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A B S T R A C T   

In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used for the first time to investigate the 
effects of artificial feeding of bees on the honey. According to LIBS technique the emission spectral characteristics 
of the plasma created on the surface of honey samples are analyzed. Correlation plots indicating the importance 
of spectral lines of elements as e.g., Calcium (Ca), Magnesium (Mg), Sodium (Na) and Potassium (K) are con-
structed. In addition, machine learning algorithms based on Linear Discriminant Analysis (LDA) and Random 
Forest Classifiers (RFC) are employed to classify the honey samples in terms of the bee food used. The constructed 
machine learning models were validated by both cross-validation and external validation, while the obtained 
accuracies exceeded 90% of correct classification, indicating the potential of LIBS technique for honey 
discrimination. The obtained results by LIBS were also validated by HPLC-RID, which is the standard technique 
used for the analysis of the main honey sugars.   

1. Introduction 

According to the European legislation, honey is the natural sweet 
substance produced by Apis mellifera bees from the nectar of plants or 
from secretions of living parts of plants or excretions of plant-sucking 
insects on the living parts of plants, which the bees collect, transform 
by combining with specific substances of their own, deposit, dehydrate, 
store and leave in honeycombs to ripen (Directive 2001/110/EC). This 
long definition determines the honey product and distinguishes it from 
any other sweet products that can be made artificially. The composition 
of honey is variable and is dependent primarily on its floral source and, 
also, on certain external factors, such as the beekeeping manipulations, 
packaging and storage conditions. Honey is mainly composed of com-
plex carbohydrates, such as fructose, glucose, maltose and sucrose, as 
well as water. Other constituents are enzymes, organic-, amino- and 
phenolic acids, vitamins, volatile compounds, flavonoids and minerals 
(Da Silva et al., 2016). The main minerals present in honey originate 
from soil and are transported to plants by the roots. The minerals make 

their way into the nectar and honeydews and are incorporated into the 
honey produced by bees (Wang et al., 2006; Stankovska et al., 2008; 
Liolios et al., 2016). Thus, they are related to the type of bees’ feeding (e. 
g., botanical origin) as well as to environmental and geographical fac-
tors. The major minerals are Ca, Mg, Na, K, Cl, P, S and minor/trace 
minerals include Zn, Al, Mn and Cu (Da Silva et al., 2016; Harvey, 2016; 
Moreno-Rojas, Cámara-Martos, & Amaro López, 2016 a; Moreno-Rojas, 
Cámara-Martos, & Amaro López, 2016 b). Since the inorganic content of 
honey affects directly the physicochemical properties of honey (e.g., 
conductivity) is widely used for its botanical origin discrimination 
(Rodopoulou et al., 2017, 2021; Rodriquez et al., 2019; Serrano et al., 
2006). Because it is a high nutritional value product, it can be adulter-
ated during its production or processed by adding sugars or low-price 
honey with the aim of economic benefits. Honey adulteration can be 
mainly achieved either with the addition of sweeteners directly to honey 
during the process of packaging or by feeding syrups to honeybees 
during the main nectar flow period. 

As the nectar and honeydew flows vary strongly during the 
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beekeeping year, sometimes bees need additional feeding to maintain 
breeding activities and cover food requirements. The traditional sup-
plement for honeybees feeding is a sucrose solution, in which sugar and 
water are mixed in a 1:1 ratio, but the last years many sweeteners and 
sugar syrups are commercially available for feeding bees. These sub-
stitutes are made from sugar cane, sugar beet, starch produced from 
corn, wheat, rice, or syrups of natural origin such as maple. The car-
bohydrate feeding of bees is divided into two types depending on the 
physical stage of the supplied product, solid and liquid. The first one is 
mainly used through winter when the colony is running short of stored 
honey and the second in all other cases that require complementary food 
for the nutritional needs of bees. Sometimes for the development of the 
brood, especially in situations of absence of pollen, protein supplements 
are required to be provided to the colonies. For the detection of adul-
teration in honey, chromatographic techniques have been developed 
such us thin layer chromatography (Puscas et al., 2013), gas chroma-
tography− mass spectrometry (Ruiz-Matute et al., 2007), 
high-performance liquid chromatography (Morales et al., 2008; Zhou 
et al., 2014; Wang et al., 2015). In some cases, characteristic compounds 
as adulteration markers were found (Megherbi et al., 2009; Xue et al., 
2013). Alternatively, methods based on spectroscopy, notably nuclear 
magnetic resonance (NMR), have been proposed (Bertelli et al., 2010; 
Spiteri et al., 2015). One of the most powerful techniques for detection 
of honey adulteration is the isotope ratio mass spectrometry (IRMS), 
which is based on the abundance of stable isotopes of carbon (13C/12C). 
With IRMS, honey adulteration using C4 sugars can be detected at levels 
≥7% but the adulteration from C3 plants cannot be found (Cabañero 
et al., 2006; Elflein & Raezke, 2008; Guler et al., 2014). Screening 
techniques such as vibrational spectroscopic methods (near- and 
mid-infrared) in combination with multivariate data analysis provide 
rapid and low-cost analyses for the detection of honey adulteration (Das 
et al., 2017). 

