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Abstract: Fifth-Generation (5G) Networks deal with dynamic fluctuations in user traffic 1

and the demands of each connected user and application. This creates a need for optimizing 2

resource allocation to reduce network congestion in densely populated urban centers, and 3

further ensure Quality of Service (QoS) in (5G) environments. To address this issue, we 4

present a framework for both predicting user traffic and allocating users to base stations 5

in 5G networks using neural network architectures. This framework consists of a hybrid 6

approach utilizing a Long Short-Term Memory(LSTM) network or a Transformer architec- 7

ture for user traffic prediction in base stations, as well as a Convolutional Neural Network 8

(CNN) to allocate users to base stations in a realistic scenario. The models show high 9

accuracy in the tasks performed; especially, in the user traffic prediction task, where the 10

models show an accuracy of over 99%. Overall, our framework is capable of capturing 11

long-term temporal features and spatial features from 5G user data, taking a significant 12

step towards a holistic approach in data-driven resource allocation and traffic prediction in 13

5G networks. 14

Keywords: 5G Networks; User Allocation; Traffic Prediction; Deep Learning; Long-Short 15

Term Neural Networks; Transformers 16

1. Introduction 17

Cellular Telecommunication Networks have been a huge part of public and private 18

communications in the last few decades. The current standard for these networks is the 19

Fifth-Generation (5G) networks, dealing with constantly changing patterns in user traffic 20

as well as the different requirements of each user and application connected to the network. 21

The huge amount of data in extremely dense networks causes congestion [1]. This creates a 22

need to optimize resource allocation in such networks to ensure Quality of Service (QoS). 23

Resource allocation in 5G networks is a field with a significant research interest, while the 24

capability to predict user traffic in such networks can assist any system of the former. 25

Machine and Deep Learning (ML/DL) have been proven useful for optimizing re- 26

source allocation and user traffic in 5G networks, along with tasks such as energy efficiency, 27
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network accuracy and latency [2,3]. However, this requires the training of such algorithms 28

through the use of large accurate datasets gathered from currently active 5G networks. The 29

advantage of ML, when provided with quality large-scale data, is that it can provide fast 30

and high-quality results with minimal loss of effectiveness. 31

This paper presents a novel approach for predicting user traffic and using these 32

predictions to aid with the allocation of the users to base stations in a 5G environment. 33

Thus, the resource allocation of the network can be performed in a proactive way that 34

can be adapted in real-time to changing network conditions. The main strength of our 35

framework lies in the ability to approximate long-term trends in time-series data, an open 36

research question in the 5G communication field. Furthermore, the ML models comprising 37

our framework offer a good balance between performance and usage of computational 38

resources. 39

2. Related Work 40

2.1. Data-Driven User Resource Allocation and Traffic Prediction in 5G Networks 41

In recent years, data-driven methods for user resource allocation in 5G networks [4–10] 42

have started to appear more often in research than mathematical approaches [11–13], with 43

a variety of ML architectures being employed for this task. 44

Deep Neural networks have been utilized in [7] and [9] for user allocation in Non- 45

Orthogonal Multiple Access (NOMA) 5G Networks and to minimize system delay in 5G 46

Networks, respectively. In contrast, traditional ML techniques based on decision trees and 47

K-means clustering show promising results over 5G resource allocation in [14]. CNN-based 48

architectures have also been employed to optimize user allocation [5,8]. In [5], the problem 49

of resource allocation in small- and large-scale base stations comes down to an image 50

segmentation task, whereas in [8], small-scale channel information, such as the status of 51

the channel, is exploited to reduce time consumption. Furthermore, Recurrent Neural 52

Networks (RNNs) demonstrate significant efficacy in facilitating 5G user allocation tasks. 53

For example, in [6], a Long Short-Term Memory (LSTM) network, along with a Deep 54

Reinforcement Learning (DRL) model combined with a convex optimization algorithm, 55

was utilized for dynamically allocating user and power resources in 5G TV broadcasting 56

services. Similarly, in [10], a DRL algorithm was introduced to perform energy-efficient 57

user allocation in edge computing and the Industrial Internet of Things in 5G networks, 58

while an RL-based method for dynamic resource allocation to improve QoS of end-users, 59

was proposed in [4]. Other works that utilize DRL for 5G user resource allocation for 60

network slicing are [15,16]. 61

Akin to user resource allocation works, approaches to optimize 5G user traffic pre- 62

diction use deep and ML methods to tackle the increasing demand for wireless access. 63

