2024 International Conference on Future Communications and Networks (FCN) | 979-8-3315-1288-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/FCN64323.2024.10984896

Optimizing Network Slices: A Comparative
Analysis of Allocation Algorithms for 5G
Environments

Christos Bouras
Computer Engineering and Informatics
Department
University of Patras
Patras, Greece
Email: bouras@upatras.gr

Damianos Diasakos
Computer Engineering and Informatics
Department
University of Patras
Patras, Greece
Email: up1084632@ac.upatras.gr

Apostolos Gkamas
Department of Chemistry
University of loannina
Ioannina, Greece
Email: gkamas@uoi.gr

Vasileios Kokkinos Philippos Pouyioutas Nikolaos Prodromos
Computer Engineering and Informatics Computer Science Department Computer Engineering and Informatics
Department University of Nicosia Department

University of Patras
Patras, Greece
Email: kokkinos@cti.gr

Abstract— In the realm of 5G networking, the optimization
of user allocation through network slicing stands as a critical
challenge, with the potential to substantially enhance the
Quality of Service (QoS). This study examines three Al-based
allocation algorithms—Simulated Annealing, which begins with
a Randomized algorithm, Greedy, and Local Search with Hill
Climbing—to efficiently distribute network resources. Next, we
compare the algorithms for different user densities to
understand how well each one can handle the situation at hand
in terms of balance in allocation, consumption (time and
memory) and complexity. Our research advances beyond
conventional allocation techniques by offering different
solutions for different needs thus improving QoS through the
alignment of user demands with network capacity.

Keywords— Network Slicing, AI-Based Allocation Algorithms,
5G Quality of Service (Qo0S), Resource Optimization, Simulated
Annealing

1. INTRODUCTION

The advent of 5G technology heralds a transformative era
in telecommunications, distinguished by its capacity to deliver
highly personalized network experiences through network
slicing [1][2][3]. Network slicing allows for the segmentation
of a single physical network into multiple virtual segments,
each precisely tailored to meet specific user demands and
service requirements. A critical challenge in this paradigm is
the efficient allocation of users to these network slices, a factor
that significantly impacts network performance and Quality of
Service (QoS).

This paper addresses this challenge by integrating a variety
of allocation algorithms, including random allocation
optimized with the simulated annealing algorithm, a Greedy
algorithm enhanced with a user-centric heuristic, and a hill-
climbing local search algorithm. These methodologies
collectively aim to optimize bandwidth distribution and user
allocation. Our proposed bandwidth allocation mechanism
dynamically adjusts to user demands, ensuring optimal
resource distribution and preventing service degradation. This
approach establishes a robust and adaptable network
environment that outperforms existing models in terms of
adaptability, user satisfaction, and operational efficiency [4].

Nicosia, Cyprus
Email: pouyioutas.p@unic.ac.cy

University of Patras
Patras, Greece
Email: up1072549@ ac.upatras.gr

We present a comprehensive Al-based framework that
employs these algorithms not only as allocation tools but as
mechanisms for understanding the dynamics of network
resource management too. The Greedy algorithm [5], for
instance, prioritizes immediate needs to quickly optimize
resource usage. While this method often yields better short-
term outcomes by addressing the most urgent requirements
first, it inherently lacks foresight, potentially compromising
long-term efficiency. The local search approach, utilizing the
Hill Climbing algorithm [6], is particularly effective at
balancing load across network slices. By making iterative
small adjustments to enhance the current state, this method
embodies the principle of incremental improvement. It
focuses on immediate gains and on enhancing overall network
performance and stability. Randomized Allocation algorithm
[7], underscores the necessity for sophisticated allocation
strategies along with it. By indiscriminately assigning network
resources, this method highlights the inefficiencies of such
randomness and the need for a more strategic allocation.