The aforementioned techniques are quite accurate, however they use 
advanced and quite complicated instrumentation, while they require 
well trained and specialized personnel and they are time-consuming. 
Very recently, a laser-based technique, Laser-Induced Breakdown 
Spectroscopy (LIBS) has been proposed and employed for the analysis of 
honey (Nespeca et al., 2020; Stefas et al., 2020; Zhao et al., 2020; Las-
tra-Mejías et al., 2020; Peng et al., 2020). LIBS technique utilizes a 
powerful enough laser beam to induce breakdown on a sample by 
creating a plasma. The plasma consists of excited atoms and molecules, 
electrons and ions and emits radiation, containing information on the 
sample’s elemental content (Miziolek et al., 2008; De Giacomo & Her-
mann, 2017). LIBS can provide information about a sample’s elemental 
composition in real time, independently of the physical state of the 
sample, as the plasma can be formed in any state of matter and without 
time-consuming pretreatment. So, in the works of Nespeca et al. (2020), 
Lastra-Mejías et al. (2020) and Peng et al. (2020), LIBS has been 
employed for the detection and evaluation of adulteration of honey after 
it has been mixed with sweetener syrups (as e.g., rice syrup, sugar cane 
syrup and high fructose corn syrup). More recently, LIBS has been 
applied for the elemental analysis of honey samples and for the 
discrimination of the honey samples in terms of their floral origin (Stefas 
et al., 2020). 

In the present work, LIBS is used for the first time, to best of our 
knowledge, for the detection of the effects of external feeding of honey 
bees with different syrups on the honey, by analyzing the emission of the 
laser-produced plasma created on honey samples. The LIBS results are 
compared with results for the main honey sugars obtained from a High- 
Performance Liquid Chromatography (HPLC-RID) method. In that view, 
honey samples stemming from different beehives (where feeding has 
been performed with inverted syrup, sugar water and candy paste) were 
analyzed by LIBS and the effects of bee-feeding on the honey LIBS 
emission spectra are examined and evaluated. Furthermore, predictive 
models were developed employing Linear Discriminant Analysis (LDA) 
and Random Forests (RF) machine learning algorithms, using the 

acquired LIBS emission spectra, aiming to classify the honey samples 
based on the type of bee feeding that has been employed. In that context, 
the former algorithm, allowed for the visualization of the class forma-
tion, while the latter algorithm has allowed to assess and select the most 
important spectral features to achieve the most efficient classification of 
the honey samples. The results showed that the effect of bee-feeding on 
the honey can be successfully correlated with LIBS spectral features of 
the inorganic ingredients of honey, such as sodium (Na), calcium (Ca), 
magnesium (Mg) and potassium (K), while the spectral lines of these 
elements were identified as the most important for classification pur-
poses leading to accuracies, as high as 99%. 

2. Experimental 

2.1. Honey production 

The honey samples were produced during the period July–August 
2019. For the needs of the present investigation, eighteen healthy bee-
hives were divided into six equivalent groups in population and brood 
according to the feeding protocols given in Table 1. These six groups 
were treated according to the type of bee food used as classes: com-
mercial inverted syrup (fructose, glucose, maltose), sugar (sucrose) and 
candy paste (sucrose), whereas the “Control” class corresponds to honey 
samples from bees that only collected nectar. 

