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Abstract— In the realm of 5G networking, the optimization 

of user allocation through network slicing stands as a critical 

challenge, with the potential to substantially enhance the 

Quality of Service (QoS). This study examines three AI-based 

allocation algorithms—Simulated Annealing, which begins with 

a Randomized algorithm, Greedy, and Local Search with Hill 

Climbing—to efficiently distribute network resources. Next, we 

compare the algorithms for different user densities to 

understand how well each one can handle the situation at hand 

in terms of balance in allocation, consumption (time and 

memory) and complexity. Our research advances beyond 

conventional allocation techniques by offering different 

solutions for different needs thus improving QoS through the 

alignment of user demands with network capacity.  

Keywords— Network Slicing, AI-Based Allocation Algorithms, 

5G Quality of Service (QoS), Resource Optimization, Simulated 
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I. INTRODUCTION 

The advent of 5G technology heralds a transformative era 

in telecommunications, distinguished by its capacity to deliver 

highly personalized network experiences through network 

slicing [1][2][3]. Network slicing allows for the segmentation 

of a single physical network into multiple virtual segments, 

each precisely tailored to meet specific user demands and 

service requirements. A critical challenge in this paradigm is 

the efficient allocation of users to these network slices, a factor 

that significantly impacts network performance and Quality of 

Service (QoS). 

This paper addresses this challenge by integrating a variety 

of allocation algorithms, including random allocation 

optimized with the simulated annealing algorithm, a Greedy 

algorithm enhanced with a user-centric heuristic, and a hill-

climbing local search algorithm. These methodologies 

collectively aim to optimize bandwidth distribution and user 

allocation. Our proposed bandwidth allocation mechanism 

dynamically adjusts to user demands, ensuring optimal 

resource distribution and preventing service degradation. This 

approach establishes a robust and adaptable network 

environment that outperforms existing models in terms of 

adaptability, user satisfaction, and operational efficiency [4]. 

We present a comprehensive AI-based framework that 

employs these algorithms not only as allocation tools but as 

mechanisms for understanding the dynamics of network 

resource management too. The Greedy algorithm [5], for 

instance, prioritizes immediate needs to quickly optimize 

resource usage. While this method often yields better short-

term outcomes by addressing the most urgent requirements 

first, it inherently lacks foresight, potentially compromising 

long-term efficiency. The local search approach, utilizing the 

Hill Climbing algorithm [6], is particularly effective at 

balancing load across network slices. By making iterative 

small adjustments to enhance the current state, this method 

embodies the principle of incremental improvement. It 

focuses on immediate gains and on enhancing overall network 

performance and stability. Randomized Allocation algorithm 

[7], underscores the necessity for sophisticated allocation 

strategies along with it. By indiscriminately assigning network 

resources, this method highlights the inefficiencies of such 

randomness and the need for a more strategic allocation. 

Simulated Annealing algorithm [8], combined with the 

randomized allocation, merges the exploratory nature of 

random allocation with the strategic refinement of simulated 

annealing. Initially employing a stochastic approach, this 

algorithm provides a benchmark by using the randomized 

allocation algorithm. Through the principles of simulated 

annealing, it iteratively refines this initial allocation using a 

probabilistic acceptance criterion. This allows the algorithm 

to escape local optima and explore a broader solution space, 

balancing exploration and exploitation. In the current 

landscape of 5G network slicing research, various studies 

have proposed methodologies focusing on IoT, dynamic 

resource allocation, mechanisms, and mathematical models 

for resource allocation, among others [9][10][11][12][13]. 

Prior research has explored heuristic search methods for 

automated planning and applied heuristic algorithms to solve 

optimization problems, such as the mapping problem for 

optimal static allocation of processes on distributed memory 

architectures. Independent evaluations of hill-climbing and 

simulated annealing have demonstrated their effectiveness in 

addressing combinatorial optimization challenges [14][15]. 



While these studies provide valuable insights, they often lack 

a comprehensive approach that integrates user requirements 

with dynamic, real-time adjustments in network bandwidth 

allocation. So, there remains a need for approaches that 

integrate heuristic algorithms with user-centric requirements 

for network slicing in these environments. 

