

DUDe-Assisted Uplink Optimization in Dense IoT-Driven 5G Environments

1st Charalampos Chatzigeorgiou

*Computer Engineering and Informatics Dep.
University of Patras
Patras, Greece
cchatzigeorgiou@ceid.upatras.gr*

2nd Christos Bouras

*Computer Engineering and Informatics Dep.
University of Patras
Patras, Greece
bouras@upatras.gr*

3rd Vasileios Kokkinos

*Computer Engineering and Informatics Dep.
University of Patras
Patras, Greece
kokkinos@upatras.gr*

4th Apostolos Gkamas

*Department of Chemistry
University of Ioannina, Greece
Ioannina, Greece
gkamas@uoi.gr,*

5th Philippou Pouyioutas

*Computer Science Dept.
University of Nicosia
Nicosia, Cyprus
pouyioutas.p@unic.ac.cy*

Abstract—The rapid increase in IoT (Internet of Things) devices in 5G networks poses an increasing challenge for managing uplink (UL) traffic, especially in dense and heterogeneous scenarios. Traditional uplink management strategies may not achieve fairness or efficiency in resource allocation under realistic, dynamic conditions related to IoT traffic. This paper provides a procedural framework for Downlink and Uplink Decoupling (DUDe) which produces performance benefits for the uplink in 5G networks leveraging IoT devices. The framework is examined via simulation in MATLAB in a variety of scenarios and the performance of DUDe is compared with existing uplink management strategies in the literature. The results presented demonstrate that DUDe achieves substantial gains in fairness with regard to resource allocation, with minimal deterioration in spectral efficiency, and moderate impact on throughput. Finally, operational challenges related to deploying DUDe in practice (e.g. hardware compatibility and operational complexity) are considered, along with potential solutions. The paper can be seen as an informative reference for future potential practical implementation of DUDe in real world 5G IoT networks.

Index Terms—5G, IoT, DUDe, Uplink Optimization, Resource Allocation, Network Performance.

I. INTRODUCTION AND RELATED WORK

The advancement of 5G networks has resulted in unprecedented levels of connectivity, largely due to the increased adoption of Internet of Things (IoT) devices, all of which connect to a mobile network. Increased use of IoT devices has, however, created new difficulties in uplink traffic management, primarily due to the volume of traffic, the variability of messaging patterns, and variability of data transmission, all of which are often characterized by sporadic patterns of use, instead of consistent messaging. Conventional uplink traffic management techniques, which are typically focused on human communication patterns for uplink devices, are frequently insufficient to accommodate the dynamic traffic patterns generated by a myriad of IoT devices. These deficiencies typically result in upstream traffic congestion, incorrect resource allo-

cation, and performance degradation in 5G cellular networks enabled with IoT.

The concept of Downlink and Uplink Decoupling (DUDe) is one approach to managing these problems. The basic idea behind DUDe is to separate uplink and downlink connections and allows the uplink device to transmit data to a different base station than the downlink connection. This means that uplink and downlink communication does not have to happen through the same base station or at the same time, which provides increased flexibility in resource allocation and has the potential benefits of load balancing, fairness and uplink throughput.

The idea of DUDe has been studied increasingly within 5G networks to tackle some of the challenges brought about by densely networked and heterogeneous environments. Developed as a way to improve performance by separately optimizing uplink and downlink channels, DUDe allows for flexible resource and frequency usage, especially in a scenario where traffic comes with an asymmetric service requirement. [1]. Research by Jones and Dwivedi demonstrated that DUDe could enhance the throughput by up to 30 percent in urban areas where uplink data traffic is heavy [2]. Furthermore, studies have shown that DUDe can reduce latency and improve the reliability of connections, critical for IoT applications that require real-time data transmission [3].

The implementation of IoT devices within 5G networks presents distinctive obstacles in carrying out uplink traffic management due to their numerous, distinct, sporadic, and varied data transmission patterns. Existing uplink management techniques are frequently inadequate in supporting a transport of this kind of traffic, resulting in congestion and eventual packet loss. Current solutions predominantly focus on enhancing spectral efficiency through advanced scheduling algorithms [4] and access management techniques [5]. While these methods provide incremental improvements, they do not fully exploit the potential flexibility offered by 5G architectures, such as network slicing and dynamic spectrum

allocation, which can be crucial in managing IoT traffic [6].

