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Abstract—In the context of 5G networks, efficient resource 

allocation plays a crucial role in meeting the diverse and 

demanding requirements of modern applications. This paper 

presents a novel approach for optimizing User Equipment (UE) 

distribution in Downlink/Uplink Decoupling (DUDe) 5G networks 

through the application of Linear Assignment Algorithms (LAAs). 

The proposed multi-objective framework intelligently allocates 

UEs to DUDe Base Stations, aiming to maximize network 

performance, achieve load balancing, enhance Signal-to-Noise 

Ratio (SNR), and optimize energy efficiency. The findings hold 

significant implications for network operators, facilitating the 

advancement of 5G infrastructures to meet the ever-increasing 

demand for seamless and high-quality connectivity.  

Keywords—Downlink/Uplink Decoupling (DUDe), 5G 

Networks, Resource Allocation, Heterogeneous Networks (HetNets), 

Hungarian algorithm, Minimum cost flow algorithm 

I. INTRODUCTION 

The advent of Fifth Generation (5G) technology has ushered 
in a new era of ultra-fast, high-capacity communication 
networks that cater to the unprecedented demands of modern 
data-driven applications and devices. As the proliferation of 
mobile devices and data-hungry services continues unabated, 
optimizing User Equipment (UE) allocation in 5G networks has 
become a critical challenge to ensure efficient resource 
utilization and network performance. Downlink/Uplink 
Decoupling (DUDe) has emerged as a promising approach to 
address this challenge, enabling separate allocation of resources 
for downlink (Base Station (BS) to UE) and uplink (UE to BS) 
transmissions. To achieve effective UE distribution and 
subsequently enhance network performance, this paper focuses 
on comparing two powerful linear assignment algorithms: the 
Hungarian Algorithm and the Minimum Cost Flow Algorithm, 
in the context of DUDe technology. 

The primary objective of this research is to investigate and 
identify the most efficient algorithm for UE allocation in DUDe 

5G networks. The Hungarian Algorithm [1], a widely used 
optimization technique, has demonstrated considerable success 
in various allocation problems, making it a relevant benchmark 
for comparison. Meanwhile, the Minimum Cost Flow Algorithm 
[2], known for its capacity to solve network flow problems 
optimally, presents an appealing alternative that merits 
exploration in the context of UE allocation in 5G networks. 

To conduct a comprehensive comparison, the paper 
leverages extensive simulations and performance evaluations 
based on realistic 5G network scenarios. The proposed 
evaluation framework meticulously examines essential 
performance metrics, with a particular focus on the Signal-to-
Noise Ratio (SNR) improvement. SNR is a crucial indicator of 
signal quality, directly impacting the reliability and data 
transmission rates in a 5G network. By analysing and comparing 
SNR improvements achieved by the two algorithms, the study 
seeks to determine which approach achieves better UE allocation 
and subsequently delivers superior network performance in 5G 
environments. The implications of this research are significant 
to network operators, 5G infrastructure developers, and 
researchers seeking to enhance the quality of service in DUDe 
5G networks. Ultimately, this investigation contributes valuable 
insights into the optimization of UE allocation strategies, 
bringing us one step closer to unlocking the full potential of 5G 
technology in the face of ever-increasing data demand [3], [4], 
[5], [6]. There is a significant amount of scientific research being 
conducted in the field of optimizing 5G networks via DUDe 
technology, though, it is worth mentioning that to the best of our 
knowledge this is the first study that compare these two 
algorithms (Hungarian, Minimum Cost Flow Algorithm) in 
resource allocation scenarios in DUDe 5G Heterogeneous 
Networks (HetNets). The authors in paper [7], focus on 
leveraging DUDe technology to enhance the allocation of 
network resources based on UE distribution. The research 
demonstrates that incorporating the capacity constraints of each 
type of BS results in a more balanced distribution of UEs across 



the network. In paper [8], the focus lies on addressing the 
limitations of the conventional Downlink-Uplink (DL-UL) 
coupled cell association scheme in HetNet. The existing 
approach often results in suboptimal UE association, where a 
majority of UEs tend to connect to high-powered Macro BSs 
(MBS) rather than utilizing the low-powered Small BSs (SBS). 
The authors in paper [9] tackle the issue of interference in 
device-to-device (D2D) communication within cellular 
networks, which is crucial for the advancement of 5G 
technology. Their proposed algorithm focuses on optimizing 
resource allocation to minimize interference while ensuring the 
network's target sum rate is met. Furthermore, in paper [10] 
review the advancements in solving maximum flow and 
minimum-cost flow problems in network flows, which are 
critical combinatorial optimization problems with many 
practical applications. The survey focuses on the progress made 
in developing exact algorithms, particularly highlighting their 
worst-case running times. 

