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Abstract—   This study investigates the 
prediction of Doppler shift variations in high-speed rail (HSR) 
environments using advanced deep learning and classical time-
series models. By simulating Doppler shifts at a 5G carrier 
frequency under noisy conditions, we evaluate and compare the 
performance of Bidirectional Long Short-Term Memory 
(LSTM) networks, Gated Recurrent Unit (GRU) networks, and 
an optimized Auto-Regressive Integrated Moving Average 
(ARIMA) model. The results highlight the strengths and 
limitations of each model, providing a detailed comparison 
between data-driven and statistical forecasting methods in 
dynamic 5G communication scenarios. 
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I. INTRODUCTION 
The rapid development of high-speed rail (HSR) 

networks, with trains operating at speeds exceeding 300 km/h, 
has introduced new challenges in wireless communications. 
Ensuring robust connectivity at such velocities is critical, 
particularly within the context of 5G networks, where Ultra-
Reliable Low-Latency Communication (URLLC) is essential 
for passenger safety and efficient operation. A key obstacle in 
these high-mobility environments is the Doppler effect, which 
induces frequency shifts that degrade signal quality. In 5G 
systems, the impact of Doppler shifts is exacerbated by high 
carrier frequencies, often leading to signal fading, reduced 
data rates, and communication outages. As a result, accurate 
and timely prediction of Doppler shifts is vital for dynamically 
adjusting communication parameters and maintaining service 
reliability. 

Traditional approaches like the Auto-Regressive 
Integrated Moving Average (ARIMA) model have been 
widely adopted in time-series forecasting due to their 
simplicity and interpretability. While ARIMA performs 
adequately for linear and stationary data, it struggles to model 
the non-linear, noisy patterns typical of Doppler shifts in HSR 
contexts [1], [2]. In contrast, deep learning models such as 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU) networks are capable of capturing long-term 
dependencies and complex temporal patterns. Bidirectional 
architectures further enhance these models by leveraging both 
past and future contextual information [3]–[6]. Moreover, 
hybrid models like CNN-LSTM have demonstrated superior 
performance in Doppler shift forecasting for LTE and 5G 

networks by effectively modeling non-linear dynamics [7]–
[9]. 

Despite these developments, the specific application of 
bidirectional LSTM and GRU models for Doppler shift 
prediction in high-speed rail scenarios remains relatively 
unexplored. This study addresses this research gap by 
conducting a thorough comparative analysis of Bidirectional 
LSTM, GRU, and ARIMA models. The evaluation includes 
performance under noisy conditions to better reflect real-
world environments. Our findings offer practical insights into 
the trade-offs between traditional statistical and modern deep 
learning approaches, emphasizing their respective roles in 
enhancing 5G communications within high-mobility contexts. 

The structure of this paper is as follows: Section II presents 
the mathematical analysis of the models, describing the key 
equations governing LSTM, GRU, and ARIMA networks. 
Section III provides an analysis of the algorithms, covering the 
role of dense layers, activation functions, and optimization 
techniques. Section IV details the testbed environment, 
outlining the simulation setup, parameter selection, and 
evaluation metrics. Section V presents the performance 
evaluation, comparing Bidirectional LSTM, GRU, and 
ARIMA models based on their accuracy using Mean Squared 
Error (MSE). Finally, Section VI discusses the findings, their 
implications, and potential future directions for improving 
Doppler shift prediction in high-speed 5G communication 
systems. 

II. MATHEMATICAL ANALYSIS 
By preserving long-term dependencies via a sequence of 

specialized gates, LSTM networks are made to handle 
sequential data, as seen in Figure 1. The architecture consists 
of three primary components: the input gate, the forget gate, 
and the output gate. The input gate I_t decides which values 
from the input xt should be updated to the cell state Ct (1): 

 𝐼𝐼_𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)        (1) 

 The information that should be removed from the cell state 
is decided by the forget gate ft (2): 

 𝑓𝑓𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)                      (2) 

The output gate ot regulates the output based on the input 
and the cell state (3): 

 𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)                    (3) 
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The cell state Ct is updated using the input and forget 
gates, which allows the LSTM to retain or forget information 
as needed (4): 

𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓 ∗ 𝐶𝐶𝐶𝐶 − 1 + 𝑖𝑖𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)      (4) 

And finally, the hidden state h_t is updated to produce the 
output (5) [10]: 

  ℎ𝑡𝑡 = 𝑜𝑜𝑜𝑜 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶)        (5) 

 

  

 

Fig. 1. Architecture of a LSTM unit 

The GRU shares many similarities with the LSTM 
network, but with a simplified architecture which can be seen 
in Figure 2.  As seen, LSTM networks have three gates—
input, forget, and output—GRUs combine the functions of the 
forget and input gates into a single update gate. Additionally, 
GRUs use a reset gate to control how much of the past 
information is retained. This streamlined design makes GRUs 
computationally more efficient than LSTMs, as they require 
fewer parameters and thus less memory and processing power. 

 

 

Fig. 2. Architecture of a GRU unit 

In comparison to the LSTM network, the GRU can 
effectively capture dependencies in sequential data with a 
simpler structure according to the formulation shown in 
Figure 2. To create the new hidden state ht, the update gate zt 
determines how much of the candidate hidden state h~t and 
the prior hidden state ht−1 should be combined. (6): 

 𝑧𝑧𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)        (6) 

When determining the candidate hidden state h~t, the reset 
gate rt determines how much of the previous hidden state 
should be forgotten. (7): 

  𝑟𝑟𝑟𝑟 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ [ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏𝑏𝑏)        (7) 

The candidate hidden state h~t is computed by applying a 
non-linear transformation to the input xt and the reset version 
of the previous hidden state ht−1 (8): 

 ℎ~𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑟𝑟 ∘ ℎ𝑡𝑡 − 1, 𝑥𝑥𝑥𝑥] + 𝑏𝑏ℎ)              (8) 

The final hidden state ht is then updated by combining the 
candidate hidden state h~t and the previous hidden state ht−1 
as controlled by the update gate zt (9) [11]: 

 ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑧𝑧) ∘ ℎ𝑡𝑡 − 1 + 𝑧𝑧𝑧𝑧 ∘ ℎ~𝑡𝑡                      (9) 

The last model used (and compared to the other two) is one 
that is frequently used in time series forecasting problems such 
as this one. ARIMA, combines three components: 
Autoregression (AR), Integration (I), and Moving Average 
(MA). The AR part of the model represents the relationship 
between an observation and a specified number of lagged 
observations (i.e., previous time steps). The integration part I 
involves differencing the data to make it stationary, which is 
crucial because ARIMA assumes that the time series has a 
constant mean and variance over time.  

Finally, the MA component uses a moving average model 
applied to delayed observations to represent the link between 
an observation and the remaining errors. Where p is the 
number of lag terms, d is the degree of differencing, and q is 
the number of lagged forecast errors in the prediction 
equation, the ARIMA model is generally expressed as 
ARIMA (p, d, q). ARIMA is particularly effective in capturing 
the linear trends and seasonality in the data, making it a 
valuable baseline model for time series analysis. The 
disadvantage of ARIMA however, is its limitation its ability 
to capture complex non-linear patterns [12]. 

III. ANALYSIS OF ALGORITHMS 
Dense Layers are typically employed towards the end of a 

neural network to transform the feature representations into 
the desired output format, such as classification logits or 
regression outputs. The dense layer performs a linear 
transformation followed by an activation function. The 
formula for a dense layer is y=f(Wx+b), where x is the input 
vector, W represents the weight matrix, b represents the bias 
vector, and f is the activation function applied individually for 
each element. 