Pieces of combs with ripe honey were collected immediately after the 
sealing of the honey cells, as well as one month after the first collection. 
However, honey from bee-colonies that fed with candy paste, was not 
possible to collect at the last collection because the second collection 
took place after the blooming season and the colonies consumed the 
reserves of honey. The information about the samples collected from the 
second collection are also listed in Table 1. The honey samples were 
obtained by pressing the combs and filtration to remove possible wax 
fragments. In total, from the two sampling, 63 samples were collected 
and stored at − 18 ◦C, until their analysis. 

2.2. LIBS setup 

A small quantity (i.e., few grams) of honey was placed in a Petri-type 
glass recipient and was left to form a flat surface. The recipient was 
thereafter placed on a x-y-z translational stage, allowing its x-y move-
ment and the adjustment of its z-position around the focus of a laser 
beam perpendicularly incident on the free sample surface. 

The plasma was created on the free surface of the sample by focusing 
the laser beam from a 5 ns Q-switched Nd: YAG laser (Quanta-Ray INDI, 
Spectra Physics) with a 15 cm focal length quartz lens. The laser was 
operating at its fundamental wavelength, at 1064 nm, with an energy 
per pulse adjusted at about 70 mJ. The plasma-emitted radiation was 
collected by means of a 5 cm focal length quartz lens and it was intro-
duced into a quartz optical fiber bundle coupled to the entrance slit (10 
μm width) of a 75 mm focal length spectrometer (AvaSpec-ULS4096CL- 
EVO (CMOS)) for spectral analysis. The spectrometer was equipped with 
a 300 lines/mm diffraction grating, and a 4096 pixels CMOS detector. 
From these pixels, the 2754 of them were used here, corresponding to 
the 200–1000 nm spectral region. A time delay (td) of 1.28 μs, and a gate 
width (tw) of 1.05 ms were used for the temporal gating of the detector. 
The LIBS measurements were performed according to the following 
procedure: LIBS spectra of ten successive laser shots obtained at one 
location on the sample’s surface were averaged, providing one LIBS 
measurement. Then, 50 such LIBS measurements were collected at 
different positions on the sample’s surface and were employed for the 
subsequent statistical analysis. 

2.3. Sugars analysis 

The main honey sugars, fructose, glucose, sucrose and maltose were 
determined using an HPLC-RID method (Bogdanov et al., 1997). Briefly, 
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honey mixed with methanol:water (25:75, v/v) and the solution filtered 
through a disposable syringe filter 0.45 μm, before the injection. The 
sugars were separated on a Zorbax Carbohydrate Analysis (4.6 mm ID x 
150 mm × 5 μm) using a mixture of acetonitrile:water (75:25, v/v) as 
mobile phase at flow rate 1.8 ml/min. For the quantification, a five-point 
calibration curve was created and evaluated for each sugar. The 
resulting sugar concentrations were analyzed by multivariate analysis of 
variance (MANOVA) to determine statistical significances between the 
samples and by Linear Discriminant Analysis in order to visualize class 
separation via dimensionality reduction. 

2.4. Data analysis 

For the analysis and classification of the LIBS spectroscopic data 
collected from the different honey samples, two machine learning al-
gorithms were selected, namely the Linear Discriminant Analysis (LDA) 
and the Random Forest Classifier (RFC). Both algorithms were used for 
classification purposes through the construction of predictive models. 
Specifically, LDA was used for the supervised visualization of the 
multidimensional spectroscopic (LIBS) data in a lower dimensions 
space, while RFC was employed for the estimation of the most important 
spectroscopic features regarding the discrimination of the samples as 
well. In more details, LDA maximizes the ratio of the between-class 
variance over the within-class variance through a classifier with a 
linear decision boundary, generated by fitting class conditional densities 
to the data and using Bayes’ rule. The LDA model fits a Gaussian 
probability density to each class, with the assumption that all classes 
share the same variance-covariance matrix (Duda, Hart & Stork, 2000). 
On the other hand, RFC, consists of a large number of individual decision 
trees that operate as an ensemble. Each individual tree in the random 
forest gives a prediction for a class and the class with the most votes 
becomes model’s final prediction. The success key of the RFC algorithm 
lays in the fact that many relatively uncorrelated trees, operating as a 
committee, will outperform any of the individual constituent trees 
(Breiman, 2001). The data analysis was performed using the Python 
programming language along with the Scikit-Learn machine learning 
library (Pedregosa et al., 2011). 