Simulated Annealing algorithm [8], combined with the
randomized allocation, merges the exploratory nature of
random allocation with the strategic refinement of simulated
annealing. Initially employing a stochastic approach, this
algorithm provides a benchmark by using the randomized
allocation algorithm. Through the principles of simulated
annealing, it iteratively refines this initial allocation using a
probabilistic acceptance criterion. This allows the algorithm
to escape local optima and explore a broader solution space,
balancing exploration and exploitation. In the current
landscape of 5G network slicing research, various studies
have proposed methodologies focusing on IoT, dynamic
resource allocation, mechanisms, and mathematical models
for resource allocation, among others [9][10][11][12][13].
Prior research has explored heuristic search methods for
automated planning and applied heuristic algorithms to solve
optimization problems, such as the mapping problem for
optimal static allocation of processes on distributed memory
architectures. Independent evaluations of hill-climbing and
simulated annealing have demonstrated their effectiveness in
addressing combinatorial optimization challenges [14][15].

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

While these studies provide valuable insights, they often lack
a comprehensive approach that integrates user requirements
with dynamic, real-time adjustments in network bandwidth
allocation. So, there remains a need for approaches that
integrate heuristic algorithms with user-centric requirements
for network slicing in these environments.

This paper introduces a distinct methodology that
considers user-specific requirements for network slicing while
employing a multi-algorithmic approach. Central to the
methodology is the nature of these algorithms, which align
with the dynamic requirements of 5G networks. Service
demands within these networks are inherently variable, so this
framework is constructed to respond to these variations,
thereby optimizing network performance in an ongoing cycle.
Unique to this study is the dynamic approach to allocation,
which allows the system to adapt to real-time network
conditions and user demands. This is particularly relevant in
the context of 5G networks, where service demands variable.
By employing Al-based algorithms, our framework is
designed to continuously improve the network's allocation
decisions, ensuring that the network's performance is
optimized step by step. The remainder of the paper is
organized as follows. Section II details the operational
principles and implementation of three distinct allocation
strategies: Randomized Allocation with Simulated Annealing,
Greedy, and Local Search with Hill Climbing. Section III
describes the setup and specific parameters used to evaluate
the Al-based allocation algorithms in a 5G network
environment. Section IV provides a comparative analysis of
the performance metrics for each algorithm, focusing on their
effectiveness in resource distribution and adaptability under
varying network loads. The paper concludes with Section V,
where we summarize the key findings and discuss potential
areas for further research and improvement in network slicing
and resource allocation within 5G networks.

II. ALLOCATION ALGORITHMS

The approach taken utilizes three distinct allocation
algorithms, each with its unique heuristic designed to optimize
the allocation process. The Greedy Allocation algorithm
optimizes resource usage by prioritizing users with higher
bandwidth requests. It begins by sorting users in descending
order based on their bandwidth requirements, ensuring that
those with the most substantial needs are addressed first. Then,
it iterates through each user, attempting to allocate them to an
available network slice. Within this process, it checks if the
user's bandwidth request can be accommodated by the slice's
capacity and if allocating the request maintains a positive
available bandwidth for the slice. If these conditions are met,
the user is added to the slice's user list, and the slice's available
bandwidth is adjusted accordingly. This method emphasizes
immediate gains by swiftly assigning resources to users with
urgent needs.

The 'hill climbing optimized for balance' function in
Algorithm 2, extends traditional optimization techniques to
prioritize both immediate needs and fair resource distribution.
It initializes allocations based on user requests and slice
capacities, iteratively refining them to improve balance. By

moving users between slices and evaluating the impact on
balance, the function aims to achieve a more equitable
allocation.

Algorithm 1 — Greedy Allocation

function greedy_allocation(users. slices):

Step 1: Sort users by bandwidth request in descending order
sort users by bandwidth request in descending order

Step 2: Tterate through each user
for each user in users:
Attempt to allocate the user to a network slice
for each slice in slices:
Check if the user's request can be accommodated
if user's bandwidth request is less than or equal to slice's
capacity_bandwidth

and the available bandwidth after allocating user's request to slice
1s greater than 0:

Step 3: Allocate resources
add user to slice's user list
decrease slice's available bandwidth by user's bandwidth_request
print "User <user_id> connected to slice: <slice_id>"
break out of inner loop # Move to the next user

