiver.

4	 ALGORITHM ANALYSIS

This section presents the analysis of the theoretical algorithm, which has been 
evaluated through simulations supported by the DeepMIMO toolkit [2].

Algorithm 1: A Dynamic Game-Theoretic Algorithm for Multi BSs n UE Allocation

Step 1: Initialization & Parameter Configuration:
Load the DeepMIMO dataset, read the parameters in parameters.m, compute the noise power Pn, 
and set up EIRP along with all UE and BS counters.
Step 2: Distance & Path-Loss Calculation:
For every BSs and each user, calculate the Euclidean distance and then derive the corresponding path loss.
Step 3: SNR Calculation:
Using the path loss, compute both the DL and uplink SNRs for every BS–UE pair. UL and DL link qualities 
are kept separate.
Step 4: Primary BS Selection:
For every UE, the algorithm separately determines:
the BS that maximizes received signal strength on the downlink, and
the BS that maximizes received signal quality on the uplink.
The UE is then associated with the first station for DL transmissions and, if different, with the second 
station for uplink transmissions. When the same BS is optimal for both directions, the procedure coincides 
with the conventional coupled scheme.
Step 5: User-Service Assignment:
For each UE, randomly pick a service (e.g., browsing, HDTV, VR) and map its down- and upstream 
rate demands.
Step 6: Dynamic Path-Loss Structure:
Create an on-the-fly data structure called dynamic_pathloss_BS_ue to store updated path-loss values.
Step 7: SNR-Based UE Sorting
Within every BS, sort its associated UEs by descending DL SNR.
Step 9: Capacity Initialization:
Create an on-the-fly data structure called dynamic_pathloss_BS_ue to store updated path-loss values.
Step 10: Dynamic Capacity Allocation:
Iterate through the sorted UEs, choose the BS offering the lowest combined cost, and, if enough C remains, 
allocate the UE’s downstream demand and update all records.
Step 11: Result Structuring:
Aggregate the successful allocations in success_throughput and compute each UE’s achieved data rates.
Step 12: Algorithm Output:
Return the populated success_throughput array.
Step 13: Complexity Analysis:
The overall time complexity is O(N2) for sorting and allocation, and the space cost comes mainly from the 
path-loss, allocation, and result structures.
Step 14: High-Mobility Scenarios:
Group UEs by speed (pedestrian, vehicular, high-speed), simulate handovers, packet loss, and latency, 
compute the averages per group, and plot handover frequency, packet loss, and latency against speed.
Step 15: Energy Efficiency & Power Consumption:
Sweep predefined power levels, calculate each UE’s power draw, derive its bits-per-watt efficiency from 
the DL SNR, average the results, and plot energy efficiency and power consumption versus power level.
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The procedure begins by loading DeepMIMO channel data and reading all 
system parameters. It computes the thermal-noise power from the bandwidth, sets 
the effective isotropic radiated power, and initializes counters for every BS and 
UE. Next, it calculates the Euclidean distance and path loss for every BS-UE pair, 
then converts these losses into separate DL and uplink SNR matrices. Each UE is 
randomly assigned a service class e-mail, web browsing, HDTV, or similar—and the 
corresponding rate requirements for both directions are added to a dynamic table 
that also stores its path loss and SNR values.

In the primary base-station selection phase, each user evaluates the channel to 
every cell, picks the one that delivers the strongest DL signal for receiving data, and 
independently picks the one that offers the highest uplink SNR for sending data; 
the user then downloads through the first cell and, if the two selections differ, 
uploads through the second, while identical choices revert to the conventional cou-
pled association. Successful assignments, together with the resulting data rates, are 
recorded in the success_throughput array.

Two experiments refined the analysis. First, mobility scenarios group UEs by 
speed and update their associations on the fly, allowing the model to log handover 
frequency, packet loss, and latency as functions of velocity. Second, a transmit-power 
sweep recomputes each UE’s consumption and derives bits-per-watt efficiency to 
expose the power–efficiency trade-off. The dominant operations—dual sorting and 
repeated C checks —yield a computational cost of O(N2), while memory use is driven 
by the path-loss, scheduling, and results tables.