The rest of the paper is organized as follows. Section II 
presents the DUDe technology and its key features. Section III 
presents the analysis of the algorithms that we will compare in 
our scenarios. Section IV presents the mathematical model 
which we used in our simulation environment. Section V 
presents the results of the simulation and provides a detailed 
analysis of the findings. Finally, Section VI concludes the paper 
and provides suggestions for future research. 

II. DUDE REVIEW AND FEATURES 

DUDe technology is founded on the principle of separately 
allocating resources for DL (BS to UE) and UL (UE to BS) 
transmissions. This decoupling of downlink and uplink 
resources enables network operators to tailor resource allocation 
strategies more effectively, considering the distinct traffic 
patterns and requirements of each direction. By uncoupling 
downlink and uplink allocations, DUDe technology can mitigate 
interference, improve resource utilization, and enhance the 
overall quality of service experienced by 5G UEs. Central to 
DUDe technology's effectiveness is the optimization of UE 
allocation within the 5G network. Efficient UE allocation plays 
a critical role in maintaining load balancing across BSs, 
maximizing network throughput, and minimizing latency. Also 
to better understand the difference between traditional 
Downlink/Uplink Coupling (DUCo) and DUDe, in DUCo the 
assignment of UEs to the BSs is based on the DL SNR of the UE 
(and both DL-UL are connected to the same BS), while in the 
case of DUDe the assignment of UEs UL and DL to the BS is 
based both on the UL SNR and DL SNR of the UE (and UL and 
DL can be connected in difference BSs). DUDe technology 
offers several distinct advantages that contribute to its appeal in 
5G network optimization. By allocating downlink and uplink 
resources independently, DUDe efficiently manages varying UE 
demands and traffic patterns, resulting in reduced congestion 
and improved spectral efficiency. Furthermore, the decoupling 
approach enhances network flexibility and adaptability, 
allowing for dynamic resource allocation and seamless support 
for diverse services. The review also emphasizes the potential 
for DUDe technology to support massive Machine-Type 
Communications (mMTC) and Internet of Things (IoT) devices, 
as it efficiently caters to the diverse connectivity needs of 
different UE types [11], [12], [13]. 

III. ALGORITHM ANALYSIS 

This section provides a comprehensive analysis of 
Algorithm 1 and Algorithm 2 that we employ in the DUDe 5G 
network. Our goal is to implement these algorithms to observe 
and compare their impact on UE distribution and overall 
network performance. By examining their effects, we aim to 
determine which algorithm leads to a more efficient and 
optimized network performance. Firstly, we have the 
description of the original Munkres' Assignment Algorithm, 
also known as the Hungarian Algorithm, which was published 
in 1957 when access to computers was limited. As a result, a 
modified version of the algorithm was developed to allow 
manual computation using a two-dimensional matrix. This 
manual approach involved steps like staring and priming zeros, 
as well as covering and uncovering rows and columns. The 
Hungarian Algorithm’s main goal is to efficiently solve the 
assignment problem, which involves optimally assigning agents 
to tasks in a bipartite graph while minimizing costs or 
maximizing profits. By representing the graph as a matrix, the 
algorithm can be executed manually by following a series of 
steps: 

Algorithm 1 Analysis of Hungarian Algorithm. 

Step 0: Create a nxm matrix called the cost matrix in which each element 
represents the cost of assigning one of n workers to one of m jobs. Rotate the 
matrix so that there are at least as many columns as rows and let k=min(n, m). 

Step 1: For each row of the matrix, find the smallest element and subtract 
it from every element in its row. Go to Step 2. 