Balance Ratio Calculation

function calculate_balance_ratio(slices):

Step 1: Initialize an empty list for balance ratios
ratios =[]

Step 2: Tterate through each slice
for each slice n slices:

Step 3: Calculate balance
1f number of users in slice = 0:
balance = (slice's total bandwidth - slice's available_bandwidth) /
number of users in slice
else:
balance =0 # No users means no balance calculation

Step 4: Store the balance
add balance to ratios

Step 5: Compute the standard deviation of the ratios
balance_metric = calculate standard deviation of ratios

Step 6: Return the balance metric
return balance_metric

The balance ratio calculation algorithm iterates through
each slice, calculating the balance as the difference between
total and available bandwidth divided by the number of users,
and then computes the standard deviation to gauge overall
fairness.

The provided functions encapsulate a resource allocation
strategy ~ within a network environment. The
‘random_allocation' function randomly assigns users to
network slices based on their bandwidth and frequency
requirements, with a contingency plan for cases where users'
needs exceed slice capacities, thereby preventing resource
wastage. On the other hand, the 'Simulated Annealing'
algorithm optimizes resource allocation iteratively, employing
a stochastic approach to explore potential allocations while
considering both immediate resource constraints and the
broader implications of network balance. The
‘get neighbor with overflow' function plays a crucial role in
generating neighboring states for the simulated annealing
process, ensuring that any moves adhere to slice capacities and
handle overflowed wusers appropriately. Finally, the
'calculate cost' function quantifies the efficiency of a given
allocation by assessing overcapacity and the number of
overflowed users, providing insights into the effectiveness of
the resource allocation strategy.

A unique element of this methodology is the dynamic
bandwidth reallocation process implemented within the Local

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

Search algorithm. If a user cannot be initially allocated due to
all slices being at capacity, the algorithm attempts to
redistribute the bandwidth from less utilized
accommodate additional users. This process is crucial for
enhancing the network's adaptability and overall user
satisfaction.

Algorithm 2 — Local Search with Hill Climbing

def hill_climbing_optimized_for_balance(slices. users):
Step 1: Initialize vanables
overflow_users = 0 # Track users whose bandwidth request cannot be
allocated
user_allocation = {} # Dictionary to store which slice each user 1s
allocated to

Step 2: Initial Allocation
for user in users:
allocated = False
for shice in slices:
If user's request can be satisfied by the slice’s available bandwidth
1f user.bandwidth_request == slice.available_bandwidth:
slice.available_bandwidth = user.bandwidth request # Deduct
the bandwidth
slice users.append(user) # Add user to the slice
user_allocation[user] = slice # Track user's slice allocation
allocated = True
break # Move to the next user after allocation
1f not allocated:
overflow_users += 1 # Increment if the user cannot be allocated due
to bandwidth limits

Step 3: Optimization for balance (hill climbing)
best_balance_metric = calculate_balance_ratio(slices) # Initial balance
metric based on current allocation

improved = True
while improved:

improved = False # Reset improvement flag for each iteration

for user in users:

onginal slice = user_allocation[user] # Store the user's current slice

for slice in slices:
Check 1f moving the user to another slice 1s possible
if slice != orngmal slice and user.bandwidth request <=
slice available_bandwidth:
Step 4: Move uvser to the new slice
original_slice available bandwidth += user.bandwidth_request
Restore bandwidth to the original slice
slice available_bandwidth -= user bandwidth_request # Deduct
bandwidth from the new slice
user_allocation[user] = slice # Update the user's allocation to
the new slice

Evaluate the new balance after the move
new_balance metric = calculate_balance_ratio(slices)
if new_balance metric < best_balance metric: # Check if the
balance improved
best_balance_metric = new_balance_metric # Update to the
new best balance
umproved = True # Set flag to continue optimization
else:
Revert the change if no improvement
slice available_bandwidth += user bandwidth_request
original_slice available_bandwidth =
user. bandwidth_request
user_allocation[user] = original slice
break # Break inner loop after attempting to move the user