This paper introduces a distinct methodology that 

considers user-specific requirements for network slicing while 

employing a multi-algorithmic approach. Central to the 

methodology is the nature of these algorithms, which align 

with the dynamic requirements of 5G networks. Service 

demands within these networks are inherently variable, so this 

framework is constructed to respond to these variations, 

thereby optimizing network performance in an ongoing cycle.  

Unique to this study is the dynamic approach to allocation, 

which allows the system to adapt to real-time network 

conditions and user demands. This is particularly relevant in 

the context of 5G networks, where service demands variable. 

By employing AI-based algorithms, our framework is 

designed to continuously improve the network's allocation 

decisions, ensuring that the network's performance is 

optimized step by step. The remainder of the paper is 

organized as follows. Section II details the operational 

principles and implementation of three distinct allocation 

strategies: Randomized Allocation with Simulated Annealing, 

Greedy, and Local Search with Hill Climbing. Section III 

describes the setup and specific parameters used to evaluate 

the AI-based allocation algorithms in a 5G network 

environment. Section IV provides a comparative analysis of 

the performance metrics for each algorithm, focusing on their 

effectiveness in resource distribution and adaptability under 

varying network loads. The paper concludes with Section V, 

where we summarize the key findings and discuss potential 

areas for further research and improvement in network slicing 

and resource allocation within 5G networks. 

II. ALLOCATION ALGORITHMS 

The approach taken utilizes three distinct allocation 

algorithms, each with its unique heuristic designed to optimize 

the allocation process. The Greedy Allocation algorithm 

optimizes resource usage by prioritizing users with higher 

bandwidth requests. It begins by sorting users in descending 

order based on their bandwidth requirements, ensuring that 

those with the most substantial needs are addressed first. Then, 

it iterates through each user, attempting to allocate them to an 

available network slice. Within this process, it checks if the 

user's bandwidth request can be accommodated by the slice's 

capacity and if allocating the request maintains a positive 

available bandwidth for the slice. If these conditions are met, 

the user is added to the slice's user list, and the slice's available 

bandwidth is adjusted accordingly. This method emphasizes 

immediate gains by swiftly assigning resources to users with 

urgent needs. 

The 'hill_climbing_optimized_for_balance' function in 

Algorithm 2, extends traditional optimization techniques to 

prioritize both immediate needs and fair resource distribution. 

It initializes allocations based on user requests and slice 

capacities, iteratively refining them to improve balance. By 

moving users between slices and evaluating the impact on 

balance, the function aims to achieve a more equitable 

allocation. 

 

 

 

The balance ratio calculation algorithm iterates through 

each slice, calculating the balance as the difference between 

total and available bandwidth divided by the number of users, 

and then computes the standard deviation to gauge overall 

fairness. 

The provided functions encapsulate a resource allocation 

strategy within a network environment. The 

'random_allocation' function randomly assigns users to 

network slices based on their bandwidth and frequency 

requirements, with a contingency plan for cases where users' 

needs exceed slice capacities, thereby preventing resource 

wastage. On the other hand, the 'Simulated Annealing' 

algorithm optimizes resource allocation iteratively, employing 

a stochastic approach to explore potential allocations while 

considering both immediate resource constraints and the 

broader implications of network balance. The 

‘get_neighbor_with_overflow' function plays a crucial role in 

generating neighboring states for the simulated annealing 

process, ensuring that any moves adhere to slice capacities and 

handle overflowed users appropriately. Finally, the 

'calculate_cost' function quantifies the efficiency of a given 

allocation by assessing overcapacity and the number of 

overflowed users, providing insights into the effectiveness of 

the resource allocation strategy. 

A unique element of this methodology is the dynamic 

bandwidth reallocation process implemented within the Local 



Search algorithm. If a user cannot be initially allocated due to 

all slices being at capacity, the algorithm attempts to 

redistribute the bandwidth from less utilized slices to 

accommodate additional users. This process is crucial for 

enhancing the network's adaptability and overall user 

satisfaction. 