The selection of LDA and RFC algorithms for the processing of the 
raw LIBS spectroscopic data was based on the following arguments. At 
first, both algorithms have been previously used (Stefas et al., 2020) 
successfully for honey analysis via LIBS, achieving high accuracies and, 
thus, can be considered as suitable for handling such spectroscopic data. 
Furthermore, both algorithms provide, intrinsically, unique methods for 
visualizing the classification procedure. So, LDA offers dimensionality 
reduction of the original data, resulting in a scatter plot depicting the 
samples’ classification into their respective classes, while RFC offers the 
ability to check which variables (i.e., spectral features) are the most 
important for the classification procedure (Louppe et al., 2013). As a 
result, the combination of LDA and RFC can provide a robust method-
ological approach to inspect the classification of high-dimensional data 

efficiently and easily, as well as to construct the optimum predictive 
model based on the most important features. 

It is important to note, that for the estimation of the predictive 
models’ accuracy and robustness, both, internal and external validation 
procedures were performed. For the former, a k-fold cross-validation 
(where k = 10) was implemented, where the training data were shuf-
fled and split into k groups. The k-1 groups were used to train the 
classifier, while the remaining group was used for prediction and for 
assessment of the classifier’s accuracy. This procedure was exhaustively 
repeated k-times, so that each one of the k sub-samples was used for 
prediction. In that way, the classifier’s overall accuracy was computed 
within the standard deviation of each fold. For the external validation, 
the classifier was used to predict a second dataset with samples that have 
not been used to train the algorithm. In that spirit, the ability of the 
algorithm to generalize and predict never seen before samples can be 
estimated directly, ensuring the robustness of the procedure. When the 
classifier predicted new samples, the prediction accuracy was used to 
evaluate its performance and a confusion matrix was created to examine 
which samples have been misclassified. 

3. Results and discussion 

3.1. Bee-feeding effect on the LIBS spectra 

The collected LIBS spectra were, at first, analyzed by identifying the 
most important spectral features. The most important spectral lines 
appearing in the LIBS spectra of the studied honeys were those of 
Hydrogen (H), Carbon (C), Oxygen (O), Nitrogen (N), Calcium (Ca), 
Magnesium (Mg), Potassium (K) and Sodium (Na). According to previ-
ous works (Nespeca et al., 2020; Stefas et al., 2020; Zhao et al., 2020; 
Lastra-Mejías et al., 2020; Peng et al., 2020), the most important fea-
tures (in terms of feature importance and for discrimination between 
different samples as well) are those of the inorganic ingredients, i.e., K, 
Ca, Na, Mg, etc. In Fig. 1, a representative honey LIBS spectrum is pre-
sented as an example, showing the most important spectral features 
observed, while the insets present enlarged views of the spectral regions 
around the important spectral lines observed. The shown spectrum has 
been normalized here only for visualization purposes. The identi-
fication/assignment of these spectral features was performed based on 
previous works (Stefas et al., 2020) and using the NIST database (Kra-
mida et al., 2020) as well. 

Using the peak intensities of some of the stronger spectral lines of 
interest for honey’s characterization, the presence of any correlation 
between the samples was searched initially, by constructing the corre-
sponding correlation plots, as e.g., those presented in Fig. 2. The utility 
of such plots is based on the fact that they can help the visualization of 
samples’ correlation with one another. For instance, in Fig. 2, the cor-
relation plots concerning the potassium-sodium (K–Na), and calcium- 
magnesium (Ca–Mg) spectral lines are shown. Specifically, in Fig. 2a, 
the peak intensities of the K (I) 766.5 nm and the Na (I) 589.6 nm 

Table 1 
Feeding protocols of the bees and honey samples.  