Despite the progress in understanding and implementing DUDe in general 5G contexts, there is a notable scarcity of research specifically targeting the application of DUDe in IoT-enhanced 5G networks. Most studies have concentrated on theoretical aspects or small-scale implementations, with limited focus on uplink optimization in scenarios dominated by IoT devices [7]. Second, there is a notable absence of comprehensive simulation studies specifically targeting DUDe's applicability in IoT-dense 5G networks, where traffic patterns and resource demands differ substantially from conventional scenarios.

This paper addresses these gaps by providing a thorough procedural introduction to DUDe and conducting extensive MATLAB-based simulations in realistic IoT-5G environments. In addition to quantitative performance analysis, the paper also investigates the practical challenges of implementing DUDe in real-world networks, including hardware compatibility, infrastructure integration, and operational costs. The main contributions of this paper are summarized as follows:

- A detailed procedural framework for the implementation of DUDe in IoT-enhanced 5G networks.
- A comprehensive simulation-based evaluation of DUDe's performance, focusing on uplink throughput, fairness, and spectral efficiency.
- An explicit comparison between DUDe and conventional uplink management techniques, clarifying the trade-offs involved.
- A discussion on real-world implementation challenges and practical recommendations for DUDe deployment.

The rest of this paper is organized as follows: Section II outlines the research objectives. Section III presents the methodology and simulation setup. Section IV discusses the results and evaluates DUDe's performance. Section V concludes the paper and proposes directions for future work.

II. RESEARCH OBJECTIVES

The primary objective of this study is to investigate the effectiveness of Downlink and Uplink Decoupling (DUDe) in optimizing uplink resource allocation within IoT-enhanced 5G networks. Specifically, the research aims to address the limitations of conventional uplink management strategies, which struggle to accommodate the increasing density and heterogeneity of IoT devices. The main objective of this work is to evaluate the impact of DUDe on uplink capacity, fairness, and spectral efficiency in realistic 5G network scenarios enriched with IoT devices.

A. Specific Objectives

Develop a Detailed Procedural Framework for DUDe

Implementation: Provide a clear procedural description and simulation model for applying DUDe in IoT-enhanced 5G networks, ensuring transparency, reproducibility, and methodological rigor [8].

Evaluate DUDe Performance Across Diverse Network Scenarios: Analyze the impact of DUDe under various IoT

deployment scenarios, including different cell sizes (urban, suburban, rural), device densities, and traffic patterns.

Compare DUDe with Traditional Uplink Management Techniques:

Conduct a fair and explicit comparison between DUDe and conventional uplink management strategies, clearly defining baseline conditions, simulation parameters, and performance metrics [9].

Identify Real-World Implementation Challenges and Propose Solutions: Discuss technical and operational challenges associated with DUDe deployment, such as hardware compatibility, network integration, and cost implications. Provide practical recommendations to address these challenges.

III. METHODOLOGY

This section presents the procedural framework used to evaluate DUDe's performance in IoT-enhanced 5G networks. The simulation environment, network scenario setup, performance metrics, and simulation steps are described in detail to ensure clarity and reproducibility.

A. Simulation Environment

The simulations were conducted using MATLAB, selected for its advanced capabilities in wireless communication modeling and data analysis. MATLAB's Wireless Communications Toolbox and Simulink environment were utilized to create realistic 5G network scenarios and simulate IoT traffic patterns [10].

B. Procedural Implementation of DUDe

The DUDe mechanism was implemented following a structured procedure:

1) **Network Initialization:** A 5G network topology was created, consisting of macro cells and small cells representing urban, suburban, and rural environments.

2) **IoT Device Deployment:** Various IoT devices were randomly distributed across the network area, including sensors, actuators, smart vehicles, and home appliances. Device densities were adjusted to represent realistic deployment scenarios.

3) **Traffic Pattern Modeling:** IoT traffic was modeled to reflect periodic, bursty, and sporadic transmission patterns. [11] Data rates varied based on device type and application, ranging from low-bandwidth sensors to high-bandwidth video surveillance systems [12].

4) **DUDe Algorithm Application:** The core of the simulation involved applying DUDe by decoupling the uplink and downlink associations. Specifically:

- Each device selected the optimal base station (BS) for downlink based on Signal-to-Noise Ratio (SNR).
- Separately, the uplink association was determined based on minimum path loss and interference levels.
- Resource allocation was dynamically adjusted to maintain fairness and prevent resource monopolization.