 

 

 

 

 

III. DESCRIPTION OF TESTBED 

The testbed for our simulation is structured around a 5G 

network environment operated by a macro cell base station 

with a total spectral capacity of 400MHz. To effectively 

evaluate AI-based algorithms for optimizing user allocation 

across network slices, our setup divides this capacity into five 

distinct slices, each dedicated to different service needs as 

detailed in Table I. These slices include services ranging from 

browsing and email with high latency tolerance to ultrahigh-

quality video streaming, catering to a broad spectrum of data 

demands. Each slice is allocated a portion of the total network 

capacity, ensuring equitable bandwidth distribution. 

Our simulation environment is populated with a diverse 

user base consisting of 250, 400, and 500 users, each requiring 

bandwidth varying from 1 Mbps to 25 Mbps. The users also 

experience a wide range of Signal-to-Noise Ratio (SNR) 

values from 10, indicating subpar conditions, to 45, reflecting 

excellent connectivity conditions. This setup mimics real-

world scenarios where users with varying requirements 

interact with finite network resources.  

Each user in the simulation is characterized by a unique 

identifier and a specific bandwidth request (in Mbps) and a 

request in MHz. The conversion from Mbps to MHz in the 

context of the Shannon-Hartley theorem involves determining 



the necessary bandwidth to achieve a specified data rate given 

a certain signal-to-noise ratio. According to the theorem, the 

maximum data rate C that can be achieved over a 

communication channel can be calculated using the formula 

𝐶 = 𝐵 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅), where C is the channel capacity in 

bits per second, B is the bandwidth in hertz, and SNR is the 

signal-to-noise ratio in linear terms. This conversion to linear 

SNR is achieved by the equation 𝑆𝑁𝑅(𝑙𝑖𝑛𝑒𝑎𝑟) =
10^(𝑆𝑁𝑅(𝑑𝐵)/10)). This environment along with its 

associated parameters achieves SNR values ranging from 10 

to 20 if the user is between the outer circle and the middle 

circle, 20 to 30 if the user is between the inner circle and the 

middle circle and 30 to 45 if the user is inside the inner circle 

shown in Figure 1. 

TABLE I.  SLICE CONFIGURATION FOR EXPERIMENTS 

Slice 

Name 
Description 

Maximum 

Throughput 

Spectrum 

Allocation 

Browsing 
and Email 

High latency-
tolerant applications 

Up to 5 
Mbps 

52 MHz 
(Slice 0) 

VoIP 
Voice 

communications 

Up to 1 

Mbps 

13 MHz 

(Slice 1) 

HDTV 
High-definition 
video content 

Up to 16 
Mbps 

150 MHz 
(Slice 2) 

Video 

Streaming 

Ultrahigh-quality 

video streaming 

Up to 25 

Mbps 

160 MHz 

(Slice 3) 

Podcasts 
Audio streaming 

services 

Up to 2 

Mbps 

23 MHz 

(Slice 4) 
 

 

 

Fig. 1. The Simulation Environment With its Parameters (Base station and 

Users) 

IV. PERFORMANCE EVALUATION 

Analyzing the resource allocation across 250, 400, and 500 

users in a 5G MIMO network environment provides insightful 

contrasts between the Greedy, Hill Climbing, and Simulated 

Annealing algorithms. The disparity in performance across 

these algorithms underscores the inherent trade-offs between 

efficiency, complexity, consumption, and overall network 

utilization. The evaluation of the three algorithms is based on 

several key performance metrics, including the Total Request 

MHz of Overflowed Users, which indicates the total 

bandwidth requested by users that could not be satisfied due 

to insufficient resources. Lower values in this metric suggest 

better performance in meeting user demands. Additionally, 

the Balance Ratio measures how evenly the available 

resources are distributed among network slices, with lower 

values indicating a more balanced allocation. Table II 

demonstrates that as the number of users decreases, all 

algorithms perform better, with the Hill Climb and Simulated 

Annealing algorithms consistently outperforming the Greedy 

algorithm, particularly at higher user loads. Table III shows 

that the Simulated Annealing algorithm consistently provides 

the best balance across all scenarios, followed by the Hill 

Climb algorithm. The figures 2 through 4 illustrate how each 

algorithm handles spectrum allocation under different user 

loads (250, 400, and 500 users). 