Signal preprocessing is a critical step in preparing Doppler 
shift data for time series modeling. Initially, the Doppler shifts 
are normalized using a MinMaxScaler to ensure that the 
values lie within a consistent range, typically between 0 and 
1. This step is crucial because many machine learning 
algorithms, including LSTM and GRU networks, perform 
better with normalized input data [13]. After normalization, 
the stationarity of the series is checked using the Augmented 
Dickey-Fuller (ADF) test. If the series is found to be non-
stationary, which means it has trends or varying mean over 
time, differencing is applied. Differencing is a technique that 
subtracts the current value from the previous value, effectively 
stabilizing the mean of the series [14], [15]. This processed 
data is then ready for training predictive models. 
Algorithm – Stationarity check and normalization 
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function preprocess_signal(doppler_shifts, adf_test_threshold=0.05): 

    initialize MinMaxScaler 

    # Normalize Doppler shifts 

    normalized_shifts = MinMaxScaler.fit_transform(doppler_shifts) 

    # Check for stationarity using Augmented Dickey-Fuller (ADF) test 

    adf_result = perform_adfuller_test(normalized_shifts) 

    if adf_result.p_value > adf_test_threshold: 

        # Apply differencing to stabilize the series 

        differenced_shifts = difference(normalized_shifts) 

    else: 

        differenced_shifts = normalized_shifts 

    return differenced_shifts 

The plot in Figure 3 illustrates the noisy and normalized 
Doppler shifts experienced in a high-speed (such as that of 
trains) over a period. Noise was added to simulate real-world 
conditions. The underlying doppler shift (the “clean” one) is 
the one our models will try to predict. The Doppler shifts vary 
continuously, reflecting the dynamic nature of the high-speed 
movement and the environmental factors affecting the signal. 
The normalization ensures that the values are scaled, making 
it easier to observe the relative fluctuations in Doppler shift 
intensity. The presence of noise introduces variability, 
mimicking the unpredictable changes in signal frequency that 
occur in practical scenarios, such as due to obstacles, weather, 
or other interference sources. This noisy Doppler shift data 
serves as a challenging test case for predictive models aimed 
at enhancing signal strength by compensating for such shifts. 

 

Fig. 3. Noisy Doppler Shift Over Time (Normalized) 

The LSTM and GRU models used in this study are 
designed to capture the temporal dependencies in Doppler 
shift time series data. Both models employ a Bidirectional 
architecture, which allows them to learn from both past and 
future context within the sequence, enhancing their predictive 
power for time-dependent data. 

In the LSTM model, three layers of Bidirectional LSTM 
units are employed, each followed by a LeakyReLU activation 
function, LayerNormalization, and Dropout [16]. The 
LeakyReLU activation function allows a slight gradient when 
the unit is not in use, which helps to alleviate the vanishing 
gradient problem. LayerNormalization stabilizes the learning 
process by normalizing the output of each layer, while 
Dropout is used to prevent overfitting by randomly disabling 
a fraction of neurons during training. 

Similarly, the GRU model follows the same architecture 
but with GRU units. GRUs are computationally more efficient 

than LSTMs due to their simpler structure, making them 
suitable for tasks where faster training is beneficial. The 
choice of Bidirectional layers in both models allows the 
networks to access context from both directions, which is 
particularly useful for time series data where future events can 
influence past ones. The two models have a similar structure. 
The structure of the LSTM model is shown in the 
“build_lstm_model” function below. 
Algorithm – LSTM and GRU structure 

function build_lstm_model(seq_length): 

    model = Sequential() 

    # First Bidirectional LSTM Layer 

    model.add(Bidirectional(LSTM(units=256, return_sequences=True, 
input_shape=(seq_length, 1)))) 

    model.add(LeakyReLU(alpha=0.01)) 

    model.add(LayerNormalization()) 

    model.add(Dropout(0.3)) 

    # Second Bidirectional LSTM Layer 

    model.add(Bidirectional(LSTM(units=128, return_sequences=True))) 

    model.add(LeakyReLU(alpha=0.01)) 

    model.add(LayerNormalization()) 

    model.add(Dropout(0.2)) 

    # Third Bidirectional LSTM Layer 

    model.add(Bidirectional(LSTM(units=64, return_sequences=True))) 

    model.add(LeakyReLU(alpha=0.01)) 

    model.add(Dropout(0.1)) 