Therefore, approaches span from traditional ML approaches [17] and DL approaches such 64

as RNNs (e.g. LSTMs [18–20]) to leverage the temporal dependencies in user traffic data, 65

to state-of-the-art Graph Neural Networks (GNNs) [21,22], which exploit spatiotemporal 66

features (i.e. spatial data refer to base stations’ topology) to achieve accurate predictions. 67

More specifically, in [18], a smoothed LSTM model trained on 5G data pre-processed by 68

the auto correlation function, was compared against other deep learning models, such as 69

CNN and Gated Recurrent Unit (GRU), showing promising results for traffic prediction. 70

Similar results are observed in [20], where a hybrid RNN-CNN model exploiting geoloca- 71

tion user data performed better over traditional ML and other RNN methods. In [19], a 72

LSTM-based framework is used, where the resource optimization problem is tackled by 73

either a short-term or a long-term approach. 74

Traffic prediction can also be utilized to facilitate user resource allocation [6,9]. For 75

instance, in [6], an LSTM network performed traffic prediction on multicast services, which 76
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was utilized for pre-resource allocation. In [23] a framework to jointly optimize base 77

station activation and user association under traffic uncertainty in ultra-dense networks is 78

presented. Moreover, the authors of the work in [24] propose a DL methodology to enable 79

User-centric end-to-end Radio Access Network slicing. Finally, in [25], an adaptive learning 80

framework, i.e. a transfer learning method, to tackle user traffic prediction problems and 81

enhance the distribution of network resources, is developed. 82

In this study, we detail a framework that performs user traffic prediction that entails 83

resource allocation by employing a fully data-driven approach based on sophisticated 84

ML models. A problem underexplored in the aforementioned works, our framework 85

explores the prediction of long-term trends in user data, while employing computationally 86

inexpensive ML models. Moreover, our framework can also be utilized for dynamic 87

network slicing, considering the impact of environmental factors and user behavior during 88

the learning process of our models. 89

3. Datasets & Data Preprocessing 90

In this paper, we present a framework that has two main tasks, that of user traffic 91

prediction for 5G networks and that of user allocation in 5G networks incorporating the 92

predictions of the previous module. Our system consists of two modules: i) a RNN or a 93

Transformer-based model for user traffic prediction and ii) a Convolutional Neural Network 94

(CNN) model for user resource allocation. There is also an adaptive approach to handle the 95

results of user traffic predictions to assist the user allocation module in its task based on 96

future highs and lows of traffic at base stations. 97

The data used to train and evaluate the models were obtained from two distinct 98

sources, one for each model. The user traffic prediction dataset consists of traffic collected 99

from a 5G mobile terminal in a dense urban setting [26]. The user allocation dataset is a 100

synthetic dataset called DeepMIMO [27] created with the express purpose of being used by 101

large data models such as neural networks. 102

3.1. 5G Traffic Dataset 103

We utilized the 5G Traffic dataset presented in [26] for the training of our user traffic 104

prediction module. User traffic was collected via a Samsung Galaxy A90 5G mobile terminal 105

in South Korea across various applications such as live streaming (e.g. Naver Now), stored 106

streaming (e.g. YouTube, Netflix), video conferencing (e.g. Zoom), metaverse (e.g. Roblox), 107

online gaming (e.g. Battlegrounds) and game streaming (e.g. GeForce Now) platforms. 108

Thus, the dataset contains video traffic that imposes significant strain on 5G networks. More 109

specifically, the dataset includes the time when the user started the 5G connection, their 110

Internet Protocol (IP), the IP of the destination (the server to which the user is connected), 111

the protocol used for the connection, the duration and information regarding the connection. 112

The dataset contains video traffic data with a total length of 328 hours, being collected over 113

a period of 6 months (from May to October 2022). 114

To preprocess the 5G dataset, we first store the provided CSV files in an SQL database. 115

The initial step is an optimized indexing and batch query execution, reducing memory 116

requirements during the learning stages of the model. Due to the temporal indexing, the 117

timeseries can be optimally segregated, which significantly improves performance in the 118

training and testing stages. This use of databases significantly reduces the preprocessing 119

time and assists with the batch processing of very large datasets. The data change from the 120

initial form of user connection length entries to network traffic in the form of user traffic 121

per time step. The data from this table were used to train our 5G traffic prediction module. 122

