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Abstract— This study investigates the
prediction of Doppler shift variations in high-speed rail (HSR)
environments using advanced deep learning and classical time-
series models. By simulating Doppler shifts at a 5G carrier
frequency under noisy conditions, we evaluate and compare the
performance of Bidirectional Long Short-Term Memory
(LSTM) networks, Gated Recurrent Unit (GRU) networks, and
an optimized Auto-Regressive Integrated Moving Average
(ARIMA) model. The results highlight the strengths and
limitations of each model, providing a detailed comparison
between data-driven and statistical forecasting methods in
dynamic SG communication scenarios.
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I. INTRODUCTION

The rapid development of high-speed rail (HSR)
networks, with trains operating at speeds exceeding 300 km/h,
has introduced new challenges in wireless communications.
Ensuring robust connectivity at such velocities is critical,
particularly within the context of 5G networks, where Ultra-
Reliable Low-Latency Communication (URLLC) is essential
for passenger safety and efficient operation. A key obstacle in
these high-mobility environments is the Doppler effect, which
induces frequency shifts that degrade signal quality. In 5G
systems, the impact of Doppler shifts is exacerbated by high
carrier frequencies, often leading to signal fading, reduced
data rates, and communication outages. As a result, accurate
and timely prediction of Doppler shifts is vital for dynamically
adjusting communication parameters and maintaining service
reliability.

Traditional approaches like the Auto-Regressive
Integrated Moving Average (ARIMA) model have been
widely adopted in time-series forecasting due to their
simplicity and interpretability. While ARIMA performs
adequately for linear and stationary data, it struggles to model
the non-linear, noisy patterns typical of Doppler shifts in HSR
contexts [1], [2]. In contrast, deep learning models such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) networks are capable of capturing long-term
dependencies and complex temporal patterns. Bidirectional
architectures further enhance these models by leveraging both
past and future contextual information [3]-[6]. Moreover,
hybrid models like CNN-LSTM have demonstrated superior
performance in Doppler shift forecasting for LTE and 5G
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networks by effectively modeling non-linear dynamics [7]—
(91

Despite these developments, the specific application of
bidirectional LSTM and GRU models for Doppler shift
prediction in high-speed rail scenarios remains relatively
unexplored. This study addresses this research gap by
conducting a thorough comparative analysis of Bidirectional
LSTM, GRU, and ARIMA models. The evaluation includes
performance under noisy conditions to better reflect real-
world environments. Our findings offer practical insights into
the trade-offs between traditional statistical and modern deep
learning approaches, emphasizing their respective roles in
enhancing 5G communications within high-mobility contexts.

The structure of this paper is as follows: Section II presents
the mathematical analysis of the models, describing the key
equations governing LSTM, GRU, and ARIMA networks.
Section III provides an analysis of the algorithms, covering the
role of dense layers, activation functions, and optimization
techniques. Section IV details the testbed environment,
outlining the simulation setup, parameter selection, and
evaluation metrics. Section V presents the performance
evaluation, comparing Bidirectional LSTM, GRU, and
ARIMA models based on their accuracy using Mean Squared
Error (MSE). Finally, Section VI discusses the findings, their
implications, and potential future directions for improving
Doppler shift prediction in high-speed 5G communication
systems.

II. MATHEMATICAL ANALYSIS

By preserving long-term dependencies via a sequence of
specialized gates, LSTM networks are made to handle
sequential data, as seen in Figure 1. The architecture consists
of three primary components: the input gate, the forget gate,
and the output gate. The input gate I_t decides which values
from the input xt should be updated to the cell state Ct (1):

It = o(Wi- [ht — 1,xt] + bi) (1)

The information that should be removed from the cell state
is decided by the forget gate ft (2):

ft = a(WF - [ht — 1, xt] + bf) @)

The output gate ot regulates the output based on the input
and the cell state (3):

ot = c(Wo - [ht — 1, xt] + bo) 3)
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The cell state Ct is updated using the input and forget
gates, which allows the LSTM to retain or forget information
as needed (4):

Ct=ft+xCt—1+it*tanh(Wc-[ht —1,xt] + bc) (4)

And finally, the hidden state h_t is updated to produce the
output (5) [10]:

ht = ot * tanh(Ct) )
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Fig. 1. Architecture of a LSTM unit

The GRU shares many similarities with the LSTM
network, but with a simplified architecture which can be seen
in Figure 2. As seen, LSTM networks have three gates—
input, forget, and output—GRUs combine the functions of the
forget and input gates into a single update gate. Additionally,
GRUs use a reset gate to control how much of the past
information is retained. This streamlined design makes GRUs
computationally more efficient than LSTMs, as they require
fewer parameters and thus less memory and processing power.