TABLE II.  TOTAL REQUEST MHZ OF OVERFLOWED USERS 

Algorithm  500 Users Scenario 
400 Users 

Scenario 

250 Users 

Scenario 

Greedy  325 MHz 150 MHz 10 MHz 

Hill Climb 260 MHz 130 MHz 0 MHz 

Simulated 
Annealing 

250 MHz 120 MHz 0 MHz 

TABLE III.  BALANCE RATIOS OF THE ALGORITHMS  

Algorithm  500 Users Scenario 
400 Users 

Scenario 

250 Users 

Scenario 

Greedy  1.5 1.25 1.15 

Hill Climb 1.15 1 0.85 

Simulated 

Annealing 
0.8 0.7 0.6 

 

The figures and tables illustrate the performance of three 

allocation algorithms—Simulated Annealing, Hill Climbing 

Optimized, and Greedy Allocation—in distributing users 

across network slices under varying user densities. Simulated 

Annealing consistently achieves the most balanced 

distribution with the lowest number of unsatisfied bandwidth 

requests and the best balance ratios, indicating optimal 

performance in managing resources. Hill Climbing also 

performs well, providing improved balance and fewer 

unsatisfied requests compared to the Greedy Allocation. The 

Greedy Allocation algorithm results in the highest number of 

unsatisfied requests and the least balanced distribution, 

particularly under higher user densities. 

The Greedy algorithm efficiently fulfills high bandwidth 

requests first, with a complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛 +  𝑛 ⋅ 𝑚) , 

where n is the number of users and m is the number of slices. 

This approach improves user satisfaction by addressing high-

demand users upfront. However, it performs poorly in overall 

resource allocation, as it rapidly depletes available bandwidth, 

leaving smaller requests unfulfilled. In scenarios with high 

user densities (400-500 users), as shown in Tables II and III, 

the algorithm left the most unused bandwidth in MHz and 

demonstrated the least efficient resource allocation, with a 

high balance ratio indicating uneven slice usage. This 

imbalance reflects that while some slices were heavily loaded, 

others remained underutilized. Figures 2, 3, and 4 also 



highlight how early large allocations exhaust resources, 

making it difficult to accommodate subsequent users. While 

straightforward and fast, the Greedy method is inefficient for 

long-term resource distribution in high-density environments. 

 

Fig. 2. User Allocation to network slices for 250 users 

 

Fig. 3. User Allocation to network slices for 400 users 

The Local Search algorithm with Hill Climbing builds on 

the Greedy algorithm's initial allocations, with a complexity 

of 𝑂(𝑛 ⋅ 𝑚 +  𝑘 ⋅ 𝑛 ⋅ 𝑚), where n is the number of users, m 

is the number of slices, and k is the number of iterations. Hill 

Climbing improves resource utilization by iteratively 

optimizing these allocations, making it well-suited for smaller, 

less complex networks where rapid adjustments can enhance 

performance. This method achieved a more balanced resource 

distribution, reducing unused bandwidth across slices, as 

reflected in figures 2 to 4. By redistributing resources, it 

lowered the number of overflowed users compared to the 

Greedy approach, leading to higher user satisfaction. The 

algorithm also achieved a lower balance metric, indicating 

better slice utilization and consistent network performance. 

However, as the number of users increased, the algorithm 

required more processing time and memory to converge, 

which could negatively impact key QoS parameters like end-

to-end delay and throughput in larger networks. 

 

Fig. 4. User Allocation to network slices for 500 users 

Simulated Annealing algorithm takes a strategic, 

probabilistic approach to allocation. By allowing for a 

controlled exploration of allocation possibilities, this 

algorithm demonstrated superior performance in resource 

utilization, effectively reallocating resources to minimize 

unused bandwidth. Its ability to probabilistically accept 

suboptimal moves enabled it to escape local optima and 

achieve a more balanced allocation. Simulated Annealing 

consistently reallocated overflowed users and moved already 

allocated users around effectively across all scales. Simulated 

Annealing achieved the lowest overflow rates among the three 

algorithms which resulted in the highest level of user 

satisfaction. As seen in the resource allocation Figures 3 and 

4, with 400 and 500 users respectively, this algorithm 

consistently achieved the lowest balance metric, indicating the 

most equitable distribution of resources among the slices even 

as the scale increased. It is built to optimize an initial random 

allocation and together they have a complexity of 𝑂(𝑖 ⋅ (𝑛 +
𝑚) + 𝑛 ⋅ 𝑚) where i is the number of iterations based on the 

