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Abstract— In the landscape of 5G networks, efficient resource allocation stands as 

a critical factor in meeting the diverse demands of applications and users. This paper 
delves into optimizing resource allocation within 5G Multiple Input Multiple Output 

(MIMO) networks by leveraging Downlink/Uplink Decoupling (DUDe) techniques. 

MIMO technology, enabling the simultaneous transmission of multiple data streams, 

holds promise for boosting spectral efficiency. However, accommodating the dynamic 

and diverse user requirements poses a significant challenge in resource allocation. By 

employing advanced DUDe techniques, this research dynamically allocates resources 

in 5G MIMO Heterogeneous Networks (HetNets), seeking to enhance throughput, 

minimize latency, and optimize user satisfaction. The paper includes scenarios 

involving varying User Equipment (UE) densities and mobility to evaluate system 

performance under different load conditions. Through simulation-based analysis, this 

paper highlights the efficacy of the proposed approach in significantly improving 

network performance, energy efficiency, and resource utilization. 

Keywords— Downlink/Uplink Decoupling (DUDe), 5G Networks, Resource 

Allocation, Multiple Input Multiple Output (MIMO), Heterogeneous Networks 

(HetNets), Energy Efficiency. 

1 Introduction 

The advent of fifth generation (5G) communication networks signifies a 

transformative leap in connectivity, promising revolutionary advancements across 

industries and daily life. Among the pivotal challenges in maximizing the potential of 

5G networks is the efficient allocation of resources, particularly within the domain of 

Multiple Input Multiple Output (MIMO) technology. MIMO's capability to facilitate 

the concurrent transmission of multiple data streams through multiple antennas presents 

an enticing avenue for augmenting spectral efficiency and accommodating the 

burgeoning demand for high data rates. However, the intricate landscape of 5G 

networks, coupled with the ever evolving and heterogeneous user requirements, poses 

a formidable hurdle in optimizing resource allocation. Traditional methodologies often 



falter in dynamically adapting to these diverse demands, necessitating innovative 

approaches to bolster resource utilization while ensuring optimal network performance 

and user experience. This paper embarks on a distinctive trajectory by promoting the 

application of Downlink/Uplink Decoupling (DUDe) techniques for resource allocation 

within 5G MIMO networks. In traditional cellular systems, the assignment of User 

Equipment (UE) to the Base Stations (BSs) is based on the Downlink (DL) Signal to 

Noise Ratio (SNR) of the UE and both DL-Uplink (UL) are connected to the same BS, 

a method known as Downlink/Uplink Coupling (DUCo), while in the case of DUDe 

the assignment of UEs UL and DL to the BS is based both on the UL SNR and DL SNR 

of the UE (and UL and DL can be connected in difference BSs). DUDe offers enhanced 

resource allocation efficiency and network resource utilization. Additionally, DUDe 

lets a handset send its uplink traffic to the nearest small cell while still drawing 

downlink data from the macro layer, expanding the uplink link budget without extra 

user-side power. Field trials report uplink-rate gains above 50 % in dense 5G layouts, 

and the benefit grows when massive-MIMO receivers cancel intra-cell interference. In 

a smart classroom, that head-room lets every learner stream multi-view video from 

head-mounted cameras so instructors can respond in real time. During outdoor 

fieldwork, the same mechanism keeps sensor uploads steady while the device 

downloads augmented-reality overlays. Because DUDe re-uses the phone’s existing 5G 

massive-MIMO antennas, campuses and micro-campuses can roll it out step by step 

and still give learners balanced two-way media even where budgets are tight. For 

additional information refer to [1], [2], [3]. 

The unique proposition lies in the decoupling of downlink and uplink resources, 

aiming to dynamically allocate resources to maximize throughput, minimize latency, 

and elevate user satisfaction levels. Ultimately, this research contributes to the ongoing 

discourse in the domain of 5G network enhancement by shedding light on the 

transformative capabilities of MIMO technology in refining resource allocation 

strategies using DeepMIMO [4], a data generator for mmWave/massive MIMO 

channels, resulting in an upgraded simulation tool that offers more accurate and realistic 

representations of 5G network challenges. By providing empirical insights into the 

effectiveness of DeepMIMO-enhanced resource allocation, this study aspires to 

catalyze the development of more efficient and adaptive 5G network infrastructures [5], 

[6], [7], [8]. 

While the separation of DL and UL improves load balancing and link quality, it 

raises several implementation challenges. Channel-state information must be shared 

across two serving cells, adding fronthaul signalling and latency; uplink channel 

estimates collected at a small cell are no longer directly usable for the downlink handled 

by a macro cell, so extra sounding or coordinated pilots are needed; and tight time 

alignment is required to keep hybrid-ARQ and control signalling coherent across tiers. 

These practical concerns set DUDe apart from DUCo and frame the design choices 

analyzed in this work. 