5	 SIMULATION ENVIRONMENT

This section presents an overview of the details of the simulated network struc-
ture and its associated parameters. It is essential to highlight that both the topology 
and the dataset guiding the simulation setup were sourced from the DeepMIMO 
platform. This platform serves as a valuable resource, offering the necessary 
infrastructure to shape and execute the experiments effectively. More specifically, 
a HetNet 5G MIMO network setup is shown in Figure 1. This setup is about an urban 
setting where the main street, stretching horizontally, spans 600 meters in length 
and 40 meters in width and a vertical counterpart spanning 440 meters in length 
and 40 meters in width. Similar to the main street, buildings line both sides, contrib-
uting to the city’s architectural tapestry. Along the main street, uniformity prevails 
as all buildings share bases with dimensions of 30 meters by 60 meters. On the other 
hand, the second street exhibits a distinct architectural style, with buildings standing 
on bases measuring 60 meters by 60 meters.

Additionally, there are a total of 18 BSs installed, named BS1 through BS18, all 
standing at a height of 6 meters. Along the main street, there are 12 of these stations—
BS1 to BS12—with 6 stationed on each side. Regarding the spacing arrangement, 
there is a 52-meter gap between the BS on one side of the street and those on the 
opposite side. Breaking it down further, there is a 100-meter separation between 
clusters—BS1, BS3, and BS5; BS2, BS4, and BS6; BS7, BS9, and BS11; BS8, BS10, and 
BS12. Adding a bit more flair, there is a tighter 62-meter spacing between BS6 and 
BS8, as well as between BS5 and BS7.
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Fig. 1. General topology of simulated network

In the second street, BS13 to BS18 are strategically positioned to maintain stable 
coverage. Each side of the street hosts 3 BS, and there is a roomy 150-meter gap between 
BS13, BS15, and BS17, as well as between BS14, BS16, and BS18. Delving deeper into 
the specifics, a 52-meter separation exists between adjacent stations—BS13 and BS14, 
BS15 and BS16, and BS17 and BS18. So, with these dimensions and placements, the 
network is all set to weave its connectivity magic throughout the urban landscape.

Additionally, three distinct User Grids (UG)–UG1, UG2, and UG3—can accommo-
date up to 1,184,923 UEs. With a strategic placement approach, the first UE in each 
grid claims the distinction of having the lowest (x, y) coordinates. Uniformity reigns in 
the height department, with all UE grids maintaining a consistent 2-meter elevation.

UG1 takes center stage, stretching horizontally along the main street for 550 meters 
with a width of 35 meters. Its lineup kicks off 15 meters after the street’s beginning 
and gracefully concludes just before the endpoint. Across 2751 rows, each housing 
181 UEs with identical y-coordinates, UG1 fosters a sense of community with a 20 cm 
spacing between UEs, boasting a total of 497,931 UEs. UG2, on the other hand, seizes 
attention on the southern side of the cross street. Spanning rows 2752 to 3852, a total 
of 1101 rows host 181 UEs each, maintaining a 20 cm gap between neighbors. UG2’s 
vibrant community consists of 199,281 UEs. In UG3, which concludes rows 3853 to 
5203, serve as the prime real estate, accommodating 1351 rows with 361 UEs per 
row. Slightly cozier with a 10 cm spacing between UEs, UG3 is home to 487,711 UEs, 
fostering a closer network camaraderie.

Eventually, specific areas have been designated for implementation. Figure 2 illus-
trates the chosen locations: User Grid 3 will utilize ΒS17, and from User Grid 1 will 
rely on BS4, BS3, BS5, BS6, and BS7. The BS transmit power is configured at 45 dBm, 
accompanied by a gain set at 21 dBi. To explore various user scenarios, three setups, 
including 180, 360, and 724 UEs, were conducted, all while maintaining consistent 
UE power of 20 dBm. A summary of these network parameters is provided in Table 1.
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Table 1. Simulation parameters

Parameter Value

Transmit power (dBm) 45 dBm

BS height (m) 6 m

BS/UE gain (dBi) 21 dBi, 0 dBi

Bandwidth (MHz) 400 MHz

Number of UEs 180, 360, 724, 905

Power Noise Pnoise = -74 + 10log (Bandwidth(hz))

In bandwidth allocation scenarios, each UE is randomly assigned to one of the 
services outlined in Table 2, where the downstream and upstream demands per 
service are presented.