    # Output Layer 

    model.add(Dense(units=1)) 

    return model 

The optimizer for both LSTM and GRU based models was 
RMSProp, because it is particularly effective for handling 
non-stationary objectives and adaptive learning rates. Given 
the complexity and variability of predicting Doppler shifts in 
a dynamic environment, RMSprop helps maintain a stable and 
efficient learning process by adjusting the learning rate based 
on the average of recent squared gradients. This allows the 
model to converge more quickly and accurately by mitigating 
the risk of large updates that could destabilize the learning 
process, especially when dealing with sequences of data with 
varying patterns like Doppler shifts. The metric the model was 
compiled on was the MSE and several techniques such as 
“EarlyStopping” and “ReduceLROnPlateau” were used to 
ensure optimal training and monitoring on the loss and 
accuracy variables. 

The ARIMA model chosen is the Auto-ARIMA in which 
the "Auto" refers to the automatic selection of the best 
ARIMA parameters, which include the order of the AR,I and 
MA components. This automatic selection process simplifies 
the model-building task by testing various combinations of 
these parameters and selecting the one that minimizes the 
error. By using the auto_arima function, the model 
automatically identifies the optimal parameters, ensuring the 
best fit for the given Doppler shift data.to differentiate 
between real signals and pure noise. 
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Algorithm- Auto-ARIMA model 

function build_auto_arima_model(train_data): 

    # Automatically select the best ARIMA model 

    model = auto_arima(train_data, seasonal=False, stepwise=True, 
suppress_warnings=True) 

    return model 

 

function predict_with_arima_model(model, steps): 

    # Generate forecast using the selected ARIMA model 

    forecast = model.predict(n_periods=steps) 

    return forecast 

IV. DESCRIPTION OF TESTBED 
The simulation setup can be seen below, in Table I. It 

simulates Doppler shifts experienced by a high-speed train 
due to the Doppler effect in a 5G communication system. The 
simulation involves generating time series data for Doppler 
shifts based on a train traveling at a high speed. The testbed 
evaluates three different forecasting models: ARIMA, LSTM, 
and GRU, to predict Doppler shifts over time. The models are 
compared based on their RMSE and complexity. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 
Carrier Frequency 3.5 x 10^9 

Total Simulation Time 3600 

Time per Step (s) 1 

Cosine Factor Π/4 

LSTM Units 128 

LSTM Activation Function ReLU 

GRU Units 128 

GRU Activation Function ReLU 

More Layers Used  Dense 

ARIMA Parameter P 1 

ARIMA Parameter D 1 

ARIMA Parameter Q 3 

Evaluation Metrics RMSE 

 

In the context of Long LSTM networks, the Rectified 
Linear Unit (ReLU) activation function offers an alternative 
to the traditionally used sigmoid and tanh functions. ReLU, 
defined as ReLU(x)=max(0,x), introduces non-linearity into 
the model by allowing only positive values to pass through, 
effectively setting all negative values to zero. While LSTMs 
primarily utilize sigmoid and tanh functions for their gating 
mechanisms and cell state regulation, incorporating ReLU in 
the hidden layers of LSTMs can potentially enhance their 
performance. The primary advantage of using ReLU is its 
ability to introduce sparsity in activations, which can lead to 
more efficient learning and reduced overfitting. Additionally, 
ReLU helps address the vanishing gradient problem, allowing 
gradients to propagate more effectively through the network. 
In many neural network topologies, dense units, also known 
as fully connected layers, are a fundamental component. Each 

neuron in these levels is coupled to every other neuron in the 
layer above it. This dense connectivity allows the model to 
learn complex representations of the data. 

V. PERFORMANCE EVALUATION 
In this section, we present a detailed analysis of the 

performance of LSTM, GRU, and ARIMA models in 
predicting Doppler shifts in HSR communication systems. 
The predictions made by each model are compared to the 
actual Doppler shift values over time, highlighting the 
strengths and limitations of each approach. Specifically, we 
examine how the models handle complex, non-linear patterns 
in Doppler shift data and evaluate their accuracy through 
MSE.  