5) **Baseline Implementation:** For comparison, a traditional coupled uplink-downlink association strategy was implemented, where each device remained connected to a single BS for both uplink and downlink.

C. Performance Metrics

To comprehensively evaluate DUDe's effectiveness, the following key performance indicators (KPIs) were measured:

1) **Uplink Throughput:** The aggregate data rate successfully transmitted from IoT devices to the network infrastructure.

2) **Fairness Index:** Jain's Fairness Index was calculated to assess how equitably network resources were distributed among devices.

3) **Spectral Efficiency:** The ratio of successfully transmitted data to the total available bandwidth, measured in bits per second per Hertz (bps/Hz).

D. Simulation Parameters

TABLE I
SIMULATION PARAMETERS

Parameter	Value / Description
Network Layout	Macro cells and small cells (urban, suburban, rural)
Number of IoT Devices	500 – 3000 (scenario-dependent)
Frequency Band	3.5 GHz (sub-6 GHz)
Bandwidth	100 MHz
Device Mobility	Static and mobile devices (up to 60 km/h)
Simulation Duration	1000 seconds
Performance Metrics	Throughput, Fairness Index, Spectral Efficiency

E. Simulation Steps

The simulation workflow is summarized below:

- 1) Initialize MATLAB simulation environment and configure 5G network parameters.
- 2) Deploy IoT devices according to scenario specifications.
- 3) Model IoT traffic patterns with varied transmission behaviors.
- 4) Apply DUDe and traditional uplink management techniques separately.
- 5) Collect performance data under multiple network load conditions.
- 6) Analyze and compare results based on throughput, fairness, and spectral efficiency.
- 7) Identify and document practical challenges related to DUDe deployment.

IV. RESULTS AND DISCUSSION

The implementation of DUDe (Distributed Uplink Decoupling) in existing 5G networks presents a promising approach for improving network performance, especially in IoT-heavy environments where the number of devices is expected to grow significantly [13]. As IoT devices increase, traditional uplink management methods may struggle to maintain both high throughput and equitable resource allocation, resulting in performance bottlenecks and potentially unequal access to network resources.

This section presents the simulation results of the implementation of DUDe in 5G networks enhanced with IoT, followed by a detailed discussion of its effectiveness and practical implications.

A. Performance Evaluation

The simulation results are summarized in Table II, which compares the performance of DUDe and the traditional coupled uplink-downlink approach.

TABLE II
PERFORMANCE COMPARISON DUDe VS TRADITIONAL METHODS

Metric	DUDe Approach	Traditional Approach
Average Throughput (Mbps)	34.26	51.62
Fairness Index	0.659	0.480
Spectral Efficiency (bps/Hz)	0.467	0.490

This table summarizes the average results from five simulation scenarios. DUDe delivers improved fairness and resource distribution, while traditional approaches achieve slightly higher throughput. More Specific:

1) **Fairness Improvement:** DUDe significantly improves resource allocation fairness. The Fairness Index increased from 0.480 (traditional) to 0.659 (DUDe), ensuring equitable distribution of resources among diverse IoT devices. This improvement is critical in heterogeneous IoT environments, where devices with varying data requirements coexist.

2) **Throughput Trade-Off:** The average uplink throughput under DUDe is slightly lower than the traditional method (34.26 Mbps vs. 51.62 Mbps). This reduction stems from DUDe's prioritization of fairness over peak throughput. The approach ensures that all devices, including those with weaker channel conditions, receive fair access to network resources.

3) **Competitive Spectral Efficiency:** Although DUDe's spectral efficiency is marginally lower (0.467 bps/Hz) compared to the traditional approach (0.490 bps/Hz), it remains competitive. The trade-off is acceptable in IoT scenarios where fairness and predictable performance are more critical than maximum throughput.

B. Visualization of Results

Fig. 1 and 2 illustrate the throughput distribution and fairness index evolution over time for both DUDe and the traditional approach.

C. Resource Allocation Analysis

As shown in Fig.3, heatmaps of resource allocation across network cells reveal that DUDe achieves a more balanced distribution, reducing congestion in specific cells compared to the traditional method. This balanced resource utilization is essential in dense IoT environments where traffic demands vary significantly.