GRU UNIT

Fig. 2. Architecture of a GRU unit

In comparison to the LSTM network, the GRU can
effectively capture dependencies in sequential data with a
simpler structure according to the formulation shown in
Figure 2. To create the new hidden state ht, the update gate zt
determines how much of the candidate hidden state h~t and
the prior hidden state ht—1 should be combined. (6):

zt =c(Wz - [ht — 1,xt] + bz) 6)

When determining the candidate hidden state h~t, the reset
gate 1t determines how much of the previous hidden state
should be forgotten. (7):

rt = o(Wr - [ht — 1, xt] + br) @)

The candidate hidden state h~t is computed by applying a
non-linear transformation to the input xt and the reset version
of the previous hidden state ht—1 (8):

h~t = tanh(Wh - [rt o ht — 1, xt] + bh) 8)

The final hidden state ht is then updated by combining the
candidate hidden state h~t and the previous hidden state ht—1
as controlled by the update gate zt (9) [11]:

ht=(1—zt)oht — 1+ zt o h~t )

The last model used (and compared to the other two) is one
that is frequently used in time series forecasting problems such
as this one. ARIMA, combines three components:
Autoregression (AR), Integration (I), and Moving Average
(MA). The AR part of the model represents the relationship
between an observation and a specified number of lagged
observations (i.e., previous time steps). The integration part I
involves differencing the data to make it stationary, which is
crucial because ARIMA assumes that the time series has a
constant mean and variance over time.

Finally, the MA component uses a moving average model
applied to delayed observations to represent the link between
an observation and the remaining errors. Where p is the
number of lag terms, d is the degree of differencing, and q is
the number of lagged forecast errors in the prediction
equation, the ARIMA model is generally expressed as
ARIMA (p, d, q). ARIMA is particularly effective in capturing
the linear trends and seasonality in the data, making it a
valuable baseline model for time series analysis. The
disadvantage of ARIMA however, is its limitation its ability
to capture complex non-linear patterns [12].

III. ANALYSIS OF ALGORITHMS

Dense Layers are typically employed towards the end of a
neural network to transform the feature representations into
the desired output format, such as classification logits or
regression outputs. The dense layer performs a linear
transformation followed by an activation function. The
formula for a dense layer is y=f(Wx+b), where x is the input
vector, W represents the weight matrix, b represents the bias
vector, and f'is the activation function applied individually for
each element.

Signal preprocessing is a critical step in preparing Doppler
shift data for time series modeling. Initially, the Doppler shifts
are normalized using a MinMaxScaler to ensure that the
values lie within a consistent range, typically between 0 and
1. This step is crucial because many machine learning
algorithms, including LSTM and GRU networks, perform
better with normalized input data [13]. After normalization,
the stationarity of the series is checked using the Augmented
Dickey-Fuller (ADF) test. If the series is found to be non-
stationary, which means it has trends or varying mean over
time, differencing is applied. Differencing is a technique that
subtracts the current value from the previous value, effectively
stabilizing the mean of the series [14], [15]. This processed
data is then ready for training predictive models.

Algorithm — Stationarity check and normalization
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function preprocess_signal(doppler_shifts, adf test_threshold=0.05):
initialize MinMaxScaler
# Normalize Doppler shifts
normalized_shifts = MinMaxScaler.fit_transform(doppler_shifts)
# Check for stationarity using Augmented Dickey-Fuller (ADF) test
adf result = perform_adfuller_test(normalized_shifts)
if adf result.p_value > adf test threshold:
# Apply differencing to stabilize the series
differenced_shifts = difference(normalized_shifts)
else:
differenced_shifts = normalized_shifts

return differenced_shifts

than LSTMs due to their simpler structure, making them
suitable for tasks where faster training is beneficial. The
choice of Bidirectional layers in both models allows the
networks to access context from both directions, which is
particularly useful for time series data where future events can
influence past ones. The two models have a similar structure.
The structure of the LSTM model is shown in the
“build_Istm_model” function below.

Algorithm — LSTM and GRU structure

The plot in Figure 3 illustrates the noisy and normalized
Doppler shifts experienced in a high-speed (such as that of
trains) over a period. Noise was added to simulate real-world
conditions. The underlying doppler shift (the “clean” one) is
the one our models will try to predict. The Doppler shifts vary
continuously, reflecting the dynamic nature of the high-speed
movement and the environmental factors affecting the signal.
The normalization ensures that the values are scaled, making
it easier to observe the relative fluctuations in Doppler shift
intensity. The presence of noise introduces variability,
mimicking the unpredictable changes in signal frequency that
occur in practical scenarios, such as due to obstacles, weather,
or other interference sources. This noisy Doppler shift data
serves as a challenging test case for predictive models aimed
at enhancing signal strength by compensating for such shifts.