Step 5: Retum the count of users who couldn't be allocated
return overflow_users

slices to

Algorithm 3 — Simulated Annealing to Optimize Random Search

function random_allocation(users, slices):
for each user in users:

Shuffle slices randomly

allocated = False

for each slice in slices:

if userbandwidth request <= slice.capacity bandwidth and
slice available_hz - user hz request = (-

Add user to slice users
Decrease slice available_hz by user hz_request
allocated = True
Print "User user user_id connected to slice: slice slice_id"
break

if not allocated:
Print "User useruser_id not allocated because bandwidth request
exceeds slice capacities.”
Add user to overflowed_users

function simulated_annealing(slices, users. overflowed_users, initial_temp._
cooling_rate, min_temp):
current_temp = mnitial_temp
Randomly allocate users to slices, potentially creating overflowed users
random_allocation(users. slices)
current_cost = calculate_cost(slices, overflowed users)

while current_temp > min_temp:
next_state, next overflowed = get neighbor with overflow(slices,
users, overflowed_users)
next_cost = calculate_cost(next_state, next_overflowed)
cost_diff = next_cost - current_cost

1f cost_diff < 0 or exp(-cost_diff / current_temp) > random():
Accept the new state
slices = next_state
overflowed users = next overflowed
current_cost = next_cost

current_temp *= cooling_rate
return slices, overflowed users

function get_neighbor with overflow(slices. users, overflowed users):
Create a shallow copy of slices as new_slices
potential users = users + overflowed users
user_to_move = random.choice(potential users)
current_slice = Find slice where user_to_move is located
target_slice = Randomly choose a slice from new_slices

if current_slice != target_slice:
if current slice:
Remove user_to_move from current_slice
Increase current_slice.available_hz by user_to_move.hz_request

if target_slice.available_hz >=user_to_move hz_request:
Add user_to_move to target_slice
Decrease target_slice.available_hz by user_to_move. hz_request
if user_to_move 1s in overflowed_users:
Remove user_to_move from overflowed_users
else:
if user_to_move was not in any slice:
Add user_to_move to overflowed_users

return new_slices, overflowed users

function calculate_cost(slices, overflowed users):
Calculate cost based on overcapacity and number of overflowed users
over_capacity_cost = sum((slice capacity_bandwidth - slice available_hz)
/2 for slice m shices if slice.available_hz < Q)
overflow_cost = length(overflowed users) * 100
return over_capacity_cost + overflow_cost

Overflowed Users Reallocation

function reallocate_overflowed_users(overflowed. slice_configurations):
not_allocated = empty list

Attempt to reallocate bandwidth for overflowed users
for each overflowed_user in overflowed:
PRINT overflowed_user.user_id
if slice_configurations['overflow']['total'] - overflowed_user hz_request
==0:
Sufficient bandwidth available, reallocate
slice_configurations['overflow']["total'] =
overflowed userhz request
else:
Not enough bandwidth. add user to not_allocated list
Append overflowed user.user_id to not_allocated

Handle users that could not be allocated
for each not_allocated_user in not_allocated:
if not_allocated_user is not None:
PRINT not_allocated_user

III. DESCRIPTION OF TESTBED

The testbed for our simulation is structured around a 5G
network environment operated by a macro cell base station
with a total spectral capacity of 400MHz. To effectively
evaluate Al-based algorithms for optimizing user allocation
across network slices, our setup divides this capacity into five
distinct slices, each dedicated to different service needs as
detailed in Table I. These slices include services ranging from
browsing and email with high latency tolerance to ultrahigh-
quality video streaming, catering to a broad spectrum of data
demands. Each slice is allocated a portion of the total network
capacity, ensuring equitable bandwidth distribution.

Our simulation environment is populated with a diverse
user base consisting of 250, 400, and 500 users, each requiring
bandwidth varying from 1 Mbps to 25 Mbps. The users also
experience a wide range of Signal-to-Noise Ratio (SNR)
values from 10, indicating subpar conditions, to 45, reflecting
excellent connectivity conditions. This setup mimics real-
world scenarios where users with varying requirements
interact with finite network resources.