In this research, mobility scenarios are conducted to examine the network’s 

performance in environments where the UEs is in motion. By simulating different 

mobility conditions, the network’s ability to adapt to the changing positions of UEs 

while maintaining efficiency and performance is evaluated. Along with mobility, high-



density scenarios are also considered, allowing for a comprehensive assessment of 

DUDe techniques. This combination of mobility and density scenarios provides 

valuable insights into DUDe's adaptability and effectiveness in real-world settings, 

offering a thorough evaluation of its potential to optimize resource allocation and 

enhance network performance in diverse 5G environments. These scenarios not only 

validate the proposed algorithm but also deepen the understanding of how DUDe 

improves resource utilization under varying conditions. 

Finally, this research explores the impact of varying power levels on energy 

efficiency and power consumption within 5G MIMO networks. By examining the 

relationship between transmitting power, energy efficiency, and the overall power 

requirements of the network, further insights are gained into the balance between 

supporting higher data rates and maintaining efficient power usage. This aspect of the 

study is crucial in understanding how increased user demand, paired with elevated 

transmission power, influences both the performance and sustainability of the network. 

The findings from this analysis are integral in guiding future designs of energy-efficient 

5G networks that can adapt to growing user densities while minimizing power 

consumption. 

The rest of the paper is organized as follows: Section 2 presents various research 

studies that utilize DUDe and MIMO technologies for their respective applications. 

Section 3 introduces the mathematical model utilized in the simulation environment. 

Section 4 delves into the algorithm analysis that forms the basis for constructing 

experiment scenarios. Section 5 outlines the simulation setup and methodology 

employed to assess the performance of DUDe in the MIMO 5G Heterogeneous 

Network (HetNet). Section 6 presents the simulation results and provides a 

comprehensive analysis of the findings. Section 7 presents the conclusions and lastly, 

section VIII offers insights into potential avenues for future research. 

2 Related Work 

Looking at the literature, important research highlights the benefits of applying 

DUDe in 5G MIMO networks. Studies show that DUDe enhances network 

performance by allowing separate handling of DL and UL connections, improving 

flexibility and resource efficiency. 

Moreover, the implementation of DUDe not only facilitates the seamless integration 

of new users into the network but also ensures uninterrupted service. The smoother 

distribution not only guarantees available capacity for BSs, but also prevents them from 

reaching their capacity limits, even when dealing with a substantial number of users. 

This approach not only enhances network capacity but also contributes to a more robust 

and interference-resistant communication environment for users. The existing literature 

on enhancing resource allocation in HetNets MIMO 5G networks encompasses a range 

of innovative approaches. Authors in [9] extend DUDe association to a two-tier 

wireless-powered HetNet that pairs massive MIMO macrocells with full duplex small 

cells. They introduce mean-maximum-power and maximum-power harvesting rules, 

then use stochastic geometry to obtain closed form expressions for harvested energy 



and UL/DL coverage. The analysis reveals an optimal small-cell density and shows 

energy-efficiency gains of roughly 1.4× over conventional coupled association and 

networks without wireless power transfer, while also mapping how macrocell power, 

antenna count, and self-interference affect these gains. The work provides a tractable 

baseline for designing energy-aware DUDe deployments in full-duplex HetNets. 

The authors of [10] explored DUDe as a bandwidth-optimization tool. Allowing 

each user to attach to separate base stations for the two links lets the scheduler adjust 

spectrum to real-time traffic and channel conditions. Simulations showed that DUDe 

eases macro-cell congestion, evens out user distribution across antennas, and boosts 

end-to-end throughput over traditional coupled allocation. The analysis also pinpoints 

system factors that shape these gains and suggests extending the approach to multi-

access scenarios and joint optimization with complementary techniques. Paper 

[11],study measures the energy cost of DUDe in 5G by accounting for each base 

station’s power draw and the signalling overhead between cells and users. Simulations 

across a range of user densities, cell layouts, and traffic profiles show that DUDe 

reduces total network consumption compared with conventional coupled access, 

mainly by reallocating uplink traffic to less-loaded sites. The authors also map how 

configuration choices—such as base-station density and traffic mix—shape these 

savings, offering practical guidelines for energy-aware network planning. 

Paper [12] delves into Cell-free Massive MIMO, a promising architecture for 5G 

networks that addresses resource allocation challenges in downlink networks. The 

paper presents an iterative algorithm that efficiently handles the optimization problem 

posed by coupled interference among UE, demonstrating the effectiveness of the 

algorithm in practical scenarios. Paper [13] focuses on the need for high energy 

efficiency in future wireless networks to achieve net-zero greenhouse gas emissions. 

The paper proposes a power consumption model that considers the effects of carrier 

aggregation and spatial layering on 5G network power consumption, advocating for the 

optimization of active antennas and physical resource blocks to enhance energy 

efficiency. 