Step 2: Find a zero (Z) in the resulting matrix. If there is no starred zero in 
its row or column, star Z. Repeat for each element in the matrix. Go to Step 3. 

Step 3: Cover each column containing a starred zero. If K columns are 
covered, the starred zeros describe a complete set of unique assignments. In this 
case, Go to DONE, otherwise, Go to Step 4. 

Step 4: Find a noncovered zero and prime it. If there is no starred zero in 
the row containing this primed zero, Go to Step 5. Otherwise, cover this row 
and uncover the column containing the starred zero. Continue in this manner 
until there are no uncovered zeros left. Save the smallest uncovered value and 
Go to Step 6. 

Step 5: Construct a series of alternating primed and starred zeros as 
follows. Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 
denote the starred zero in the column of Z0 (if any). Let Z2 denote the primed 
zero in the row of Z1 (there will always be one). Continue until the series 
terminates at a primed zero that has no starred zero in its column. Unstart each 
starred zero of the series, star each primed zero of the series, erase all primes 
and uncover every line in the matrix. Return to Step 3. 

Step 6: Add the value found in Step 4 to every element of each covered 
row and subtract it from every element of each uncovered column. Return to 
Step 4 without altering any stars, primes, or covered lines. 

DONE: Assignment pairs are indicated by the positions of the starred zeros 
in the cost matrix. If C(i, j) is a starred zero, then the element associated with 
row i is assigned to the element associated with column j. 

Next Algorithm 2 is used to find the maximum flow with 
minimum cost in a flow network. It initializes variables and 
matrices to store information about the network, extracts data 
from the input 'da', and sets up the network based on the 
provided edges. The main part of Algorithm 2 begins by 
initializing flow-related variables. It then enters a loop that runs 
until all vertices have been processed. Within each iteration of 
the loop, the algorithm updates the reduced cost matrix based 
on the current flow. It then finds the shortest path from the 
source vertex to all other vertices using the Bellman-Ford 
algorithm. If no augmenting path with a negative reduced cost 
is found, the loop terminates. Otherwise, the algorithm 
determines the minimum flow that can be pushed along the 
shortest path and updates the flow on each edge accordingly. 



After updating the flow, the algorithm checks if the flow 
increase resulted in a non-improvement (no change in minimum 
cost). If so, it adjusts the minimum flow to terminate the 
algorithm. The algorithm continues this process until it finds the 
maximum flow with the minimum cost. Finally, it calculates the 
minimum cost and outputs the flow matrix, maximum flow, and 
minimum cost. 

Algorithm 2 Analysis of Minimum Cost Flow Algorithm. 

Input: 

 2D array 'da' representing the network edges with columns: (source, target, 

capacity, cost) 

Output: 

- Maximum flow 'mf' with minimum cost 'mmf' 

- 2D array 'f' representing the flow on each edge 

Step1. Initialize variables and matrices: 

  - e = number of edges 

  - v = number of vertices (max value from source and target vertices) 

  - d1, d2, cc, bb = arrays to store source, target, capacity, and cost 

respectively 

  - c = 2D array to store edge capacities between vertices (initialize with 

zeros) 

  - b = 2D array to store edge costs between vertices (initialize with zeros) 

  - a = 2D array to store adjusted edge costs during the algorithm (initialize 

with zeros) 

  - p, s = arrays to store predecessor and successor vertices during shortest 

path calculations 

Step 2. Extract data from input 'da': 

  - Set v = max(max(d1), max(d2)) 

  - Initialize c, b, p, and s based on the edges in 'da' 

Step 3. Network Simplex Algorithm: 

  a. Initialize 'mf' to 0 and 'mf0' to positive infinity. 

  b. Initialize 'f' as a 2D array with zeros to represent the flow on each edge. 

  c. While 'v' is greater than 0: 

    i.   Initialize 'a' as a 2D array with all elements set to positive infinity 

except for the diagonal elements (set to zero). 

      ii.  Find the reduced costs and update 'a' matrix: 

           - For each vertex 'i': 

             - For each vertex 'j': 

               - If 'j' is not equal to 'i', set 'a(i, j)' to positive infinity. 

               - If the edge between 'i' and 'j' exists and the flow on that edge is 

not zero: 

                 - Set 'a(i, j)' to the cost of the edge ('b(i, j)') if 'f(i, j)' is 0 (forward 

edge). 