Onginal Doppier Shifts Over Time for a High-Speed Train

Doppler Shift (Normalized)

0 0 1000 1500 2000 2500 3000
Time (s)

Fig. 3. Noisy Doppler Shift Over Time (Normalized)

The LSTM and GRU models used in this study are
designed to capture the temporal dependencies in Doppler
shift time series data. Both models employ a Bidirectional
architecture, which allows them to learn from both past and
future context within the sequence, enhancing their predictive
power for time-dependent data.

In the LSTM model, three layers of Bidirectional LSTM
units are employed, each followed by a LeakyReL U activation
function, LayerNormalization, and Dropout [16]. The
LeakyReLU activation function allows a slight gradient when
the unit is not in use, which helps to alleviate the vanishing
gradient problem. LayerNormalization stabilizes the learning
process by normalizing the output of each layer, while
Dropout is used to prevent overfitting by randomly disabling
a fraction of neurons during training.

Similarly, the GRU model follows the same architecture
but with GRU units. GRUs are computationally more efficient

function build_Istm model(seq_length):
model = Sequential()
# First Bidirectional LSTM Layer

model.add(Bidirectional(LSTM(units=256,
input_shape=(seq_length, 1))))

model.add(LeakyReLU(alpha=0.01))

return_sequences=True,

model.add(LayerNormalization())

model.add(Dropout(0.3))

# Second Bidirectional LSTM Layer
model.add(Bidirectional(LSTM(units=128, return_sequences=True)))
model.add(LeakyReLU(alpha=0.01))
model.add(LayerNormalization())

model.add(Dropout(0.2))

# Third Bidirectional LSTM Layer
model.add(Bidirectional(LSTM(units=64, return_sequences=True)))
model.add(LeakyReLU(alpha=0.01))

model.add(Dropout(0.1))

# Output Layer

model.add(Dense(units=1))

return model

The optimizer for both LSTM and GRU based models was
RMSProp, because it is particularly effective for handling
non-stationary objectives and adaptive learning rates. Given
the complexity and variability of predicting Doppler shifts in
a dynamic environment, RMSprop helps maintain a stable and
efficient learning process by adjusting the learning rate based
on the average of recent squared gradients. This allows the
model to converge more quickly and accurately by mitigating
the risk of large updates that could destabilize the learning
process, especially when dealing with sequences of data with
varying patterns like Doppler shifts. The metric the model was
compiled on was the MSE and several techniques such as
“EarlyStopping” and ‘“ReduceLROnPlateau” were used to
ensure optimal training and monitoring on the loss and
accuracy variables.

The ARIMA model chosen is the Auto-ARIMA in which
the "Auto" refers to the automatic selection of the best
ARIMA parameters, which include the order of the AR,I and
MA components. This automatic selection process simplifies
the model-building task by testing various combinations of
these parameters and selecting the one that minimizes the
error. By wusing the auto arima function, the model
automatically identifies the optimal parameters, ensuring the
best fit for the given Doppler shift data.to differentiate
between real signals and pure noise.
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Algorithm- Auto-ARIMA model

function build auto arima_model(train_data):
# Automatically select the best ARIMA model

model = auto_arima(train_data, seasonal=False,

suppress_warnings=True)

stepwise=True,

return model

function predict_with_arima_model(model, steps):
# Generate forecast using the selected ARIMA model
forecast = model.predict(n_periods=steps)

return forecast

IV. DESCRIPTION OF TESTBED

The simulation setup can be seen below, in Table I. Tt
simulates Doppler shifts experienced by a high-speed train
due to the Doppler effect in a 5G communication system. The
simulation involves generating time series data for Doppler
shifts based on a train traveling at a high speed. The testbed
evaluates three different forecasting models: ARIMA, LSTM,
and GRU, to predict Doppler shifts over time. The models are
compared based on their RMSE and complexity.