Paper [14] constitutes a notable contribution to resource allocation in 5G-NR 

systems is presented in the work on downlink resource allocation for 5G-NR massive 

MIMO systems. This study addresses the challenges posed by beamforming and spatial 

multiplexing in 5G-NR, which require optimized resource allocation across time, 

frequency, and space to fully realize the capacity gains from massive MIMO. Unlike 

traditional 4G-LTE algorithms, which do not account for the dual-channel nature of 

5G-NR, this work proposes a joint allocation scheme for both control and shared 

channels. The authors formulate the problem as an integer linear program and propose 

sub-optimal and approximation algorithms for practical implementation. Simulation 

results demonstrate that the proposed algorithms significantly outperform baseline 

approaches in terms of sum-throughput and fairness, offering a promising solution for 

enhancing resource allocation in 5G-NR networks. 

Another significant contribution to resource allocation in 5G heterogeneous 

networks is presented in research [15], which focuses on the joint optimization of 

Resource Allocation (RA), User Association (UA), and Power Control (PC) for LTE-

A networks. This study addresses the complexities of optimizing multiple parameters 



simultaneously, such as energy efficiency, spectrum efficiency, and queue length in 

MIMO-based systems. By utilizing a mixed-integer programming model and a Drift-

Plus-Penalty (DPP) approach for Lyapunov optimization, the authors propose a 

solution for downlink transmission resource allocation that accounts for both macro 

and small cells. The work introduces a reduced problem approach through linear 

relaxation, making it more computationally efficient even for NP-hard problems. 

Numerical results demonstrate that the proposed framework effectively balances 

energy and spectrum efficiency while outperforming traditional greedy algorithms in 

terms of performance metrics. 

In recent research [16], a DUDe access scheme for Unmanned Aerial Vehicle 

(UAV) communication systems was proposed, focusing on minimizing interference by 

separating the control and data links of UAVs and decoupling the uplinks and 

downlinks of ground users onto different base stations and frequencies. To address 

power constraints, two reinforcement learning-based power allocation schemes, Q-

Learning (QL) and Deep Q-Learning (DQL), were introduced to optimize 

communication energy efficiency. Compared with traditional fractional power control 

schemes, the DUDe approach with QL and DQL demonstrated significantly higher 

energy efficiency and sum rates, with improvements of 80%–100% in the Ultra High 

Frequency (UHF) band and 160%–170% in the mmWave band. The study concluded 

that while QL and DQL can achieve near-optimal energy efficiency, DQL outperforms 

QL due to its ability to handle a larger state space, highlighting the effectiveness of 

reinforcement learning in optimizing resource allocation within the DUDe framework 

for 5G networks. 

Unlike previous works that primarily focus on traditional resource allocation 

algorithms, this study leverages DUDe techniques to dynamically adapt to changing 

network conditions and user demands. This innovation allows for more flexible and 

adaptive resource allocation strategies, enabling the network to efficiently utilize 

available resources while meeting the diverse requirements of different users. The only 

similar research, that was found, is presented in [17], with the difference being that this 

research focuses on bandwidth allocation among BS, whereas the work [17] aims at 

optimizing the spectrum efficiency of the BS. 

3 Mathematical Model  

This section provides an overview of the mathematical model used in the 

experiments. Initially, to determine the minimum distance between UEs and various 

BS antennas, the model outlined in TR 38.901 Section 7.4.1 [18] is employed. The 

following equations 1 to 3 calculate the pathloss for each UE; however, a detailed 

analysis of these equations lies beyond the scope of this paper. 

��RMa�LOS = ���� 10� ≤ �2D ≤ �BP��� �BP ≤ �2D ≤ 10km (1) 



���= 20 �����( 40��3D!"/3)
+ �&'( 0.03ℎ�.*� , 10) �����( �3D) 
− �&'( 0.044ℎ�.*�, 14.77)

+ 0.002 �����( ℎ)�3D

(2) 

��� = ���(�BP) + 40 �����( �3D/�BP) (3) 

Once the pathloss is determined through the 5G Matlab model, which includes the 

aforementioned functions and equations, the SNR is calculated to determine the closest 

antenna for establishing connections. The SNR mathematical expression involves 

measuring both signal power and noise power at the same or equivalent points in the 

system and within the same bandwidth. The mathematical expression for SNR is as 

follows:  

 
SNR = Psignal/Pnoise (4) 

For scenarios involving bandwidth allocation, the maximum bandwidth limit for 

UEs for each antenna, is computed, using the Shannon-Hartley theorem Σφάλμα! Το 

αρχείο προέλευσης της αναφοράς δεν βρέθηκε.. This theorem establishes the 

maximum error-free information transmission rate over a communication channel with 

a given bandwidth, considering noise presence. It aids in optimizing communication 

system design by finding the balance between information transfer rate and error 

minimization. 

7 = 8����(1 + 9/: (5) 

The channel capacity (C), measured in bits per second, represents the maximum 

achievable net bit rate without error-correction codes. Bandwidth (B) denotes the 

passband bandwidth for a bandpass signal. The SNR, expressed as a linear power ratio, 

compares communication signal power to noise power at the receiver. 