                 - Set 'a(j, i)' to the negative cost of the edge ('-b(i, j)') if 'f(i, j)' is 

equal to the capacity of the edge (backward edge). 

                 - Otherwise, set 'a(i, j)' to the capacity of the edge ('b(i, j)') and 

'a(j, i)' to the negative capacity ('-b(i, j)'). 

      iii. Initialize arrays 'p' and 's' to store predecessor and successor 

vertices. 

           - For each vertex 'i' (except the first vertex): 

             - Set 'p(i)' to positive infinity. 

             - Set 's(i)' to 'i'. 

      iv.  Find the shortest path from the first vertex to all other vertices using 

the Bellman-Ford algorithm: 

           - For each vertex 'k': 

             - For each vertex 'i': 

               - For each vertex 'j': 

                 - If 'p(i) > p(j) + a(j, i)', update 'p(i)' and 's(i)'. 

      v.   If the shortest path cost to the last vertex ('v') is equal to or greater 

than positive infinity, break the loop. 

      vi.  Initialize variables 'dv' to positive infinity and 'm' to 'v'. 

      vii. Find the minimum flow that can be pushed along the shortest path: 

           - While 'v' is greater than 0: 

             - If the flow on the edge from 's(m)' to 'm' is positive: 

               - Set 'dv' to the minimum of ('c(s(m), m) - f(s(m), m)') and 'dv'. 

             - If the flow on the edge from 's(m)' to 'm' is negative: 

               - Set 'dv' to the minimum of ('f(m, s(m))') and 'dv'. 

             - Set 'm' to 's(m)'. 

      viii.Update flow 'f' along the shortest path and adjust the residual 

capacities accordingly: 

           - While 'v' is greater than 0: 

             - If the flow on the edge from 's(m)' to 'm' is positive: 

               - Increment the flow on the edge from 's(m)' to 'm' by 'dv'. 

             - If the flow on the edge from 's(m)' to 'm' is negative: 

               - Decrement the flow on the edge from 'm' to 's(m)' by 'dv'. 

             - Set 'm' to 's(m)'. 

      ix.  If the current flow ('mf') plus the minimum flow ('dv') is greater 

than or equal to 'mf0': 

           - Set 'dv' to the difference between 'mf0' and 'mf'. 

           - Set 'd' to 1. 

      x.   Update the total flow ('mf') by adding 'dv'. 

      xi.  If 'd' is 1, break the loop. 

   d. End of the while loop. 

Step 4. Calculate the minimum cost 'mmf': 

   - Set 'mmf' to 0. 

   - For each vertex 'i': 

     - For each vertex 'j': 

       - Increment 'mmf' by the product of flow on the edge ('f(i, j)') and the 

cost of the edge ('b(i, j)'). 

Step 5. Output the results: 

   - Print the flow matrix 'f'. 

   - Print the maximum flow with minimum cost ('mf'). 
   - Print the minimum cost ('mmf'). 

The Hungarian Algorithm stands as a valuable tool 
renowned for its effectiveness in solving assignment problems, 
particularly when dealing with scenarios where the objective is 
to optimally match elements from two sets while minimizing 
the total cost. However, when confronted with more intricate 
and multifaceted challenges, especially those encompassing 
network optimization, multiple constraints, and various cost 
considerations, the Minimum Cost Flow Algorithm emerges as 
the preferred choice. The broader spectrum of capabilities of the 
Minimum Cost Flow Algorithm makes it an indispensable 
resource in the arsenal of optimization techniques. This 
algorithm not only excels at addressing traditional assignment 
problems but also highlights its versatility in handling complex 
and multifaceted scenarios. Its efficiency in navigating intricate 
networks and accommodating various constraints positions it as 
the go-to option for tasks demanding a more comprehensive 
approach to optimization. Consequently, when tackling the 
intricacies of challenging optimization tasks, the Minimum 
Cost Flow Algorithm often proves superior due to its 
adaptability and proficiency in managing the numerous aspects 
of complex problems. 