Group Bee-Feeding Quantity Number of training samples 
(1st collection) 

Number of validation samples 
(1st collection) 

Samples from the 2nd collection 
(after 1 month) 

Class 

A inverted syrup 
(commercial) 

2L/day 3 2 6 inverted 
syrup 

B inverted syrup 
(commercial) 

0,5L/day 3 3 6 inverted 
syrup 

C sugar syrup (in the ratio 
of 1:1) 

2L/day 3 3 6 syrup 

D sugar syrup (in the ratio 
of 1:1) 

0,5L/day 3 2 6 syrup 

E candy paste 
(commercial) 

constant presence 3 2 - candy paste 

F No feeding bees collect only 
nectar 

4 2 6 control  
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spectral lines were used for the construction of the corresponding cor-
relation plot. As can be seen, data clusters are formed and are clearly 
observable, allowing for a rapid visual classification of the four types of 

honey samples corresponding to the four different kinds of bee-food. So, 
it can be seen that syrup-fed colonies’ honey samples (groups A, B and C, 
D) exhibited in general spectral lines with lower peak intensities than 

Fig. 1. A representative LIBS spectrum of honey. The spectral regions including some of the most important emission lines are shown enlarged.  

Fig. 2. Correlation plots of the intensities of a) Na (I) 589.6 nm and K (I) 766.5 nm, and b) Mg (II) 279.6 nm and Ca (II) 396.8 nm spectral lines of honey samples 
from different groups. 
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the others, while the candy paste-fed colonies’ honey samples (group E) 
and the control samples (group F) exhibited higher peak intensities. In 
fact, the control samples have been found to exhibit the highest in-
tensities among the different samples’ categories while they appear to 
form two distinct data clusters. This last observation can be attributed to 
the differences between the control samples originating from different 
beehives. Interestingly, the honey samples collected after feeding the 
bees with inverted syrup and syrup, presented, in general, weaker in-
tensity spectral features compared to those of the control samples and 
the candy paste samples, forming two distinct clusters as well. These 
observations agree with other studies, employing different methods and 
analytical techniques, concluding that the artificial bee-feeding results 
to lower concentrations of such mineral elements (Özcan, Arslan & 
Ceylan, 2006; Moumeh et al., 2020). 

Similarly, in Fig. 2b the correlation plot of the Ca (II) 396.8 nm and 
Mg (II) 279.6 nm spectral lines are presented. As can be seen, the control 
samples exhibited in general stronger peak intensities than the other 
samples, being clearly distinguishable from all them. However, no sig-
nificant difference has been observed arising from the quantity of bee- 
feeding, i.e., between groups A and B, as well as C and D, respectively. 
So, in principle, the method is capable of distinguishing between honeys 
produced after bee-feeding with artificial sugars from the honey arising 
without bee-feeding, where bees collect only nectar. 

Indeed, by analyzing the samples with HPLC, the groups corre-
sponding to the feeding of the bees with syrups and candy paste were 
separated from the control group (Fig. 3). According to HPLC results, the 
statistical analysis showed that honey samples collected from groups 
with any artificial feeding had significantly different sugars concentra-
tion than the control group’s samples. More specifically, comparing the 
control group samples, with those from colonies fed with candy paste 
and sugar syrup presented significantly higher concentration of sucrose, 
while the commercial inverted group also had significantly higher 
maltose content (Guler et al., 2007). For modeling the differences among 
different feeding conditions Linear Discriminant Analysis (LDA) was 
used. LDA showed two significant canonical variables. The first one 
accounted for 98.0% of the between-class variance and it was principally 
under the dependence of fructose content, while the second accounted 
for 1.9% and could be related to glucose and sucrose concentration. 

To further examine the effect of the bee-feeding on the LIBS spectra, 
the spectra of the two syrups employed for the bee-feeding, i.e., the 
inverted syrup one, the homemade sugar water one (i.e., Syrup) and the 
candy paste, are shown in Fig. 4a and are compared with the spectra of 
some honey samples collected from beehives fed with these syrups, as 
well as candy paste. In Fig. 4b, the enlarged views of some spectral 

regions of the spectra from Fig. 4a are shown together with the spectra. 
As shown, the LIBS spectrum of honey differs significantly from the 
syrups’ spectra, as the former only exhibited the spectral lines of Ca (II), 
Na (I) and K (I). 

3.2. Classification of honeys’ LIBS spectra after different bee-feeding 

From a total of 33 samples, collected from various beehives (see also 
in Samples’ section), 19 were used for the training of the machine 
learning algorithms, while the remaining 14 samples were employed to 
validate the machine learning models that have been constructed for 
classification purposes (see also Table 1). 