Each user in the simulation is characterized by a unique
identifier and a specific bandwidth request (in Mbps) and a
request in MHz. The conversion from Mbps to MHz in the
context of the Shannon-Hartley theorem involves determining

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

the necessary bandwidth to achieve a specified data rate given
a certain signal-to-noise ratio. According to the theorem, the
maximum data rate C that can be achieved over a
communication channel can be calculated using the formula
C = Blog,(1+ SNR), where C is the channel capacity in
bits per second, B is the bandwidth in hertz, and SNR is the
signal-to-noise ratio in linear terms. This conversion to linear
SNR is achieved by the equation SNR(linear) =
10~(SNR(dB)/10)). This environment along with its
associated parameters achieves SNR values ranging from 10
to 20 if the user is between the outer circle and the middle
circle, 20 to 30 if the user is between the inner circle and the
middle circle and 30 to 45 if the user is inside the inner circle
shown in Figure 1.

TABLE L SLICE CONFIGURATION FOR EXPERIMENTS

Slice Description Maximum Spectrum
Name P Throughput Allocation
Browsing High latency- Upto5 52 MHz
and Email | tolerant applications Mbps (Slice 0)
VoIP Voice Uptol 13 MHz
communications Mbps (Slice 1)
High-definition Upto 16 150 MHz

HDTV video content Mbps (Slice 2)
Video Ultrahigh-quality Upto 25 160 MHz
Streaming video streaming Mbps (Slice 3)
Podcasts Audio streaming Upto2 23 MHz
services Mbps (Slice 4)

Fig. 1. The Simulation Environment With its Parameters (Base station and
Users)

IV. PERFORMANCE EVALUATION

Analyzing the resource allocation across 250, 400, and 500
users in a 5G MIMO network environment provides insightful
contrasts between the Greedy, Hill Climbing, and Simulated
Annealing algorithms. The disparity in performance across
these algorithms underscores the inherent trade-offs between
efficiency, complexity, consumption, and overall network
utilization. The evaluation of the three algorithms is based on
several key performance metrics, including the Total Request
MHz of Overflowed Users, which indicates the total
bandwidth requested by users that could not be satisfied due

to insufficient resources. Lower values in this metric suggest
better performance in meeting user demands. Additionally,
the Balance Ratio measures how evenly the available
resources are distributed among network slices, with lower
values indicating a more balanced allocation. Table II
demonstrates that as the number of users decreases, all
algorithms perform better, with the Hill Climb and Simulated
Annealing algorithms consistently outperforming the Greedy
algorithm, particularly at higher user loads. Table III shows
that the Simulated Annealing algorithm consistently provides
the best balance across all scenarios, followed by the Hill
Climb algorithm. The figures 2 through 4 illustrate how each
algorithm handles spectrum allocation under different user
loads (250, 400, and 500 users).

TABLE II. TOTAL REQUEST MHZ OF OVERFLOWED USERS
Algorithm 500 Users Scenario 400 Use.r N 250 Use'rs
Scenario Scenario
Greedy 325 MHz 150 MHz 10 MHz
Hill Climb 260 MHz 130 MHz 0 MHz
Simulated 250 MHz 120 MHz 0 MHz
Annealing
TABLE III. BALANCE RATIOS OF THE ALGORITHMS
Algorithm 500 Users Scenario 400 Use.r s 250 Use.rs
Scenario Scenario
Greedy 1.5 1.25 1.15
Hill Climb 1.15 1 0.85
Simulated 0.8 0.7 0.6
Annealing

The figures and tables illustrate the performance of three
allocation algorithms—Simulated Annealing, Hill Climbing
Optimized, and Greedy Allocation—in distributing users
across network slices under varying user densities. Simulated
Annealing consistently achieves the most balanced
distribution with the lowest number of unsatisfied bandwidth
requests and the best balance ratios, indicating optimal
performance in managing resources. Hill Climbing also
performs well, providing improved balance and fewer
unsatisfied requests compared to the Greedy Allocation. The
Greedy Allocation algorithm results in the highest number of
unsatisfied requests and the least balanced distribution,
particularly under higher user densities.