IV. MATHEMATICAL MODEL  

This section gives a detailed explanation of the 
mathematical model used to set up and carry out the simulations 
in subsequent scenarios. The determination of the minimum 
distance between UEs and BS relies on a mathematical model 
defined in TR 38.901 Section 7.4.1 [14]. However, the detailed 
analysis of this model is beyond the scope of this paper. The 
model evaluates the Path Loss (PL) in various scenarios, 
considering both Line-Of-Sight (LOS) and Non-Line-Of-Sight 
(NLOS) conditions. 

𝑃𝐿RMa−LOS = {
𝑃𝐿1 10𝑚 ≤ 𝑑2D ≤ 𝑑BP

𝑃𝐿2 𝑑BP ≤ 𝑑2D ≤ 10km
  (1) 

𝑃𝐿1 = 20 𝑙𝑜𝑔10( 40𝜋𝑑3D𝑓𝑐3) +
𝑚𝑖𝑛( 0.03ℎ1.72, 10) 𝑙𝑜𝑔10( 𝑑3D) −

𝑚𝑖𝑛( 0.044ℎ1.72, 14.77) + 0.002 𝑙𝑜𝑔10( ℎ)𝑑3D   
(2) 



𝑃𝐿2 = 𝑃𝐿1(𝑑BP) + 40 𝑙𝑜𝑔10( 𝑑3D/𝑑BP)  (3) 

SNR = Psignal/Pnoise (4) 

The path loss is computed using equations (1), (2), and (3). 
Equation (1) accounts for the path loss in both LOS and NLOS 
conditions, considering the distance between the UE and the BS 
antennas. Equation (2) factors in the three-dimensional 
distance, carrier frequency, UE height, and other relevant 
parameters for path loss calculation. Equation (3) further adjusts 
the path loss, considering the breakpoint distance and the three-
dimensional distance. Once the minimum distance is 
determined for each UE from different types of antennas, the 
next step involves computing the SNR to identify the antenna 
type that offers the optimal connection. Following the 
determination of SNR values using Equation (4), the Matlab 
"MatchPairs" function and other relevant functions are utilized 
to optimize the distribution of these SNR values efficiently 
across the network. By employing these functions, the SNR 
values can be adjusted and organized in tables to better suit the 
algorithms' requirements. The objective here is to find an 
optimal distribution of UEs based on their SNR values, which 
will enable the algorithms to make well-informed decisions in 
allocating resources and managing connections within the 
network, 

V. SIMULATIONS PARAMETERS AND RESULTS 

In this section, three comparative scenarios are explored. 
The first scenario provides a comparison between DUCo and 
DUDe. The second scenario compares the resource allocation 
methods of basic DUDe and DUDe employing the Hungarian 
algorithm, while the third scenario compares the Hungarian 
algorithm to the Minimum Cost Flow algorithm for resource 
allocation within DUDe. These scenarios are evaluated for 
cases involving 100, 500, and 1000 UEs. It is also noteworthy 
that the Hungarian algorithm is implemented using Matlab's 
"MatchPairs" function. Firstly, we established a 5G 
heterogeneous network for our simulations within a 2 x 2 km 
urban square area, as we can see in Fig.1. This network 
comprises a combination of different antenna types, including 2 
Macro Cell antennas, 4 Micro Cell antennas, and 8 Pico Cell 
antennas. These antennas are strategically positioned, with the 
Macro Cell antennas placed at a height of 30 meters and the 
Micro Cell antennas at 10 meters, while the Pico Cell antennas 
are positioned at a height of 5 meters. It's important to note that 
the Macro Cell antennas are in the centre of the area, and the 
remaining 12 antennas are strategically distributed around 
them. Each type of antenna in our network operates with 
varying transmission power levels. The Macro Cell antennas are 
the most potent, transmitting at a power level of 45 dBm, 
followed by the Micro Cell antennas at 33 dBm, and the Pico 
Cell antennas with the lowest power output at 24 dBm. 
Additionally, these antennas exhibit different gains, with the 
Macro Cell antennas having a gain of 21 dBi, the Micro Cell 
antennas with a gain of 10 dBi, and the Pico Cell antennas 
featuring a gain of 5 dBi. The summarized details of the 
aforementioned parameters can be found in Table Ι. Before 
analysing the simulations, to prevent any misconceptions, it is 
important to note that the algorithms (Hungarian, Minimum 
Cost Flow) produce identical distributions. The variations lie in 
the complexity and speed of their respective implementations, 