In the case of the LDA algorithm, three canonical variables were used 
for training. The obtained accuracy, after a 10-fold cross-validation, was 
found to be as high as (99.6 ± 0.7)%. In Fig. 5, the scatter plot resulting 
from the dimensionality-reduced dataset via the LDA algorithm is 
shown. In this plot, each point represents a LIBS spectrum, embedded in 
the three-dimensional space spanned by the three canonical variables 
used. As can be seen, four clearly distinct data clusters were formed 
corresponding to the four different types of bee-feeding, reflecting the 
successful classification by simple visual inspection. Next, the LDA 
model was used for predicting the class designation of the LIBS spectra 
obtained from the test/validation samples. Remarkably, the predicted 
accuracy of the unknown data was found to attain a very high value of 
98.4%. As can be seen from the confusion matrix presented in Fig. 6a, 
where misclassifications are highlighted by circling the corresponding 
numbers, no instances of the control samples were misclassified, while 
only a couple of instances, i.e., LIBS spectra, were misclassified. It should 
be noted that, for each sample, 50 LIBS independent spectra were ac-
quired (see also in the Materials and Methods Section, the 2.2. LIBS 
Setup and 2.3. Data Analysis sub-sections). For example, only 4 
inverted syrup spectra were misclassified as syrup spectra and vice- 
versa, while 3 candy paste spectra were mislabeled as syrup spectra. 

Next, the RFC algorithm was utilized to develop another predictive 
model, in the same spirit as in the previous case for the LDA algorithm. 
This RFC model fitted a hundred decision tree estimators on various 
subsamples of the dataset and used some averaging to improve the 
predictive accuracy and control overfitting. Furthermore, a 10-fold 
cross-validation was performed, as well. The resulting accuracy was 
determined to be (97.6 ± 1.6)%, while the classification prediction ac-
curacy of the unknown data attained a value of 97.0%. In the corre-
sponding confusion matrix presented in Fig. 6b, the misclassified 
samples are shown. As can be seen from this confusion matrix, mis-
labeling was found to occur between 11 instances of syrup which were 

Fig. 3. Discriminant Analysis of different feeding groups.  
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wrongly predicted as inverted syrup ones. 
A noteworthy advantage resulting from the implementation of the 

RFC algorithm in this study, is due to its easy-to-interpret and quick-to- 
calculate feature importance capability (Louppe et al., 2013). As an 
example, in Fig. 7 the most important features recognized by the RFC 
algorithm, plotted versus the corresponding wavelength are shown. As 
can be seen, the most important features are those corresponding to the 
spectral lines of the inorganic ingredients of honey, i.e., sodium Na (I) 

(at 589.0 and 589.6 nm), potassium K (I) (at 766.5 and 769.9 nm), 
calcium Ca (II) (at 393.3, 396.8 and 422.7 nm) and magnesium Mg (II) 
(at 279.6, 280.3 and 285.2 nm) (listed in descending order of impor-
tance), as well as the carbon C (I) line at 247.9 nm. The importance of 
these spectral lines for honey classification issues has been reported by 
other studies as well (Stefas et al., 2020; Zhao et al., 2020; Lastra-Mejías 
et al., 2020; Peng et al., 2020). Then, based on these observations, a new 
RFC model was constructed, by taking into consideration only the so 
determined most important features. More specifically, the dataset was 
reduced by selecting a threshold value of variable importance, and the 
RFC algorithm was retrained using less features. For example, for a 
variable importance threshold value of 0, all features of Fig. 7 (i.e., all 
the 2754 wavelengths) are taken into account, while for a variable 
importance value higher than e.g., 0.025 only one feature, i.e., that 
corresponding to the Na (I) spectral line, is considered. In this way, not 
only the influence of a feature or a number of features on the algorithm’s 
accuracy (both training and testing procedures) can be evaluated, i.e., 
by adjusting the threshold value, but the most important spectral lines 
for classification purposes can be identified as well, as it has been dis-
cussed in more details elsewhere (Gyftokostas et al., 2021). 