The Greedy algorithm efficiently fulfills high bandwidth
requests first, with a complexity of O(nlogn + n-m),
where n is the number of users and m is the number of slices.
This approach improves user satisfaction by addressing high-
demand users upfront. However, it performs poorly in overall
resource allocation, as it rapidly depletes available bandwidth,
leaving smaller requests unfulfilled. In scenarios with high
user densities (400-500 users), as shown in Tables II and III,
the algorithm left the most unused bandwidth in MHz and
demonstrated the least efficient resource allocation, with a
high balance ratio indicating uneven slice usage. This
imbalance reflects that while some slices were heavily loaded,
others remained underutilized. Figures 2, 3, and 4 also

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

highlight how early large allocations exhaust resources,
making it difficult to accommodate subsequent users. While
straightforward and fast, the Greedy method is inefficient for
long-term resource distribution in high-density environments.

mmm Simulated Annealing
e Hill Climbing Optimized
mmm Greedy Allocation

120 120

Users Connected

Slice 0 Slice 1 Slice 2 Slice 3 Slice 4 Overflow
Slices

Fig. 2. User Allocation to network slices for 250 users

126 = Simulated Annealing
mm Hill Climbing Optimized

120 mmm Greedy Allocation

100

@
=

Users Connected

Slice 0 Slice 1 Slice 2 Slice 3 Slice 4
Slices

Overflow

Fig. 3. User Allocation to network slices for 400 users

The Local Search algorithm with Hill Climbing builds on
the Greedy algorithm's initial allocations, with a complexity
of O(n-m + k-n-m), where n is the number of users, m
is the number of slices, and k is the number of iterations. Hill
Climbing improves resource utilization by iteratively
optimizing these allocations, making it well-suited for smaller,
less complex networks where rapid adjustments can enhance
performance. This method achieved a more balanced resource
distribution, reducing unused bandwidth across slices, as
reflected in figures 2 to 4. By redistributing resources, it
lowered the number of overflowed users compared to the
Greedy approach, leading to higher user satisfaction. The
algorithm also achieved a lower balance metric, indicating
better slice utilization and consistent network performance.
However, as the number of users increased, the algorithm
required more processing time and memory to converge,
which could negatively impact key QoS parameters like end-
to-end delay and throughput in larger networks.

140 E
mmm Simulated Annealing 134 135

s Hill Climbing Optimized
mm Greedy Allocation

120
114

8

Users Connected
3

Slice 0 Slice 1 Slice 2 Slice 3 Slice 4
Slices

Overflow

Fig. 4. User Allocation to network slices for 500 users

Simulated Annealing algorithm takes a strategic,
probabilistic approach to allocation. By allowing for a
controlled exploration of allocation possibilities, this
algorithm demonstrated superior performance in resource
utilization, effectively reallocating resources to minimize
unused bandwidth. Its ability to probabilistically accept
suboptimal moves enabled it to escape local optima and
achieve a more balanced allocation. Simulated Annealing
consistently reallocated overflowed users and moved already
allocated users around effectively across all scales. Simulated
Annealing achieved the lowest overflow rates among the three
algorithms which resulted in the highest level of user
satisfaction. As seen in the resource allocation Figures 3 and
4, with 400 and 500 users respectively, this algorithm
consistently achieved the lowest balance metric, indicating the
most equitable distribution of resources among the slices even
as the scale increased. It is built to optimize an initial random
allocation and together they have a complexity of O(i - (n +
m) + n - m) where i is the number of iterations based on the
cooling schedule, simulated annealing efficiently found near-
optimal solutions, making it suitable for dynamic and high-
demand network environments. The cooling schedule and
cooling rate were crucial in determining the effectiveness of
the Simulated Annealing algorithm. The cooling schedule
dictates how the temperature decreases over time, allowing for
controlled exploration of the solution space. In this study, an
exponential cooling schedule was used, where the temperature
is reduced by multiplying it with a cooling rate after each
iteration. A cooling rate of 0.85 was selected through
experimentation, striking a balance between allowing
sufficient exploration early on and ensuring convergence to a
near-optimal solution. A slower cooling rate could have
prolonged the search process without significantly improving
outcomes, while a faster rate might have led to premature
convergence on suboptimal allocations. Thus, the chosen
cooling schedule positively influenced the algorithm’s
performance, enabling it to adaptively redistribute resources
and minimize overflow effectively, particularly in high-
density user scenarios.