4 Algorithm Analysis 

This section presents the analysis of the theoretical algorithm which has been 

evaluated through simulations supported by the DeepMIMO toolkit [2].  
Algorithm I: A Dynamic Game-Theoretic Algorithm for Multi BSs n UE Allocation 

1. Step 1: Initialization & Parameter Configuration: 
2. Load the DeepMIMO dataset, read the parameters in parameters.m, compute the noise 

power �', and set up EIRP along with all UE and BS counters.. 
3. Step 2: Distance & Path-Loss Calculation: 
4. For every base station and each user, calculate the Euclidean distance and then derive 

the corresponding path loss.. 
5. Step 3 SNR Calculation: 
6. Using the path loss, compute both the downlink and uplink SNRs for every BS–UE 

pair. UL and DL link qualities are kept separate. 



7. Step 4 Primary BS Selection: 
8. For every UE, the algorithm separately determines: 

the base station that maximises received signal strength on the downlink, and 
the base station that maximises received signal quality on the uplink.  
The UE is then associated with the first station for downlink transmissions and, if 
different, with the second station for uplink transmissions. When the same base station 
is optimal for both directions, the procedure coincides with the conventional coupled 
scheme. 

9. Step 5 User-Service Assignment: 
10. For each UE, randomly pick a service (e.g., browsing, HDTV, VR) and map its down- 

and upstream rate demands. 
Step 6 Dynamic Path-Loss Structure: 

11. Create an on-the-fly data structure called dynamic_pathloss_BS_ue to store updated 
path-loss values. 

12. Step 7: SNR-Based UE Sorting 
13. Within every BS, sort its associated UEs by descending downlink SNR. 
14. Step 9: Capacity Initialization: 
15. Create an on-the-fly data structure called dynamic_pathloss_BS_ue to store updated 

path-loss values. 
16. Step 10: Dynamic Capacity Allocation: 
17. Iterate through the sorted UEs, choose the BS offering the lowest combined cost, and, 

if enough capacity remains, allocate the UE’s downstream demand and update all 
records. 

18. Step 11: Result Structuring: 
19. Aggregate the successful allocations in success_throughput and compute each UE’s 

achieved data rates. 
20. Step 12: Algorithm Output: 
21. Return the populated success_throughput array. 
22. Step 13: Complexity Analysis: 
23. The overall time complexity is O(N2) for sorting and allocation, and the space cost 

comes mainly from the path-loss, allocation, and result structures. 
24. Step 14: High-Mobility Scenarios: 
25. Group UEs by speed (pedestrian, vehicular, high-speed), simulate handovers, packet 

loss, and latency, compute the averages per group, and plot handover frequency, packet 
loss, and latency against speed. 

26. Step 15: Energy Efficiency & Power Consumption: 
27. Sweep predefined power levels, calculate each UE’s power draw, derive its bits-per-

watt efficiency from the downlink SNR, average the results, and plot energy efficiency 

and power consumption versus power level. 

The procedure begins by loading DeepMIMO channel data and reading all system 

parameters. It computes the thermal-noise power from the bandwidth, sets the effective 

isotropic radiated power, and initializes counters for every BS and UE. Next, it 

calculates the Euclidean distance and path loss for every BS-UE pair, then converts 

these losses into separate downlink and uplink SNR matrices. Each UE is randomly 

assigned a service class e-mail, web browsing, HDTV, or similar and the corresponding 

rate requirements for both directions are added to a dynamic table that also stores its 

path loss and SNR values. 

In the primary base-station selection phase, each user evaluates the channel to every 

cell, picks the one that delivers the strongest downlink signal for receiving data, and 

independently picks the one that offers the highest uplink SNR for sending data; the 



user then downloads through the first cell and, if the two selections differ, uploads 

through the second, while identical choices revert to the conventional coupled 

association. Successful assignments, together with the resulting data rates, are recorded 

in the success_throughput array.  

Two experiments refined the analysis. First, mobility scenarios group UEs by speed 

and update their associations on the fly, allowing the model to log handover frequency, 

packet loss, and latency as functions of velocity. Second, a transmit-power sweep 

recomputes each UE’s consumption and derives bits-per-watt efficiency to expose the 

power–efficiency trade-off. The dominant operations—dual sorting and repeated 

capacity checks yield a computational cost of O(N2), while memory use is driven by 

the path-loss, scheduling, and results tables. 

5 Simulation Environment 

This section presents an overview of the details of the simulated network structure 

and its associated parameters. It is essential to highlight that both the topology and the 

dataset guiding the simulation setup were sourced from the DeepMIMO platform. This 

platform serves as a valuable resource, offering the necessary infrastructure to shape 

and execute the experiments effectively. More specifically, a HetNet 5G MIMO 

network setup is shown on Fig. 1. This setup is about an urban setting where the main 

street, stretching horizontally, spans 600 meters in length and 40 meters in width and a 

vertical counterpart spanning 440 meters in length and 40 meters in width. Similar to 

the main street, buildings line both sides, contributing to the city's architectural tapestry. 