details of which will be examined further below. Fig. 2 to Fig. 
4, show that when DUDe technology is applied, it results in a 
significantly more even distribution compared to the previous 
DUCo technology where UEs are mainly connected with the 
first two BSs. However, as we can see from Fig. 5. to Fig. 7., 
DUDe technology still falls short of reaching the level of 
distribution efficiency achieved by the Hungarian approach. 
This difference is particularly important because the 
implementation of the Hungarian algorithm takes an integrated 
approach, considering not only the UE proximity to the 
antennas but also their spatial distribution, with the primary 
goal of improving the overall network performance. To prevent 
any potential confusion with similar studies, it is important to 
clarify that we adopted a similar model structure and parameters 
for our simulation but applied them to distinct scenarios 
resulting in different conclusions. This contribution offers 
valuable insights to the broader scientific community. 

 

Fig. 1. Topology of our network. (M) for Macro (Mi) for Micro and (P) for 

Pico. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Transmit 

power(dBm) 

UE=20, Macro cell = 45,Micro cell = 33 

Pico cell = 24 

BS height (m) Macro height = 30, Micro height =10, Pico 

height = 5 

Antenna gain (dBi) Macro cell = 21, Micro cell = 10, Pico cell = 5 

Bandwidth (MHz) 20 

Environmental 

parameters 

UE1=100/UE2=500/UE3=1000, 

Position=random 

Power Noise Pnoise= -74+10log(Bandwidth(hz)) 

The bar charts, which visually represent these results, 
underscore the critical importance of addressing the linear 
assignment problem before implementing DUDe technology 
within a 5G network infrastructure. It is essential to recognize 
that the outcomes portrayed in the subsequent figures are the 
culmination of an extensive analysis based on data collected 
from 500 snapshots, providing a comprehensive perspective on 
the performance of these network distribution methods. 
Furthermore, the figures illustrate the mean UE distribution 
following the implementation of 500 snapshots. For instance, in 
the case of 100 UEs using the DUCo application, on average, 
44 UEs are connected to Macro 1 and 2. Conversely, with the 
DUDe application, approximately 36 UEs connect to these 
same antennas. 



 

Fig. 2. Mean Comparison Distribution between DUCo/DUDe for 100UEs. 

 

Fig. 3. Mean Comparison Distribution between DUCo/DUDe for 500UEs

 

Fig. 4. Mean Comparison Distribution between DUCo/DUDe for 1000UEs. 

To enhance the reader's comprehension of the bar charts in 
our study, it is essential to clarify the notation used. 
Specifically, in the initial two slots along the X-axis, we have 
Macro-1 followed by Macro-2. Moving along, the subsequent 
four positions are dedicated to Micro, denoted as Micro-1 
through Micro-4. Lastly, the remaining eight antennas are 
arranged in a sequential fashion, representing Pico-1 through 
Pico-8. After conducting our simulations, we observed a 
significant difference in UE distribution between the DUDe 
approach without the application of Hungarian and DUDe with 
Hungarian. In the 1000 UEs case, the mean distribution of UEs 
on Macro BSs exceeded 350, while in the latter case, the UE 
count did not surpass 100. This observation directly translates 
into improved network performance and more efficient UE 
service. By avoiding the overload of any single BS with a large 
number of UEs, the network becomes better equipped to handle 
incoming UEs seamlessly. It is worth noting that some UEs do 
not connect to the BS nearest to them. For instance, in the case 
of UE 8, despite having the highest SNR of 36 dB, the DUDe 

algorithm without Hungarian directed them to Macro-1 BS, 
whereas with the application of Hungarian, they connected to 
Pico-4 BS with an SNR value of 9 dB. While this may not result 
in optimal communication quality for this specific UE, the 
overall network benefits from improved efficiency, zero delays, 
and reduced interference. This phenomenon also underscores 
the effectiveness of the Hungarian algorithm in solving the 
linear assignment problem. UEs do not always connect to the 
BS with the "best" signal quality, defined as the closest distance. 
Instead, the algorithm optimizes the network's performance, 
leading to a more efficient and interference-free operation. 