The results, as summarized in Tables II and I1I, highlight
the varying degrees of success in meeting user bandwidth

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

requests and utilizing available slice capacity. These indicate
that while the Greedy algorithm can quickly allocate
resources, it is less effective in meeting user demands and
optimizing resource utilization while the other algorithms,
with their iterative (Local Search with Hill Climbing) and
probabilistic (Simulated Annealing) approaches, provide
superior performance by minimizing unsatisfied user requests
and maximizing the utilization of available resources.
Simulated Annealing, in particular, consistently shows the
best balance between meeting user demands and efficient
resource utilization, making it the most effective algorithm for
dynamic and high-density network environments. It is
understood that each of these algorithms represents a different
point on the spectrum of complexity and efficiency and
understanding these differences is crucial for implementing
the most appropriate resource allocation strategy in 5G.

TABLE IV. TIME TAKEN AND MEMORY USAGE
Memory
Algorithm Time Taken in ms Usage in KB
8 (250/400/500 Users) (250/400/500
Users)
Greedy 0.011/0.03/0.035 4/4/12
Hill Climb 0.065/0.086/0.11 92/92/92
Simulated | 4>/0,035/0.045 8/12/12
Annealing

Regarding the time taken and the memory usage of each
of these algorithms, as seen from table IV, because of the
strategy each algorithm follows, Hill Climb took the most time
to complete and it is the one that has the worst usage in KB
while Greedy search was the cheapest and fastest but cannot
account for the reallocation of unsatisfied users.

V. CONCLUSION AND FUTURE WORK

The comparative analysis underscores the importance of
selecting an appropriate algorithm based on the specific
network characteristics. For 5G environments, where dynamic
and efficient resource utilization is crucial, the Local Search
with Hill Climbing algorithm holds significant promise. Its
sophisticated optimization techniques balance immediate user
demands with the goal of equitable network resource
distribution. On the other hand, as networks grow in
complexity and density, Simulated Annealing stands out for
its robust performance, since even as the scale increases,
network efficiency and user satisfaction are not compromised.

Despite the practical applications of the algorithms
studied, the theoretical basis for their performance in varying
network conditions requires further exploration. For instance,
while Simulated Annealing is known for escaping local
optima in complex landscapes, its performance can
significantly depend on the choice of cooling schedule and
temperature parameters.

Further research could explore hybrid approaches that
combine the strengths of these algorithms. For instance,
combining the predictive capabilities of machine learning
with the optimization provided by Simulated Annealing could
lead to remarkable advancements in resource allocation.

ACKNOWLEDGMENT

The research project was supported by the Hellenic
Foundation for Research and Innovation (H.F.R.1.) under the
“2nd Call for H.F.R.I. Research Projects to support Faculty
Members & Researchers” (Project Number: 02440).

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, "Network
Slicing in 5G: Survey and Challenges," in IEEE Communications
Magazine, vol. 55, no. 5, pp. 94-100, May 2017, doi:
10.1109/MCOM.2017.1600951.

[2] S. Wijethilaka and M. Liyanage, "Survey on Network Slicing for
Internet of Things Realization in 5G Networks," in IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 957-994,
Secondquarter 2021, doi: 10.1109/COMST.2021.3067807.

[3] M. lJiang, M. Condoluci and T. Mahmoodi, "Network slicing
management & prioritization in 5G mobile systems," European
Wireless 2016; 22th European Wireless Conference, Oulu, Finland,
2016, pp. 1-6.