Table 2. Type of services

Services Downstream Upsteam

Browsing/Email 5 Mbps 2 Mbps

HDTV 16 Mbps 0.5 Mbps

Video Streaming 25 Mbps 1 Mbps

Podcasts 2 Mbps 0.5 Mbps

VoIP 1 Mbps 1 Mbps

Fig. 2. Topology of first simulations

Also, another experiment is conducted, with Figure 3 illustrating the chosen 
locations: User Grid 3 will be connected to BS17, while User Grid 1 will utilize BS4, 
BS3, BS5, BS6, BS7, BS8, and BS15. This adjustment in network topology aims to 
investigate whether it influences the underlying assumptions that were made.
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Fig. 3. Topology of 905UEs simulations only

DUDe technology is employed to ensure equitable resource distribution across 
antennas while achieving optimal performance. Notably, this approach diverges 
from previous research by incorporating a MIMO system, where each BS is equipped 
with 64 antennas. To highlight this point, every mentioned antenna is connected 
to a UE. This setup allows UEs to connect to multiple antennas, enhancing system 
performance. The primary objective is to demonstrate the efficacy of the DUDe appli-
cation in such a system, where UEs have multiple connection options, compared 
to alternative RA technologies in telecommunications networks. Note also that the 
operating frequency of the network in which simulations were implemented is at 
60 GHz, the number of 5G NR resource blocks is 60, and the 5G subcarrier spacing in 
kHz is 120. Finally, it is crucial to regard that all performance figures were averaged 
over 1000 independent runs in MATLAB, providing a robust estimate of expected 
behavior under varied conditions.

6	 PERFORMANCE EVALUATION

This section delves into the simulation setup and analyzes the conclusions 
drawn from them, aiming to validate the initial research on the subject. To conduct 
these experiments, three separate datasheets were generated, each correspond-
ing to scenarios with 362, 543, 724, and 905 UEs. Also, in the scenario involving 
905 UEs, the alternative topology described earlier in Figure 2 was implemented. 
These UEs are placed within the previously analyzed network topology, leveraging 
the nrpathloss function in Matlab to ensure random yet evenly distributed place-
ments. Specifically, a one-meter distance between each UE is maintained to prevent 
overlapping. Additionally, it was investigated how varying UE mobility affected 
handover frequency, packet loss, and latency under different speed levels, showing 
increased network stress as UE density rose. And finally, the last scenario focused on 
analyzing power consumption and energy efficiency across varying transmit power 
levels, revealing how higher UE counts significantly impacted energy efficiency 
and power usage. Both these scenarios for mobility and power consumption were 
simulated based on the topology in Figure 3.
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6.1	 Resource allocation scenarios

Several factors were considered in SNR calculations, including the transmission 
power of the antenna and UE (held constant at 20 dBm in the experiments), antenna 
gain (21 dBi for the BS and 0 dBi for the UE), the distance between the antenna and UE, 
and noise. Incorporating these elements ensures an accurate assessment of SNR, a cru-
cial metric for determining wireless communication link quality. The antennas possess 
a fixed bandwidth C of 400 MHz. In all scenarios, UEs are assigned to antennas using a 
two-step procedure. First, SNR is calculated based on each UE’s distance from the anten-
nas. Next, available resources (bandwidth capacity) are assessed to determine whether 
an antenna can accommodate the UE’s service. If sufficient resources are available, the 
UE is connected to the optimal antenna; otherwise, it is connected to the antenna with 
the highest SNR. This method guarantees satisfactory service for every UE.