As shown in Figure 4, both the LSTM and GRU models 
provide predictions that closely follow the actual Doppler shift 
values as time passes, with the GRU model demonstrating 
slightly better results. The LSTM model shows that it can also 
converge to an optimal solution as time passes. But, while the 
LSTM is effective, its more complex architecture may 
occasionally struggle with fine-tuning predictions in the 
presence of intricate patterns or smaller datasets. 

In contrast, the GRU model, with its simplified and more 
streamlined architecture, manages to maintain high accuracy 
throughout the entire time series. By merging the input and 
forget gates into a single update gate and incorporating a reset 
mechanism, this model efficiently captures temporal 
dependencies while reducing architectural complexity. As a 
result, the GRU is particularly adept at modeling the non-
linear patterns evident in the Doppler shift data, which is 
crucial for accurately predicting shifts in dynamic 
environments. The GRU's ability to adapt quickly when the 
dataset is not very big, highlights its robustness, especially in 
scenarios where computational efficiency and real-time 
adaptability are critical. 

The superior performance of the GRU model is 
quantitatively reflected in its MSE, which was the lowest 
among all the models tested. Specifically, the GRU model 
began with a starting MSE of 0.65, but as time progressed and 
the model continued to refine its predictions, it achieved an 
impressively low MSE of 0.04. This significant reduction in 
error underscores the GRU's strong learning capacity and its 
ability to fine-tune predictions with continued exposure to 
data compared to the ARIMA.  

In comparison, the LSTM model also demonstrated 
commendable performance, ending with a final MSE of 0.05. 
However, the slightly higher error relative to the GRU 
suggests that the LSTM may be more susceptible to 
overfitting. These observations are further detailed in Table I, 
which summarizes the average offsets over various steps 

Overall, the GRU’s superior forecast capability of the 
actual Doppler shifts, as seen in Figure 4, suggests that its 
architecture not only offers computational advantages but also 
enhances predictive accuracy in environments where 
maintaining real-time, reliable predictions with little data is 
essential. These results indicate that the GRU's efficiency in 
handling sequential dependencies, combined with its 
resilience against overfitting, may give it a distinct edge in 
predictive tasks, where we have a small dataset and do not 
need the extra complexity in the neural network’s layers. 
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Fig. 4. Forecast of the LSTM and GRU models 

TABLE I.  OFFSET SCORES OF LSTM/GRU MODELS 

Testing Steps Average Offset 

100 0.22413 

250 0.21231 

500 0.20193 

1000 0.21034 

 

Figure 5 illustrates the performance of the ARIMA model 
in predicting the Doppler shifts. The ARIMA model 
effectively models linear trends but is inherently limited by its 
reliance on fixed lag structures and linear assumptions. 
Doppler shifts in HSR scenarios are characterized by complex 
non-linear patterns influenced by environmental factors and 
rapid mobility, which the ARIMA model cannot adapt to. This 
limitation becomes evident in its inability to track abrupt 
changes or fluctuations, as shown by its high Mean Squared 
Error (MSE) of 0.2, the highest among the tested models. 

While the ARIMA model provides a good starting 
estimation, it fails to adapt to the trends in the data. This is 
expected due to its reliance on linear relationships and its 
limitation in handling non-linear patterns. These results 
suggest that while ARIMA might offer a quick and 
computationally inexpensive solution for trend estimation, its 
inability to model non-linear behaviors makes it less suited for 
real-time Doppler shift adjustments in 5G systems. 

In contrast, deep learning models like GRU and LSTM 
excel in these scenarios due to their ability to capture complex 
temporal dependencies, as evidenced by their significantly 
lower MSE scores. Table II shows the average offset after 
multiple runs, which, along with Table I, further emphasizes 
the superior performance of the neural network-based models 
over the ARIMA model in accurately predicting Doppler 
shifts. 

TABLE II.  OFFSET SCORES OF ARIMA MODEL 

Runs Average Offset 

100 1.43412 

250 1.43412 

500 1.43412 

1000 1.43412 

 
Fig. 5. Forecast of the ARIMA models 

So, as was observed, the GRU model outperformed both 
the LSTM and ARIMA models in predicting Doppler shifts, 
as indicated by its lower MSE. The LSTM model, while 
slightly less accurate than the GRU, still performed well and 
demonstrated its strength in handling complex sequential data. 
The ARIMA model, while useful for capturing general trends, 
was less effective in modeling the nuanced, non-linear 
patterns inherent in the Doppler shift data. These results 
underscore the advantage of using deep learning models, 
particularly GRU and LSTM, for predicting Doppler shifts in 
HSR communication systems, where the ability to capture 
intricate temporal dependencies is crucial. 