TABLE 1. SIMULATION PARAMETERS

Parameter Value
Carrier Frequency 3.5x10"9
Total Simulation Time 3600
Time per Step (s) 1
Cosine Factor 11/4
LSTM Units 128
LSTM Activation Function ReLU
GRU Units 128
GRU Activation Function ReLU
More Layers Used Dense
ARIMA Parameter P 1
ARIMA Parameter D 1
ARIMA Parameter Q 3
Evaluation Metrics RMSE

In the context of Long LSTM networks, the Rectified
Linear Unit (ReLU) activation function offers an alternative
to the traditionally used sigmoid and tanh functions. ReLU,
defined as ReLU(x)=max(0,x), introduces non-linearity into
the model by allowing only positive values to pass through,
effectively setting all negative values to zero. While LSTMs
primarily utilize sigmoid and tanh functions for their gating
mechanisms and cell state regulation, incorporating ReLU in
the hidden layers of LSTMs can potentially enhance their
performance. The primary advantage of using ReLU is its
ability to introduce sparsity in activations, which can lead to
more efficient learning and reduced overfitting. Additionally,
ReLU helps address the vanishing gradient problem, allowing
gradients to propagate more effectively through the network.
In many neural network topologies, dense units, also known
as fully connected layers, are a fundamental component. Each

neuron in these levels is coupled to every other neuron in the
layer above it. This dense connectivity allows the model to
learn complex representations of the data.

V. PERFORMANCE EVALUATION

In this section, we present a detailed analysis of the
performance of LSTM, GRU, and ARIMA models in
predicting Doppler shifts in HSR communication systems.
The predictions made by each model are compared to the
actual Doppler shift values over time, highlighting the
strengths and limitations of each approach. Specifically, we
examine how the models handle complex, non-linear patterns
in Doppler shift data and evaluate their accuracy through
MSE.

As shown in Figure 4, both the LSTM and GRU models
provide predictions that closely follow the actual Doppler shift
values as time passes, with the GRU model demonstrating
slightly better results. The LSTM model shows that it can also
converge to an optimal solution as time passes. But, while the
LSTM is effective, its more complex architecture may
occasionally struggle with fine-tuning predictions in the
presence of intricate patterns or smaller datasets.

In contrast, the GRU model, with its simplified and more
streamlined architecture, manages to maintain high accuracy
throughout the entire time series. By merging the input and
forget gates into a single update gate and incorporating a reset
mechanism, this model efficiently captures temporal
dependencies while reducing architectural complexity. As a
result, the GRU is particularly adept at modeling the non-
linear patterns evident in the Doppler shift data, which is
crucial for accurately predicting shifts in dynamic
environments. The GRU's ability to adapt quickly when the
dataset is not very big, highlights its robustness, especially in
scenarios where computational efficiency and real-time
adaptability are critical.

The superior performance of the GRU model is
quantitatively reflected in its MSE, which was the lowest
among all the models tested. Specifically, the GRU model
began with a starting MSE of 0.65, but as time progressed and
the model continued to refine its predictions, it achieved an
impressively low MSE of 0.04. This significant reduction in
error underscores the GRU's strong learning capacity and its
ability to fine-tune predictions with continued exposure to
data compared to the ARIMA.

In comparison, the LSTM model also demonstrated
commendable performance, ending with a final MSE of 0.05.
However, the slightly higher error relative to the GRU
suggests that the LSTM may be more susceptible to
overfitting. These observations are further detailed in Table I,
which summarizes the average offsets over various steps

Overall, the GRU’s superior forecast capability of the
actual Doppler shifts, as seen in Figure 4, suggests that its
architecture not only offers computational advantages but also
enhances predictive accuracy in environments where
maintaining real-time, reliable predictions with little data is
essential. These results indicate that the GRU's efficiency in
handling sequential dependencies, combined with its
resilience against overfitting, may give it a distinct edge in
predictive tasks, where we have a small dataset and do not
need the extra complexity in the neural network’s layers.
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Predictions vs Original Doppler Shifts (No Noise) - LSTM and GRU

Predictions vs Original Doppler Shifts (No Noise) - ARIMA
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Fig. 4. Forecast of the LSTM and GRU models

TABLE L OFFSET SCORES OF LSTM/GRU MODELS
Testing Steps | Average Offset
100 0.22413
250 0.21231
500 0.20193
1000 0.21034

Figure 5 illustrates the performance of the ARIMA model
in predicting the Doppler shifts. The ARIMA model
effectively models linear trends but is inherently limited by its
reliance on fixed lag structures and linear assumptions.
Doppler shifts in HSR scenarios are characterized by complex
non-linear patterns influenced by environmental factors and
rapid mobility, which the ARIMA model cannot adapt to. This
limitation becomes evident in its inability to track abrupt
changes or fluctuations, as shown by its high Mean Squared
Error (MSE) of 0.2, the highest among the tested models.

While the ARIMA model provides a good starting
estimation, it fails to adapt to the trends in the data. This is
expected due to its reliance on linear relationships and its
limitation in handling non-linear patterns. These results
suggest that while ARIMA might offer a quick and
computationally inexpensive solution for trend estimation, its
inability to model non-linear behaviors makes it less suited for
real-time Doppler shift adjustments in 5G systems.