The overall performance of the RFC algorithm using different 
threshold values of the variable importances is presented in Fig. 8. The 
best results were obtained for a threshold value of 0.021, where the 
training accuracy is high, and the testing accuracy decreases within the 
standard deviation of the training accuracies stemming from the cross- 
validation. The obtained accuracy for this threshold value was deter-
mined to be (98.8 ± 1.2)% for the training and 98.9% for testing, cor-
responding to only six features. In this case, considering the threshold 
value which results to the highest accuracy, it appears from Fig. 7 that 
the emissions of Na (I), Ca (II) and K (I) are the main spectral features 
which contribute the most in the discrimination accuracy, all of them 
corresponding to the inorganic ingredients of honey. 

Next, the constructed predictive models were used to classify 30 
more samples obtained from the second honey collection which was 
performed one month after sealing the honey cells (see also Table 1). For 
this purpose, the LDA and RFC models that were previously constructed 

Fig. 4. a) LIBS spectra of honey samples from bees fed with inverted syrup, sugar water syrup and candy paste. For comparing the honey spectra with the spectra of 
the bee food, the spectra of inverted syrup, sugar water syrup and candy paste are shown, as well. b) Enlarged views of the aforementioned spectra within the spectral 
regions 390 nm–399 nm, 587 nm–592 nm and 765 nm–771 nm, where the spectral lines of Ca (II), Na (I) and K (I) are shown, respectively. 

Fig. 5. Canonical Variable scatter plot indicating the supervised dimensionality 
reduction of the LIBS dataset achieved via the LDA algorithm. 
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were used to predict the class designation of the samples. The LDA al-
gorithm attained an accuracy of 74.5% while the RFC model reached an 
accuracy of 91.5%. From the analysis of these results, it becomes evident 
that for both models most misclassifications occurred for the inverted 
syrup and syrup classes. Specifically, in the corresponding confusion 
matrix concerning the LDA model, shown in Figs. 6c and 274 LIBS 
spectra of the syrup class were falsely predicted as belonging to the 
inverted syrup class, and 59 inverted syrup spectra were predicted as 
belonging to the syrup class. Similar trend was observed using the RFC 
algorithm (see Fig. 6d), although in this case the number of mis-
classifications was substantially reduced, i.e., 77 LIBS spectra belonging 
to the syrup class were falsely predicted as inverted syrup, while 48 

spectra were misclassified as belonging to the control class. 
These findings are very interesting, as they suggest that the atomic 

emissions of the inorganic elements (e.g., Ca, Na and K) in the LIBS 
spectra of the honeys from the first collection were very similar to the 
spectra obtained from honeys collected one month later. The very high 
prediction accuracies indicate that the different classes of the honeys 
that were collected in different time periods can be successfully identi-
fied by LIBS. This is not observed in the case of recording changes of 
sugars, as the enzymes in the sealed cells convert the carbohydrates, thus 
differentiating their concentrations over time (Al-Mahasneh et al., 2021; 
Guler et al., 2007). For example, if the checking of the effect of feeding in 
honey was based only on sucrose concentration it would be very difficult 

Fig. 6. Confusion matrixes for the prediction of the test/validation data for the: a) LDA algorithm, b) RFC algorithm, and the samples from the second collection for 
the: c) LDA, and d) RFC algorithms, respectively. 

Fig. 7. Variable importances of the RFC model plotted versus the wavelength.  
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to be detected after some months, because the added by bees invertase 
convert this carbohydrate to fructose and glucose. 

4. Conclusions 

In the present study, LIBS is used, for the first time, not only to study 
the effect of bee-feeding on honey samples but also to classify them on 
the basis of the type of the bee food. Thus, it was proved that the effect of 
the type of bee feeding can be deduced by certain spectral lines of honey 
LIBS spectra such as magnesium, calcium, potassium and sodium, which 
were found to be the most important for the discrimination of the honey 
samples. In addition, the effect of bee-feeding for further period of time 
seems not to contribute significantly at honey spectra. According to 
these results the bee-feeding seems to reach a maximum level beyond 
that no significant difference can be observed. This is quite important 
since with specific amount of feed more beehives and more high-quality 
honey can be produced. Also, the LDA algorithms seems to be a less 
generalized model for prediction of honeys (according to the predictive 
accuracy of the second honey collection). It must be pointed out that 
LDA is quite useful for visualization of multidimensional data, but when 
it comes in terms of robustness and accuracy can be deceiving. For this 
reason, RFC algorithm were applied, since it is considering one of the 
most robust and generalized predictive models that is confirmed by the 
obtained results. 
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