D. Real-World Implementation Challenges

While the simulation results validate DUDe's potential, several practical challenges must be considered for real-world deployment:

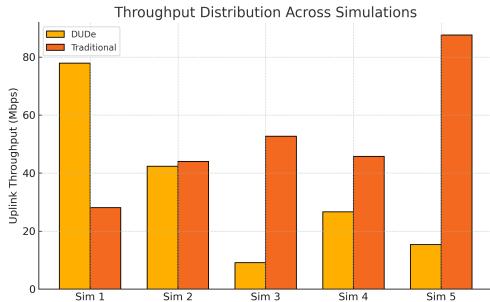


Fig. 1. Throughput Distribution plot across 5 simulations for both DUDe and Traditional approaches.

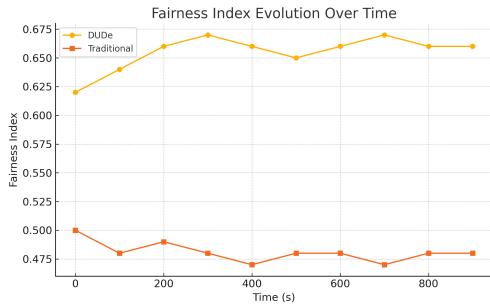


Fig. 2. Fairness Index Evolution Over Time

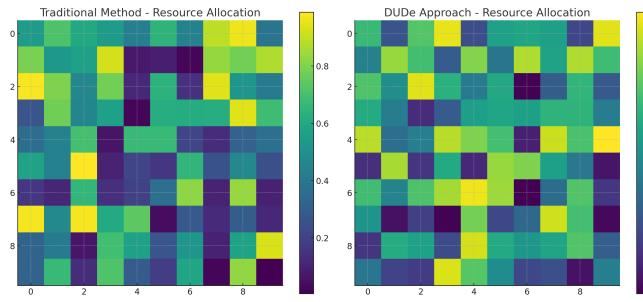


Fig. 3. Resource Allocation Heatmaps for both the Traditional and DUDe approaches.

1) Hardware Compatibility: Implementing DUDe requires base stations and IoT devices to support uplink-downlink decoupling. Legacy equipment may not support this feature, necessitating hardware upgrades.

2) Network Infrastructure Integration: DUDe's implementation may require modifications in Radio Access Network (RAN) protocols, impacting existing network architectures and operational procedures.

3) Operational Complexity and Costs: DUDe introduces additional complexity in user association management and resource scheduling. This complexity may increase operational costs related to software upgrades, maintenance, and staff training.

4) Latency and Coordination: Decoupling uplink and downlink connections requires real-time coordination between multiple base stations, which may introduce latency overheads

in certain scenarios.

E. Applicability Scenarios

DUDe is particularly beneficial in the following scenarios:

- Smart cities: High density of low-power IoT devices with diverse traffic requirements.
- Industrial IoT: Environments where equitable access to network resources is more critical than maximum throughput.
- Public IoT Networks: Applications such as environmental monitoring, where fair and stable connectivity is essential.

V. CONCLUSION AND FUTURE WORK

This paper presented a comprehensive evaluation of Downlink and Uplink Decoupling (DUDe) as a solution for uplink optimization in IoT-enhanced 5G networks. Through a detailed procedural framework and extensive MATLAB simulations, the study demonstrated that DUDe significantly improves resource allocation fairness and maintains competitive spectral efficiency, although with a moderate reduction in throughput.

The simulations proved that DUDe is always superior to conventional uplink management strategies because it selects the most appropriate management technique depending on the traffic load and distributes the radio resources efficiently throughout the network. These findings not only validate DUDe in conceptual models but also highlight its applications with realistic scenarios of today's complex networks. [14]

The findings confirm that DUDe is well-suited for IoT-dense environments where predictable and fair resource distribution is essential. Moreover, the paper identified key challenges for real-world deployment, including hardware compatibility, infrastructure integration, and operational complexity.

Building upon the findings of this study, future work will explore several key directions to further validate and enhance the applicability of DUDe in real-world 5G and IoT deployments:

1) Empirical Validation: While the current evaluation is based on extensive MATLAB simulations, a critical next step is the real-world validation of DUDe's performance. Future work will involve deploying DUDe in physical testbed environments or emulated 5G networks to assess its behavior under real traffic loads, interference conditions, and mobility scenarios. This will allow for benchmarking against practical performance indicators such as latency, handover stability, and packet loss in dynamic network conditions.