Given a GRU’s best MSE of 0.04, LSTM’s best MSE of 
0.05, the forecasted MSE of the ARIMA model of 0.2, we can 
deduct that predicting the shifts with an LSTM-based or GRU-
based neural network can have a significant impact in 
enhancing the performance of 5G networks, particularly in 
high-mobility scenarios. This impact can be observed in 
multiple sections of a 5G communication. 

Firstly, by reducing MSE in Doppler shift estimation, our 
model enables more precise Channel State Information (CSI) 
acquisition, leading to significant improvements in Adaptive 
Modulation and Coding (AMC) schemes. Specifically, the 
achievable data rate R can be modeled as : 

𝑅𝑅 = 𝐵𝐵 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙2(1 + (𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻))^2 / 𝑁𝑁0 + 𝐼𝐼 ∗ 𝑃𝑃)     (10) 

where B is the bandwidth, P is the transmitted power, the 
absolute value of H (squared) represents the channel gain, N0 
is the noise power, and I is the interference. Our Doppler 
prediction minimizes errors, optimizing the AMC 
performance.  

Moreover, accurate Doppler estimates can enhance 
beamforming accuracy in mmWave communications, 
modeled by the beamforming gain modeled as : 

  𝐺𝐺 = 4𝜋𝜋𝜋𝜋𝜋𝜋 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 − 𝜃𝜃𝜃𝜃)                    (11) 

where λ is the wavelength, d is the distance, θ is the angle 
of arrival, and θd is the desired beam direction. By reducing 
the angular deviation due to Doppler shifts, our model 
improves beamforming alignment, leading to higher signal 
strength and reduced outage probability. These advancements 
translate into measurable gains in throughput, reduced 
latency, and increased energy efficiency, making our model a 
valuable asset for enhancing 5G network performance. 
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Finally, another way that a very accurate Doppler shift 
prediction can enhance 5G communications is in the 
handovers. With accurate Doppler predictions, we can have 
more successful handovers and reduced handover failures. 
This improvement is crucial for maintaining continuous 
connectivity and high-quality service in 5G, thereby reducing 
latency, minimizing packet loss, and ensuring consistent user 
experience even at high speeds. Additionally, this enhanced 
handover performance can also contribute to network energy 
efficiency, as fewer resources are wasted on managing failed 
handovers, further solidifying the importance of Doppler shift 
prediction in the effective operation of 5G networks. 

VI. CONCLUSION AND FUTURE WORK 
This paper presented a comparative evaluation of 

Bidirectional LSTM, GRU, and ARIMA models for 
predicting Doppler shifts in high-speed rail communication 
environments. The results clearly demonstrate the superior 
performance of deep learning models—particularly the 
GRU—in terms of accuracy and adaptability under dynamic 
and noisy conditions. These findings underscore the potential 
of integrating GRU and LSTM models into real-time 5G 
network protocols to improve communication reliability in 
high-mobility scenarios. 

The success of these models invites several promising 
research directions. Future work may explore their integration 
into adaptive communication protocols, enabling real-time 
Doppler compensation in 5G systems. Additionally, 
combining these models with other advanced technologies, 
such as beamforming and MIMO, could further enhance 
communication robustness. Expanding the study to include 
other mobility scenarios, such as vehicular or drone-based 
networks, would also provide valuable insights into the 
generalizability of these predictive frameworks. 

In conclusion, accurate Doppler shift prediction using 
deep learning models can play a pivotal role in ensuring 
seamless and efficient communication in the next generation 
of mobile networks. Their incorporation into 5G infrastructure 
represents a critical advancement toward achieving reliable 
connectivity in fast-evolving wireless environments. 
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