Along the main street, uniformity prevails as all buildings share bases with dimensions 

of 30 meters by 60 meters. On the other hand, the second street exhibits a distinct 

architectural style, with buildings standing on bases measuring 60 meters by 60 meters. 

Additionally, there is a total of 18 BSs installed, named BS1 through BS18, all 

standing at a height of 6 meters. Along the main street, there are 12 of these stations—

BS1 to BS12—with 6 stationed on each side. Regarding the spacing arrangement, there 

is a 52-meter gap between the BS on one side of the street and those on the opposite 

side. Breaking it down further, there is a 100-meter separation between clusters—BS1, 

BS3, and BS5; BS2, BS4, and BS6; BS7, BS9, and BS11; BS8, BS10, and BS12. 

Adding a bit more flair, there is a tighter 62-meter spacing between BS6 and BS8, as 

well as between BS5 and BS7.  

 

Fig.1. General topology of simulated network. 



In the second street, BS13 to BS18 are strategically positioned to maintain stable 

coverage. Each side of the street hosts 3 BS, and there is a roomy 150-meter gap 

between BS13, BS15, and BS17, as well as between BS14, BS16, and BS18. Delving 

deeper into the specifics, a 52-meter separation exists between adjacent stations—BS13 

and BS14, BS15 and BS16, and BS17 and BS18. So, with these dimensions and 

placements, the network is all set to weave its connectivity magic throughout the urban 

landscape. 

Additionally, three distinct User Grids (UG) – UG1, UG2, and UG3 can 

accommodate up to 1,184,923 UEs. With a strategic placement approach, the first UE 

in each grid claims the distinction of having the lowest (x, y) coordinates. Uniformity 

reigns in the height department, with all UE grids maintaining a consistent 2-meter 

elevation.  

UG1 takes center stage, stretching horizontally along the main street for 550 meters 

with a width of 35 meters. Its lineup kicks off 15 meters after the street's beginning and 

gracefully concludes just before the endpoint. Across 2751 rows, each housing 181 UEs 

with identical y-coordinates, UG1 fosters a sense of community with a 20 cm spacing 

between UEs, boasting a total of 497,931 UEs. UG2, on the other hand, seizes attention 

on the southern side of the cross street. Spanning rows 2752 to 3852, a total of 1101 

rows host 181 UEs each, maintaining a 20 cm gap between neighbors. UG2's vibrant 

community consists of 199,281 UEs. In UG3, which conclude rows 3853 to 5203, serve 

as the prime real estate, accommodating 1351 rows with 361 UEs per row. Slightly 

cozier with a 10 cm spacing between UEs, UG3 is home to 487,711 UEs, fostering a 

closer network camaraderie. 

Eventually, specific areas have been designated for implementation. Fig. 2 

illustrates the chosen locations: User Grid 3 will utilize ΒS17 and from User Grid 1 will 

rely on BS4, BS3, BS5 and BS6, BS7. The BS transmit power is configured at 45 dBm, 

accompanied by a gain set at 21 dBi. To explore various user scenarios, three setups 

including 180, 360, and 724 UEs, were conducted,  all while maintaining consistent UE 

power of 20 dBm. A summary of these network parameters is provided in Table 1. 

Table 1.  SIMULATION PARAMETERS 

Parameter Value 

Transmit 

power(dBm) 

45 dBm 

BS height 

(m) 

6 m 

BS/UE gain 

(dBi) 

21 dBi, 0 dBi 

Bandwidth 

(MHz) 

400 MHz 

Number Of 

UEs 

180,360,724, 905 

Power Noise Pnoise= -74+10log(Bandwidth(hz)) 

In bandwidth allocation scenarios, each UE is randomly assigned to one of the 

services outlined in Table 2, where the downstream and upstream demands per service 

are presented. 



Table 2. TYPE OF SERVICES 

Services Downstream Upsteam 

Browsing/Email 5 Mbps 2 Mbps 

HDTV 16 Mbps 0.5 Mbps 

Video Streaming 25 Mbps 1 Mbps 

Podcasts 2 Mbps 0.5 Mbps 

VoIP 1 Mbps 1 Mbps 

 

 

Fig.2. Topology of first simulations. 

Also, another experiment is conducted, with Fig. 3 illustrating the chosen locations: 

User Grid 3 will be connected to BS17, while User Grid 1 will utilize BS4, BS3, BS5, 

BS6, BS7, BS8, and BS15. This adjustment in network topology aims to investigate 

whether it influences the underlying assumptions that were made. 

 

Fig.3. Topology of 905UEs simulations only. 

DUDe technology is employed, to ensure equitable resource distribution across 

antennas while achieving optimal performance. Notably, this approach diverges from 

previous research by incorporating a MIMO system, where each BS is equipped with 

64 antennas. To highlight this point, every mentioned antenna is connected to a UE. 