In contrast, deep learning models like GRU and LSTM
excel in these scenarios due to their ability to capture complex
temporal dependencies, as evidenced by their significantly
lower MSE scores. Table II shows the average offset after
multiple runs, which, along with Table I, further emphasizes
the superior performance of the neural network-based models
over the ARIMA model in accurately predicting Doppler
shifts.

TABLE II. OFFSET SCORES OF ARIMA MODEL
Runs Average Offset
100 1.43412
250 1.43412
500 1.43412
1000 1.43412

2900 3000 3100 3200 3300 3400 3500 3600
Time (s)

Fig. 5. Forecast of the ARIMA models

So, as was observed, the GRU model outperformed both
the LSTM and ARIMA models in predicting Doppler shifts,
as indicated by its lower MSE. The LSTM model, while
slightly less accurate than the GRU, still performed well and
demonstrated its strength in handling complex sequential data.
The ARIMA model, while useful for capturing general trends,
was less effective in modeling the nuanced, non-linear
patterns inherent in the Doppler shift data. These results
underscore the advantage of using deep learning models,
particularly GRU and LSTM, for predicting Doppler shifts in
HSR communication systems, where the ability to capture
intricate temporal dependencies is crucial.

Given a GRU’s best MSE of 0.04, LSTM’s best MSE of
0.05, the forecasted MSE of the ARIMA model of 0.2, we can
deduct that predicting the shifts with an LSTM-based or GRU-
based neural network can have a significant impact in
enhancing the performance of 5G networks, particularly in
high-mobility scenarios. This impact can be observed in
multiple sections of a 5G communication.

Firstly, by reducing MSE in Doppler shift estimation, our
model enables more precise Channel State Information (CSI)
acquisition, leading to significant improvements in Adaptive
Modulation and Coding (AMC) schemes. Specifically, the
achievable data rate R can be modeled as :

R =B -log2(1+ (abs(H))*"2/NO + I * P) (10)

where B is the bandwidth, P is the transmitted power, the
absolute value of H (squared) represents the channel gain, NO
is the noise power, and I is the interference. Our Doppler
prediction minimizes errors, optimizing the AMC
performance.

Moreover, accurate Doppler estimates can enhance
beamforming accuracy in mmWave communications,
modeled by the beamforming gain modeled as :

G = 4ndA - cos(6 — 6d) (11)

where A is the wavelength, d is the distance, 0 is the angle
of arrival, and 6d is the desired beam direction. By reducing
the angular deviation due to Doppler shifts, our model
improves beamforming alignment, leading to higher signal
strength and reduced outage probability. These advancements
translate into measurable gains in throughput, reduced
latency, and increased energy efficiency, making our model a
valuable asset for enhancing 5G network performance.
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Finally, another way that a very accurate Doppler shift
prediction can enhance 5G communications is in the
handovers. With accurate Doppler predictions, we can have
more successful handovers and reduced handover failures.
This improvement is crucial for maintaining continuous
connectivity and high-quality service in 5G, thereby reducing
latency, minimizing packet loss, and ensuring consistent user
experience even at high speeds. Additionally, this enhanced
handover performance can also contribute to network energy
efficiency, as fewer resources are wasted on managing failed
handovers, further solidifying the importance of Doppler shift
prediction in the effective operation of 5G networks.

VI. CONCLUSION AND FUTURE WORK

This paper presented a comparative evaluation of
Bidirectional LSTM, GRU, and ARIMA models for
predicting Doppler shifts in high-speed rail communication
environments. The results clearly demonstrate the superior
performance of deep learning models—particularly the
GRU—in terms of accuracy and adaptability under dynamic
and noisy conditions. These findings underscore the potential
of integrating GRU and LSTM models into real-time 5G
network protocols to improve communication reliability in
high-mobility scenarios.

The success of these models invites several promising
research directions. Future work may explore their integration
into adaptive communication protocols, enabling real-time
Doppler compensation in 5G systems. Additionally,
combining these models with other advanced technologies,
such as beamforming and MIMO, could further enhance
communication robustness. Expanding the study to include
other mobility scenarios, such as vehicular or drone-based
networks, would also provide valuable insights into the
generalizability of these predictive frameworks.

In conclusion, accurate Doppler shift prediction using
deep learning models can play a pivotal role in ensuring
seamless and efficient communication in the next generation
of mobile networks. Their incorporation into 5G infrastructure
represents a critical advancement toward achieving reliable
connectivity in fast-evolving wireless environments.
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