Through graph analysis of Figure 4, the detailed performance characteristics of DUDe 
and DUCo technologies in a MIMO 5G network setting were examined. Trends and 
patterns observed in the graphical representations provided insights into the efficacy 
of these technologies in managing network resources and delivering optimal perfor-
mance. Also, for a better understanding of the bar plots, it is worth mentioning that they 
depict the remaining bandwidth per BS for both DUDe and DUCo technologies. Each line 
in the graph represents a specific BS, while the height of the bar indicates the remaining 
bandwidth in Hertz (Hz). Visual comparison of the blue (DUDe) and orange (DUCo) bars 
reveals how these technologies affect bandwidth availability across different BSs.

Fig. 4. Remaining bandwidth for 362, 543, and 724 UEs

In the graph for 724 UEs (bottom bar plot), decoupled technology consistently shows 
lower bandwidth consumption per antenna compared to coupled technology. The 
noticeable disparity between the two methods, even at high UE density, suggests that 
decoupling technology maintains its efficiency advantage in bandwidth utilization.
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Also, by examining Figure 5, It is observed that modifying the network topology, 
as shown in Figure 3, does not affect the original hypothesis. DUDe technology con-
sistently demonstrates superior allocation efficiency across BSs compared to DUCo, 
leading to improved service for both existing and newly added BSs and affirming 
DUDe’s effectiveness in optimizing network performance.

Across all of these scenarios, DUDe technology consistently outperforms DUCo 
technology in terms of bandwidth efficiency. This is evident from either having more 
remaining bandwidth or less mean bandwidth consumption in all the charts. The 
difference in performance between decoupling and coupling technology appears to 
be influenced by the number of UEs. With a higher UE count (724 vs. 543 vs. 362), the 
advantage of decoupling technology becomes more pronounced. Despite the overall 
trend favoring DUDe technology, the performance across BS indices is not uniform. 
This suggests that certain antennas may inherently perform better or worse, regard-
less of the DUDe or DUCo technology employed.

It is important to note also that the observed efficiency of DUDe technology 
becomes increasingly evident as the network scales. As the number of UEs increases, 
the ability of DUDe to maintain a more balanced distribution of resources across the 
network further supports its robustness in high-density environments. Even when 
accounting for variations in BS performance, the consistency of DUDe in provid-
ing higher bandwidth availability across scenarios indicates its capacity to adapt to 
different network demands without a significant loss in efficiency. This adaptability 
makes DUDe particularly valuable in real-world deployments where dynamic user 
behavior and changing traffic patterns require networks to respond fluidly while 
maintaining performance and resource availability. Through these insights, the 
results not only validate the proposed algorithm but also emphasize DUDe’s poten-
tial to become a key mechanism for optimizing RA in the evolving 5G landscape.

Fig. 5. Remaining bandwidth for 905 UEs

6.2	 Scenarios for the impact of user population on mobility and energy efficiency

In this set of experiments, analyzing the impact of varying UE densities on 
mobility, energy efficiency, and overall network performance. In the analysis of 
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high mobility scenarios and energy efficiency under various transmit power levels, 
the results offer critical insights into network behavior, especially when scaling up 
the number of UEs from 362 to 905. By considering the effects of user mobility on 
handover frequency, packet loss, and latency, and examining the energy efficiency 
with respect to different transmit power levels, meaningful conclusions for network 
performance optimization were extracted.

Firstly, the impact of varying mobility speeds on handover frequency, packet loss, 
and latency was examined. With an increase in the number of UEs from 362 to 905 as 
seen in Figure 6, the overall trends in these metrics remained consistent, but the values 
became more pronounced due to the denser user environment. In case of 362 UEs (first 
bar plot), the handover frequency increased with speed, ranging from approximately 
0.8 handovers at 3 km/h to over 20 handovers at 100 km/h. This reflects how higher 
mobility leads to more frequent handovers as users move rapidly between BSs. For 543 
UEs, the handover frequency shows an even steeper gradient compared to 362 UEs, 
emphasizing the additional burden that a higher UE density places on the network.