cooling schedule, simulated annealing efficiently found near-

optimal solutions, making it suitable for dynamic and high-

demand network environments. The cooling schedule and 

cooling rate were crucial in determining the effectiveness of 

the Simulated Annealing algorithm. The cooling schedule 

dictates how the temperature decreases over time, allowing for 

controlled exploration of the solution space. In this study, an 

exponential cooling schedule was used, where the temperature 

is reduced by multiplying it with a cooling rate after each 

iteration. A cooling rate of 0.85 was selected through 

experimentation, striking a balance between allowing 

sufficient exploration early on and ensuring convergence to a 

near-optimal solution. A slower cooling rate could have 

prolonged the search process without significantly improving 

outcomes, while a faster rate might have led to premature 

convergence on suboptimal allocations. Thus, the chosen 

cooling schedule positively influenced the algorithm’s 

performance, enabling it to adaptively redistribute resources 

and minimize overflow effectively, particularly in high-

density user scenarios. 

 The results, as summarized in Tables II and III, highlight 

the varying degrees of success in meeting user bandwidth 



requests and utilizing available slice capacity. These indicate 

that while the Greedy algorithm can quickly allocate 

resources, it is less effective in meeting user demands and 

optimizing resource utilization while the other algorithms, 

with their iterative (Local Search with Hill Climbing) and 

probabilistic (Simulated Annealing) approaches, provide 

superior performance by minimizing unsatisfied user requests 

and maximizing the utilization of available resources. 

Simulated Annealing, in particular, consistently shows the 

best balance between meeting user demands and efficient 

resource utilization, making it the most effective algorithm for 

dynamic and high-density network environments. It is 

understood that each of these algorithms represents a different 

point on the spectrum of complexity and efficiency and 

understanding these differences is crucial for implementing 

the most appropriate resource allocation strategy in 5G. 

TABLE IV.  TIME TAKEN AND MEMORY USAGE 

Algorithm 
Time Taken in ms 

(250/400/500 Users) 

Memory 

Usage in KB 

(250/400/500 

Users) 

Greedy 0.011/0.03/0.035 4/4/12 

Hill Climb 0.065/0.086/0.11 92/92/92 

Simulated 

Annealing 
0.02/0.035/0.045 8/12/12 

Regarding the time taken and the memory usage of each 

of these algorithms, as seen from table IV, because of the 

strategy each algorithm follows, Hill Climb took the most time 

to complete and it is the one that has the worst usage in KB 

while Greedy search was the cheapest and fastest but cannot 

account for the reallocation of unsatisfied users. 

V. CONCLUSION AND FUTURE WORK 

The comparative analysis underscores the importance of 

selecting an appropriate algorithm based on the specific 

network characteristics. For 5G environments, where dynamic 

and efficient resource utilization is crucial, the Local Search 

with Hill Climbing algorithm holds significant promise. Its 

sophisticated optimization techniques balance immediate user 

demands with the goal of equitable network resource 

distribution. On the other hand, as networks grow in 

complexity and density, Simulated Annealing stands out for 

its robust performance, since even as the scale increases, 

network efficiency and user satisfaction are not compromised. 

Despite the practical applications of the algorithms 

studied, the theoretical basis for their performance in varying 

network conditions requires further exploration. For instance, 

while Simulated Annealing is known for escaping local 

optima in complex landscapes, its performance can 

significantly depend on the choice of cooling schedule and 

temperature parameters.  

Further research could explore hybrid approaches that 

combine the strengths of these algorithms. For instance, 

combining the predictive capabilities of machine learning 

with the optimization provided by Simulated Annealing could 

lead to remarkable advancements in resource allocation. 
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