This setup allows UEs to connect to multiple antennas, enhancing system performance. 

The primary objective is to demonstrate the efficacy of DUDe application in such a 



system, where UEs have multiple connection options, compared to alternative resource 

allocation technologies in telecommunications networks. Note also, that the operating 

frequency of the network in which simulations were implemented is at 60 GHz, the 

Number of 5G NR resource blocks is 60 and 5G Subcarrier spacing in kHz is 120. 

Finally, it is crucial to regard that all performance figures averaged over 1000 

independent runs in MATLAB, providing a robust estimate of expected behavior under 

varied conditions. 

6 Performance Evaluation 

This section delves into the simulation setup and analyzes the conclusions drawn 

from them, aiming to validate the initial research on the subject. To conduct these 

experiments, three separate datasheets were generated, each corresponding to scenarios 

with 362, 543, 724 and 905 UEs. Also, in the scenario involving 905 UEs, the 

alternative topology described earlier in Fig. 2 was implemented. These UEs are placed 

within the, previously analyzed, network topology, leveraging the nrpathloss function 

in Matlab to ensure random yet evenly distributed placements. Specifically, a one-meter 

distance between each UE is maintained, to prevent overlapping. Additionally, it was 

investigated how varying UE mobility affected handover frequency, packet loss, and 

latency under different speed levels, showing increased network stress as UE density 

rose. And finally, the last scenario focused on analyzing power consumption and energy 

efficiency across varying transmit power levels, revealing how higher UE counts 

significantly impacted energy efficiency and power usage. Both these scenarios for 

mobility and power consumption were simulated based on the topology in Fig.3. 

6.1 Resource Allocation scenarios 

Several factors were considered in SNR calculations, including the transmission 

power of the antenna and UE (held constant at 20 dBm in the experiments), antenna 

gain (21dBi for the BS and 0dBi for the UE), the distance between antenna and UE, 

and noise. Incorporating these elements ensures an accurate assessment of SNR, a 

crucial metric for determining wireless communication link quality. The antennas 

possess a fixed bandwidth capacity of 400 MHz. In all scenarios, UEs are assigned to 

antennas using a two-step procedure. First, SNR is calculated based on each UE’s 

distance from the antennas. Next, available resources (bandwidth capacity) are assessed 

to determine whether an antenna can accommodate the UE’s service. If sufficient 

resources are available, the UE is connected to the optimal antenna; otherwise, it is 

connected to the antenna with the highest SNR. This method guarantees satisfactory 

service for every UE.  

Through graph analysis, the detailed performance characteristics of DUDe and 

DUCo technologies in a MIMO 5G network setting were examined. Trends and 

patterns observed in the graphical representations provided insights into the efficacy of 

these technologies in managing network resources and delivering optimal performance. 

Also, for a better understanding of the bar plots, it is worth mentioning that they depict 



the remaining bandwidth per BS for both DUDe and DUCo technologies. Each line in 

the graph represents a specific base station, while the height of the bar indicates the 

remaining bandwidth in Hertz (Hz). Visual comparison of the blue (DUDe) and orange 

(DUCo) bars reveals how these technologies affect bandwidth availability across 

different base stations. 

 
Fig.4. Remaining Bandwidth for 362, 543 and 724 UEs. 

In the graph for 724 UEs (bottom bar plot), decoupled technology consistently 

shows lower bandwidth consumption per antenna compared to coupled technology. The 

noticeable disparity between the two methods, even at high UE density, suggests that 

decoupling technology maintains its efficiency advantage in bandwidth utilization.. 

Also, by examining Fig. 5, It is observed that modifying the network topology, as 

shown in Fig. 3, does not affect the original hypothesis. DUDe technology consistently 

demonstrates superior allocation efficiency across BSs compared to DUCo, leading to 

improved service for both existing and newly added BSs and affirming DUDe’s 

effectiveness in optimizing network performance. 

Across all of these scenarios, DUDe technology consistently outperforms DUCo 

technology in terms of bandwidth efficiency. This is evident from either having more 

remaining bandwidth or less mean bandwidth consumption in all the charts. The 

difference in performance between decoupling and coupling technology appears to be 

influenced by the number of UEs. With a higher UE count (724 vs. 543 vs. 362), the 

advantage of decoupling technology becomes more pronounced. Despite the overall 

trend favoring DUDe technology, the performance across BS indices is not uniform. 

This suggests that certain antennas may inherently perform better or worse, regardless 

of the DUDe or DUCo technology employed. 

It is important to note also, the observed efficiency of DUDe technology becomes 

increasingly evident as the network scales. As the number of UEs increases, the ability 

of DUDe to maintain a more balanced distribution of resources across the network 

further supports its robustness in high-density environments. Even when accounting for 

variations in BS performance, the consistency of DUDe in providing higher bandwidth 



availability across scenarios indicates its capacity to adapt to different network 

demands without a significant loss in efficiency. This adaptability makes DUDe 

particularly valuable in real-world deployments where dynamic user behavior and 

changing traffic patterns require networks to respond fluidly while maintaining 

performance and resource availability. Through these insights, the results not only 

validate the proposed algorithm but also emphasize DUDe’s potential to become a key 

mechanism for optimizing resource allocation in the evolving 5G landscape. 