Fig. 6. Mobility experiments for 362, 543, 724 and 905 UEs

Similarly, packet loss increased with speed, as seen in the bottom bar graphs, 
where packet loss grew from 0% at 3 km/h to 5% at 100 km/h. The effect of adding 
more UEs resulted in an even higher packet loss at the upper speed levels, indicating 
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that as UE density increases, the likelihood of packet collisions or dropped connec-
tions grows due to the heightened network load. Latency, the third key metric, also 
demonstrated a linear increase with speed, rising from around 50 ms at low speeds 
to 250 ms at high speeds. The 543 UE configuration saw more severe latency spikes, 
illustrating the challenge of maintaining low-latency services in densely populated 
mobile networks. In experiments with 724 and 905 UEs (bottom right bar graph), the 
results demonstrate consistent trends across different speeds. Handover frequency 
increases proportionally with speed, reaching its highest levels at 100 km/h. Packet 
loss also follows a steady upward trajectory as speed rises, indicating that main-
taining reliable connectivity becomes more challenging at higher mobility speeds. 
Latency, a critical factor for quality of service, exhibits an increase with higher 
speeds, underscoring the impact of mobility on network performance.

In continuation, the study examined the relationship between transmit power, 
energy efficiency, and power consumption, as you can show in Figure 7. By increasing 
the number of UEs from 362 to 543, the findings showed an impact on energy efficiency, 
particularly under high power levels. In addition, energy efficiency, measured in bits 
per second per watt (bps/W), decreased as transmit power increased. At a transmit 
power of 45 dBm, energy efficiency peaked at approximately 1.2 × 105 bps/W, while at 
50 dBm, it dropped to about 3 × 104 bps/W. This sharp decline highlights how increasing 
transmit power does not always lead to proportional gains in network performance, 
especially when the user density increases to 543 UEs. The additional load from more 
users stresses the network, causing energy efficiency to degrade more rapidly.

Fig. 7. Energy and power consumption for 362, 543, 724, and 905 UEs
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Power consumption followed an expected trend: as transmit power increased, 
so did total power usage. Power consumption surged from around 3 W at 35 dBm 
to 100 W at 50 dBm. With 543 UEs (right top bar graph), the total power required to 
maintain the network grows significantly, demonstrating that more users not only 
strain network C but also require substantial power resources, especially at higher 
transmission levels. This insight reinforces the importance of balancing power 
efficiency with network C in dense deployments. Additionally, the results for 724 and 
905 UEs (right and left bottom bar graphs) indicate a decrease in energy efficiency as 
transmit power increases, similar to the findings from lower UE scenarios. However, 
the gap between the transmit power levels becomes even more significant in higher 
density environments. The energy efficiency continues to decline sharply as the 
transmit power level rises to 50 dBm, suggesting that higher UE densities lead to 
increased network stress and decreased efficiency. Power consumption, as expected, 
rises with higher transmit power, and the scenario with 905 UEs experiences the 
steepest increase in power consumption. This indicates that in ultra-dense network 
conditions, the challenge of maintaining a balance between power efficiency and 
network performance becomes more pronounced, especially as the transmit power 
increases. These results reinforce the importance of optimizing energy efficiency 
and managing power consumption, particularly in high-density scenarios where 
network resources are heavily taxed. In summary, the introduction of 543 UEs into 
these experiments underscores the challenges of managing high-density networks. 
As user mobility increases, network performance degrades in terms of handover 
frequency, packet loss, and latency. Similarly, while boosting transmit power can 
support more users, it comes at the cost of reduced energy efficiency and higher 
power consumption. The figures provided illustrate these key findings visually, 
confirming that optimizing network configurations is vital to managing the com-
plex trade-offs between performance, energy consumption, and user density. This 
escalation in resource demands underscores the need for more refined resource 
management strategies as user density increases. Moreover, the decline in energy 
efficiency with rising transmit power levels, particularly when transitioning from 
45 dBm to 50 dBm, reinforces the importance of carefully balancing power alloca-
tion to avoid diminishing returns. These findings collectively emphasize that man-
aging high-density networks not only requires addressing mobility challenges but 
also demands careful consideration of energy efficiency, especially as the network 
scales. Through these observations, the necessity for dynamic, scalable solutions in 
future network configurations becomes evident, paving the way for more adaptive 
and efficient RA in increasingly dense 5G environments.