 

Fig. 5. Mean Comparison Distribution between DUDe/DUDe with Hungarian/ 

Minimum Cost Flow for 100UEs 

 

Fig. 6. Mean Comparison Distribution between DUDe/DUDe with Hungarian/ 

Minimum Cost Flow for 500UEs 

 

Fig. 7. Mean Comparison Distribution between DUDe/DUDe with Hungarian/ 

Minimum Cost Flow for 1000UEs 

Following the demonstrated significance of addressing the 
Linear Assignment Problem by combining it with DUDe 
technology for optimal UE allocation in our network, our next 
phase involves exploring this problem using the Minimum Cost 
Flow Algorithm. This endeavour aims to discern the 
distinctions between this approach and the algorithm we 
previously employed via the Hungarian function. In our 
simulations, we found that the Minimum Cost Flow algorithm 



performs better than the Hungarian algorithm in terms of both 
execution time and computational requirements. As the number 
of UEs increases, the Hungarian algorithm's time complexity 
grows cubically, leading to longer execution times. In contrast, 
the Minimum Cost Flow algorithm scales more efficiently as 
the number of UEs and BSs (denoted as U and B, respectively) 
increases, resulting in reduced computational workload and 
faster UE allocation. The overall time complexity of the 
Minimum Cost Flow algorithm is primarily determined by 
finding the minimum cost flow in the directed graph, which can 
be expressed as O (U * (U + B + log(U + B))). This contrasts 
with the Hungarian algorithm, which has a time complexity of 
O(N^4), where N represents the maximum of U and B. In 
summary, our comparative analysis strongly supports the use of 
the Minimum Cost Flow algorithm for more efficient UE 
allocation when compared to the Hungarian algorithm. This 
adoption contributes to the enhancement of wireless 
communication systems and optimizes the utilization of MM 
technology in 5G networks. Table II presents the comparison 
between these two algorithms. 

TABLE II.  COMPARISON BETWEEEN ALGORITHMS 

Algorithms Complexity types Time Of Implematation 

Hungarian O(N^4) 10 min for 100 UEs 

12 min for 500 UEs 

15 min for 1000 UEs  

Minimum 

Cost Flow 

O(U * (U + B + 

log(U + B))) 

10 Seconds for all UEs 

scenarios 

Difference  98%, 98.5%,99% 

Furthermore, it is important to note that in our simulations, 
implementing the Hungarian algorithm through Hungarian 
required a substantial amount of time, typically ranging from 10 
to 15 minutes. In contrast, the Minimum Cost Flow function 
completed the same tasks in just a matter of seconds. To assess 
the execution times for Hungarian, we utilized the 'timeit' 
command in Matlab, conducting measurements for each 
scenario individually. 

VI. CONCLUSION AND FUTURE WORK 

Our simulations have demonstrated that both the Hungarian 
and Minimum Cost Flow algorithms perform comparably in 
terms of the resulting UE distribution, achieving similar quality 
of service for end-UEs. However, the key differentiator 
between the two algorithms lies in their computational 
efficiency and complexity. The Minimum Cost Flow algorithm 
outperforms the Hungarian algorithm in terms of speed and 
computational resources required for implementation. Future 
work in this area could explore numerous subjects. For 
example, further optimization techniques and heuristics for both 
the Hungarian and Minimum Cost Flow algorithms could be 
investigated, to potentially enhance their performance in 
specific network scenarios or under real world conditions, in 
order to uncover any potential challenges and obstacles during 
their implementation. Additionally, we will address scalability 
issues and performance under different network conditions, 
particularly focusing on varying numbers of UEs and BSs. 
Moreover, we will consider real-world constraints such as 
dynamic network conditions and user mobility to ensure our 
approach remains effective and adaptable in practical 

applications. Moreover, the integration of machine learning 
techniques could be investigated, in order to predict UE 
distribution patterns and assist in the decision-making process 
for allocating resources more intelligently. Lastly, field trials 
and simulations in actual 5G network deployments, can be 
conducted, to validate the findings and assess the practical 
implications of implementing the Minimum Cost Flow 
algorithm over the Hungarian algorithm. 
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