 
Fig.5. Remaining Bandwidth for 905 UEs. 

6.2 Scenarios for the Impact of User Population on Mobility and Energy 

Efficiency 

In this set of experiments, analyzing the impact of varying UE densities on mobility, 

energy efficiency, and overall network performance. In the analysis of high mobility 

scenarios and energy efficiency under various transmit power levels, the results offer 

critical insights into network behavior, especially when scaling up the number of UEs 

from 362 to 905. By considering the effects of user mobility on handover frequency, 

packet loss, and latency, and examining the energy efficiency with respect to different 

transmit power levels, meaningful conclusions for network performance optimization 

were extracted. 

Firstly, the impact of varying mobility speeds on handover frequency, packet loss, 

and latency was examined. With an increase in the number of UEs from 362 to 905 as 

seen in Fig.6, the overall trends in these metrics remained consistent, but the values 

became more pronounced due to the denser user environment. In case of 362 UEs ( first 

bar plot), the handover frequency increased with speed, ranging from approximately 

0.8 handovers at 3 km/h to over 20 handovers at 100 km/h. This reflects how higher 

mobility leads to more frequent handovers as users move rapidly between base stations. 

For 543 UEs, the handover frequency shows an even steeper gradient compared to 362 

UEs, emphasizing the additional burden that a higher UE density places on the network. 



 
Fig.6. Mobility experiments for 362, 543, 724 and 905 UEs. 

Similarly, packet loss increased with speed, as seen in the bottom bar graphs, where 

packet loss grew from 0% to 3 km/h to 5% at 100 km/h. The effect of adding more UEs 

resulted in an even higher packet loss at the upper speed levels, indicating that as UE 

density increases, the likelihood of packet collisions or dropped connections grows due 

to the heightened network load. Latency, the third key metric, also demonstrated a 

linear increase with speed, rising from around 50 ms at low speeds to 250 ms at high 

speeds. The 543 UE configuration saw more severe latency spikes, illustrating the 

challenge of maintaining low-latency services in densely populated mobile networks. 

In experiments with 724 and 905 UEs (bottom right bar graph) the results demonstrate 

consistent trends across different speeds. Handover frequency increases proportionally 

with speed, reaching its highest levels at 100 km/h. Packet loss also follows a steady 

upward trajectory as speed rises, indicating that maintaining reliable connectivity 

becomes more challenging at higher mobility speeds. Latency, a critical factor for 

quality of service, exhibits an increase with higher speeds, underscoring the impact of 

mobility on network performance.  

In continuation, the study examined the relationship between transmit power, 

energy efficiency, and power consumption, as you can show in Fig 7. By increasing the 

number of UEs from 362 to 543, the findings showed an impact on energy efficiency, 

particularly under high power levels. In addition, energy efficiency, measured in bits 

per second per watt (bps/W), decreased as transmit power increased. At a transmit 

power of 45 dBm, energy efficiency peaked at approximately 1.2 x 10^5 bps/W, while 

at 50 dBm, it dropped to about 3 x 10^4 bps/W. This sharp decline highlights how 

increasing transmit power does not always lead to proportional gains in network 

performance, especially when the user density increases to 543 UEs. The additional 



load from more users stresses the network, causing energy efficiency to degrade more 

rapidly. 

 
Fig.7. Energy and Power Consumption for 362, 543, 724 and 905 UEs 

Power consumption followed an expected trend: as transmit power increased, so did 

total power usage. Power consumption surged from around 3 W at 35 dBm to 100 W 

at 50 dBm. With 543 UEs (right top bar graph), the total power required to maintain 

the network grows significantly, demonstrating that more users not only strain network 

capacity but also require substantial power resources, especially at higher transmission 

levels. This insight reinforces the importance of balancing power efficiency with 

network capacity in dense deployments. Additionally, the results for 724 and 905 

UEs(right and left bottom bar graphs) indicate a decrease in energy efficiency as 

transmit power increases, similar to the findings from lower UE scenarios. However, 

the gap between the transmit power levels becomes even more significant in higher 

density environments. The energy efficiency continues to decline sharply as the 

transmit power level rises to 50 dBm, suggesting that higher UE densities lead to 

increased network stress and decreased efficiency. Power consumption, as expected, 

rises with higher transmit power, and the scenario with 905 UEs experiences the 

steepest increase in power consumption. This indicates that in ultra-dense network 

conditions, the challenge of maintaining a balance between power efficiency and 

network performance becomes more pronounced, especially as the transmit power 

increases. These results reinforce the importance of optimizing energy efficiency and 

managing power consumption, particularly in high-density scenarios where network 

resources are heavily taxed. In summary, the introduction of 543 UEs into these 

experiments underscores the challenges of managing high-density networks. As user 

mobility increases, network performance degrades in terms of handover frequency, 

packet loss, and latency. Similarly, while boosting transmit power can support more 

users, it comes at the cost of reduced energy efficiency and higher power consumption. 