7	 CONCLUSION AND FUTURE WORK

This study has demonstrated the significant advantages of employing DUDe 
techniques in RA for 5G MIMO HetNets, particularly in scenarios with varying user 
densities and mobility patterns. Through a series of experiments, it became clear 
that DUDe offers substantial improvements over traditional coupling methods. 
Specifically, DUDe consistently achieves more efficient bandwidth utilization, ensur-
ing that the available network resources are allocated in a way that maximizes 
capacity while maintaining service quality. This efficiency was evident across all 
UE density scenarios, from 362 to 905, where DUDe not only reduced bandwidth 
consumption but also allowed for more balanced and effective load distribution 
among BSs.
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The analysis of user mobility revealed another crucial benefit of DUDe. As user 
movement increases—reflected in higher speeds and greater handover frequency—
traditional network management approaches tend to struggle with maintaining 
low latency and minimizing packet loss. However, DUDe proved to be more resil-
ient in these challenging conditions. Even with increasing handover rates and the 
strain that mobility places on the network, DUDe managed to keep performance 
degradation under control, maintaining more stable connections and better overall 
service quality compared to coupled systems. This finding underscores the versatil-
ity of DUDe in dynamic environments where users are frequently on the move.

In addition to mobility, the exploration of energy efficiency across varying trans-
mit power levels added further depth to the findings. While increasing transmit 
power is typically associated with better network performance, it comes at the 
cost of reduced energy efficiency. The experiments showed that as transmit power 
increased, the energy efficiency of the network declined more rapidly, especially as 
user density grew. DUDe, however, was able to mitigate this effect by better man-
aging the allocation of resources, demonstrating that it is not only about boosting 
power but about intelligently distributing it where it is needed most. This ability 
to balance energy consumption with network performance is especially critical 
in today’s 5G landscape, where sustainability and energy efficiency are becoming 
key concerns.

Overall, the findings from this study highlight the potential of DUDe to address 
several of the core challenges faced by modern 5G networks. Unlike traditional 
approaches, which often fail to dynamically adapt to varying network demands, 
DUDe provides a more flexible, adaptive framework capable of managing the 
complexities introduced by high user density, mobility, and energy constraints.

Moving forward, several avenues appear promising for extending this study. 
The scalability of DUDe techniques warrants further exploration, particularly in 
ultra-dense network environments where UE equipment numbers can exceed the 
scales considered in this study. Additionally, integrating machine learning algo-
rithms to predict and adapt to dynamic network demands in real-time could further 
optimize resource allocation. Further investigation into the interplay between dif-
ferent antenna technologies and DUDe techniques could yield additional insights, 
potentially guiding the development of more sophisticated antenna designs tailored 
to this approach. Furthermore, field trials in live network environments would 
be invaluable in validating the performance of DUDe under practical operating 
conditions and diverse user behavior patterns. Also, will benchmark the current 
DUDe-MIMO baseline against data-driven resource-allocation methods, includ-
ing deep-reinforcement-learning schedulers and established heuristic schemes 
for user grouping and power control. It will also couple the physical-layer model 
with an application-layer traffic trace that reflects the bursty interaction patterns of 
mobile-learning platforms, allowing latency and uplink continuity to be evaluated 
under realistic load. Finally, we will investigate possible deployment scenarios like a 
smart classroom in outdoor fieldwork DUDe and 5G MIMO can provide a stable and 
cheap network access.

Lastly, another goal, is to explore RA optimization in 5G MIMO DUDe HetNets 
using the Hungarian and minimum cost flow algorithms, which have already been 
investigated in 5G MIMO (non-DUDe) HetNets [20], [21]. This positions DUDe as a 
valuable solution in optimizing network performance in a way that is both scalable 
and sustainable, offering a forward-looking approach to meeting the demands of 
future wireless communication systems.
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