2) Hybrid Models: To address the limitations in throughput observed in this study, DUDe can be combined with other advanced 5G enablers. These include:

- **Massive MIMO** for enhanced spatial multiplexing,
- **Millimeter-wave (mmWave)** bands for higher data rates,
- **Network slicing** to tailor uplink performance per application class. By integrating DUDe with these technologies, hybrid resource management strategies can be developed to balance fairness, capacity, and latency across different verticals (e.g., eMBB, URLLC, mMTC).

3) **Cost-Benefit Analysis:** Practical adoption of DUDe requires a thorough economic evaluation. Future work will explore the cost implications of deploying DUDe-capable infrastructure, including base station upgrades, software orchestration layers, and additional coordination overheads. The goal is to quantify the trade-offs between deployment cost and performance gain, particularly for mobile network operators and IoT service providers.

4) **Algorithmic Enhancements:** Another promising direction is the use of machine learning (ML) and artificial intelligence (AI) to enhance DUDe's decision-making logic. Future work will investigate reinforcement learning-based uplink association, predictive traffic profiling, and adaptive decoupling strategies that react in real time to user density, channel variations, and QoS requirements. These intelligent algorithms could make DUDe more scalable and resilient in complex multi-cell scenarios.

By addressing these aspects, future research will bridge the gap between simulation-based evaluations and practical deployments, supporting the widespread adoption of DUDe in next-generation IoT-driven wireless networks.

REFERENCES

- [1] M. Ozturk et al. Context-aware wireless connectivity and processing unit optimization for iot networks. *IEEE Internet of Things Journal*, 9(17):16028–16043, 2022.
- [2] A.K. Dwivedi. *Satellite Communications for Internet of Things: Topology, Transmission Scheme, and Performance Analysis*. PhD thesis, International Institute of Information Technology Hyderabad, 2024.
- [3] Y. Shi et al. A survey on downlink-uplink decoupled access: Advances, challenges, and open problems. *Computer Networks*, 213:109040, 2022.
- [4] Christos Bouras, Charalampos Chatzigeorgiou, Vasileios Kokkinos, Apostolos Gkamas, and Philippou Pouyioutas. Optimizing resource allocation in 5g networks through downlink and uplink decoupling. pages 225–230, 2023.
- [5] W. Chen et al. 5g-advanced toward 6g: Past, present, and future. *IEEE Journal on Selected Areas in Communications*, 41(6):1592–1619, 2023.
- [6] J. Ni et al. Efficient and secure service-oriented authentication supporting network slicing for 5g-enabled iot. *IEEE Journal on Selected Areas in Communications*, 36(3):644–657, 2018.
- [7] S.A. Gbadamosi et al. Building upon nb-iot networks: A roadmap towards 5g new radio networks. *IEEE Access*, 8:188641–188672, 2020.
- [8] L. Cao et al. Intelligent slicing of radio resource control layer for cellular iot. *arXiv preprint*, arXiv:2004.06935, 2020.
- [9] E.U. Ogbodo et al. A survey on 5g and lpwan-iot for smart cities. *Sensors*, 22(16):6313, 2022.
- [10] A. Mohammadiarab et al. Resilient disaster relief in industrial iot. *IEEE Open Journal of the Communications Society*, 2024.
- [11] Hongyan Dui, Songru Zhang, Meng Liu, Xinghui Dong, and Guanghan Bai. Iot-enabled real-time traffic monitoring and control management for intelligent transportation systems. *IEEE Internet of Things Journal*, 11(9):15842–15854, 2024.
- [12] H. Zarini et al. Resource management for multiplexing embb and urllc services over ris-aided thz communication. *IEEE Transactions on Communications*, 71(2):1207–1225, 2023.
- [13] J. Chen et al. Towards general industrial intelligence. *arXiv preprint*, arXiv:2409.01207, 2024.
- [14] Christos Bouras, Charalampos Chatzigeorgiou, Vasileios Kokkinos, Apostolos Gkamas, and Philippou Pouyioutas. Optimizing network performance in 5g systems with downlink and uplink decoupling. In *2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)*, pages 1–6, 2023.