[4] R. Su et al, "Resource Allocation for Network Slicing in 5G
Telecommunication Networks: A Survey of Principles and Models," in
IEEE Network, vol. 33, no. 6, pp. 172-179, Nov.-Dec. 2019, doi:
10.1109/MNET.2019.1900024.

[5] F. Song, J. Li, C. Ma, Y. Zhang, L. Shi and D. N. K. Jayakody,
"Dynamic Virtual Resource Allocation for 5G and Beyond Network
Slicing," in IEEE Open Journal of Vehicular Technology, vol. 1, pp.
215-226, 2020, doi: 10.1109/0JVT.2020.2990072.

[6] A. A. Abdellatif, A. Mohamed, A. Erbad and M. Guizani, "Dynamic
Network Slicing and Resource Allocation for 5G-and-Beyond
Networks," 2022 IEEE Wireless Communications and Networking
Conference (WCNC), Austin, TX, USA, 2022, pp. 262-267, doi:
10.1109/WCNC51071.2022.9771877.

[7] P.L.Vo,M.N.H. Nguyen, T. A. Le and N. H. Tran, "Slicing the Edge:
Resource Allocation for RAN Network Slicing," in IEEE Wireless
Communications Letters, vol. 7, no. 6, pp. 970-973, Dec. 2018, doi:
10.1109/LWC.2018.2842189.

[8] C. Campolo, A. Molinaro, A. Iera and F. Menichella, "5G Network
Slicing for Vehicle-to-Everything Services," in IEEE Wireless
Communications, vol. 24, no. 6, pp. 38-45, Dec. 2017, doi:
10.1109/MWC.2017.1600408.

[9] H. Zhang, N. Liu, X. Chu, K. Long, A. -H. Aghvami and V. C. M.
Leung, "Network Slicing Based 5G and Future Mobile Networks:
Mobility, Resource Management, and Challenges," in IEEE
Communications Magazine, vol. 55, no. 8, pp. 138-145, Aug. 2017,
doi: 10.1109/MCOM.2017.1600940.

[10] A. Malik, A. Sharma, Mr. Vinod Saroha (Guide) (2018); Greedy
Algorithm; Int J Sci Res Publ 3(8) (ISSN: 2250-3153).
http://www.ijsrp.org/research-paper-0813.php?rp=P201564

[11] L. Hernando, A. Mendiburu and J. A. Lozano, "Hill-Climbing
Algorithm: Let's Go for a Walk Before Finding the Optimum," 2018
IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro,
Brazil, 2018, pp. 1-7, doi: 10.1109/CEC.2018.8477836.

[12] A. Czumaj and V. Stemann, "Randomized allocation processes,"
Proceedings 38th Annual Symposium on Foundations of Computer
Science, Miami Beach, FL, USA, 1997, pp. 194-203, doi:
10.1109/SFCS.1997.646108.

[13] D. Bertsimas and J. Tsitsiklis, "Simulated annealing," Statistical
Science, vol. 8, no. 1, pp. 10-15, Feb. 1993. [Online]. Available:
https://doi.org/10.1214/ss/1177011077

[14] Vladimir Ilin, Dragan Simi¢, Svetislav D Simi¢, Svetlana Simi¢, Nenad
Sauli¢, José Luis Calvo-Rolle, A hybrid genetic algorithm, list-based
simulated annealing algorithm, and different heuristic algorithms for
the travelling salesman problem, Logic Journal of the IGPL, Volume
31, Issue 4, August 2023, Pages 602—617,
https://doi.org/10.1093/jigpal/jzac028.

[15] Edmund K. Burke, Yuri Bykov, The late acceptance Hill-Climbing
heuristic, European Journal of Operational Research, Volume 258,
Issue 1,2017, Pages 70-78, ISSN 0377-2217,
https://doi.org/10.1016/j.ejor.2016.07.012.

Authorized licensed use limited to: University of Patras. Downloaded on May 23,2025 at 06:05:20 UTC from IEEE Xplore. Restrictions apply.