The figures provided illustrate these key findings visually, confirming that optimizing 

network configurations is vital to managing the complex trade-offs between 

performance, energy consumption, and user density. This escalation in resource 

demands underscores the need for more refined resource management strategies as user 

density increases. Moreover, the decline in energy efficiency with rising transmit power 

levels, particularly when transitioning from 45 dBm to 50 dBm, reinforces the 

importance of carefully balancing power allocation to avoid diminishing returns. These 

findings collectively emphasize that managing high-density networks not only requires 

addressing mobility challenges but also demands careful consideration of energy 

efficiency, especially as the network scales. Through these observations, the necessity 

for dynamic, scalable solutions in future network configurations becomes evident, 

paving the way for more adaptive and efficient resource allocation in increasingly dense 

5G environments. 

7 Conclusion and Future Work 

This research has demonstrated the significant advantages of employing DUDe 

techniques in resource allocation for 5G MIMO HetNets, particularly in scenarios with 

varying user densities and mobility patterns. Through a series of experiments, it became 

clear that DUDe offers substantial improvements over traditional coupling methods. 

Specifically, DUDe consistently achieves more efficient bandwidth utilization, 

ensuring that the available network resources are allocated in a way that maximizes 

capacity while maintaining service quality. This efficiency was evident across all UE 

density scenarios, from 362 to 905, where DUDe not only reduced bandwidth 

consumption but also allowed for more balanced and effective load distribution among 

base stations. 

The analysis of user mobility revealed another crucial benefit of DUDe. As user 

movement increases—reflected in higher speeds and greater handover frequency—

traditional network management approaches tend to struggle with maintaining low 

latency and minimizing packet loss. However, DUDe proved to be more resilient in 

these challenging conditions. Even with increasing handover rates and the strain that 

mobility places on the network, DUDe managed to keep performance degradation 

under control, maintaining more stable connections and better overall service quality 

compared to coupled systems. This finding underscores the versatility of DUDe in 

dynamic environments where users are frequently on the move. 

In addition to mobility, the exploration of energy efficiency across varying transmit 

power levels added further depth to the findings. While increasing transmit power is 

typically associated with better network performance, it comes at the cost of reduced 

energy efficiency. The experiments showed that as transmit power increased, the 

energy efficiency of the network declined more rapidly, especially as user density grew. 

DUDe, however, was able to mitigate this effect by better managing the allocation of 

resources, demonstrating that it is not only about boosting power but about intelligently 

distributing it where it is needed most. This ability to balance energy consumption with 



network performance is especially critical in today's 5G landscape, where sustainability 

and energy efficiency are becoming key concerns. 

Overall, the findings from this research highlight the potential of DUDe to address 

several of the core challenges faced by modern 5G networks. Unlike traditional 

approaches, which often fail to dynamically adapt to varying network demands, DUDe 

provides a more flexible, adaptive framework capable of managing the complexities 

introduced by high user density, mobility, and energy constraints. 

Moving forward, several avenues appear promising for extending this research. The 

scalability of DUDe techniques warrants further exploration, particularly in ultra-dense 

network environments where UE equipment numbers can exceed the scales considered 

in this study. Additionally, integrating machine learning algorithms to predict and adapt 

to dynamic network demands in real-time could further optimize resource allocation. 

Further investigation into the interplay between different antenna technologies and 

DUDe techniques could yield additional insights, potentially guiding the development 

of more sophisticated antenna designs tailored to this approach. Furthermore, field trials 

in live network environments would be invaluable in validating the performance of 

DUDe under practical operating conditions and diverse user behavior patterns. Also, 

will benchmark the current DUDe-MIMO baseline against data-driven resource-

allocation methods, including deep-reinforcement-learning schedulers and established 

heuristic schemes for user grouping and power control. It will also couple the physical-

layer model with an application-layer traffic trace that reflects the bursty interaction 

patterns of mobile-learning platforms, allowing latency and uplink continuity to be 

evaluated under realistic load. Finally, we will investigate possible deployment 

scenarios like a smart classroom in outdoor fieldwork DUDe and 5G MIMO can 

provide a stable and cheap network access. 

Lastly, another goal, is to explore resource allocation optimization in 5G MIMO 

DUDe HetNets using the Hungarian and minimum cost flow algorithms, which have 

already been investigated in 5G MIMO (non-DUDe) HetNets [20], [21]. This positions 

DUDe as a valuable solution in optimizing network performance in a way that is both 

scalable and sustainable, offering a forward-looking approach to meeting the demands 

of future wireless communication systems. 
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