The preprocessing operations that we used on the dataset are typical preprocessing 123

operations suitable for RNN models that we fine-tuned to obtain better results. The first 124
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operation is a min-max normalization to the range of 0 to 1. The next operation is a sliding 125

window of size 10 to produce a rolling mean of the values with the aim of capturing the 126

feature of local mean network traffic. A rolling standard deviation is used to help with 127

local value volatility. Moreover a first- and a second-order difference is used to help with 128

extracting the "momentum" of the values within the rolling window. Finally the raw values 129

as recorded are also used without the previous preprocessing steps as the core dataset of 130

the input in the network. The experiments were done with an input of 120 values, each 131

representing the user traffic at the start of a given clock time step and the prediction outputs 132

the next 60 time steps as 60 values one for each time step in the future. 133

3.2. Deep MIMO Dataset 134

To train our user resource allocation module, we leveraged a synthetic dataset gen- 135

erated via DeepMIMO [27], a versatile DL dataset specifically designed for millimeter 136

wave and massive Multiple Input Multiple Output (MIMO) systems. DeepMIMO offers 137

a diverse range of scenarios enriched with three-dimensional geometries, realistic user 138

distributions, and detailed wireless network demands. DeepMIMO utilizes precise 3D 139

ray-tracing simulations and accommodates a myriad of scenarios tailored to 5G wireless 140

models, thus facilitating the creation of extensive MIMO datasets. For the evaluation of our 141

systems, we employed an outdoor scenario1 set within a city block, populated with users 142

as illustrated in Figure 1. 143

This scenario includes 18 base stations with a height of 6 meters, with each station 144

being an isotropic antenna array element. The main street contains 12 base stations evenly 145

placed on either side of the road. Consecutive stations are separated by 52 meters. The 146

remaining base stations are allocated along the secondary street, which runs perpendicular 147

to the main street (as illustrated in Figure 1). The users within the scenario are organized 148

into three uniform grids, culminating in a total user count of 1,184,923. Overall, this dataset 149

is used to perform user resource allocation in 18 stations. 150

However, our resource allocation module was trained over different versions of this 151

scenario, meaning that not all users and base stations were selected for each training epoch. 152

Figure 1. DeepMIMO Outdoor scenario 1. Figure obtained from [27].

The ground-truth dataset for our user allocation model based on the Deep MIMO 153

scenarios contains the following information: i) the spatial position of users, ii) the spatial 154

position of base stations, iii) the specific scenario from which the data are derived (that 155

1 https://www.deepmimo.net/scenarios/o1-scenario/



Version July 3, 2025 submitted to Journal Not Specified 5 of 15

implies a 3D geometry to be "learned" by the user allocation model), and iv) the allocation 156

of each user with a corresponding base station. As for the dataset preprocessing procedure, 157

linear normalization was applied along with the implementation of an outlier detection 158

and trimming algorithm in Python. 159

4. Methodology 160

Our framework consists of two modules, the user allocation and the traffic prediction 161

one. Each of our models can be either deployed separately or as an end-to-end framework, 162

where user traffic prediction can facilitate resource allocation in 5G environments. 163

4.1. User Traffic Prediction Module 164

For the user traffic prediction module, we use two different architectures; a RNN, 165

namely a LSTM model, and a hybrid model consisting of a Transformer and a Temporal 166

Convolutional Network (TCN) model. These two architectures produce different in nature 167

but similar in performance results. 168

We conducted a feature importance analysis to justify the input features of the two 169

user traffic prediction architectures. The results of the analysis are illustrated in Table 1. 170

As discussed in section 3.1, the first and second derivatives refer to the first and second 171

order differences, while the original values refer to the raw values of the 5G Traffic dataset. 172

The least impactful input features are the rolling mean and rolling standard deviation. The 173

reason for this is that the dataset has low local volatility, so those two values stay similar to 174

the original values. 175

Table 1. Feature Important Ranking

Input Feature Value

Second_Derivative -0.000301 ± 0.000045
First_Derivative -0.000205 ± 0.000027
Original_Values -0.000045 ± 0.000003
Rolling_Mean -0.000003 ± 0.000001
Rolling_Std -0.000002 ± 0.000001

The ranking of the input features of our user traffic prediction models based on their
importance. The mean values for the two architectures, namely LSTM and Transformer-
TCN are reported.

4.1.1. Long Short Term Memory Variant 176

LSTM networks can effectively capture temporal relationships in time-series data, 177

which is essential for prediction problems, as the one explored in this work. As depicted in 178

Figure 2, the LSTM Neural Network is comprised of two LSTM layers, one with 256 units 179

that does the initial hierarchical feature extraction and a second with 128 units that captures 180

the higher-level temporal patterns. These layers are followed by a Dense (fully-connected) 181

layer of 128 units with an activation Rectified Linear Unit (ReLU) activation layer. The final 182

layer is again a fully connected output layer of 60 units representing the next 60 predicted 183

timesteps. The first LSTM layer is used to identify immediate sequential relationships 184

such as traffic fluctuations and seasonal variations. The second LSTM layer then operates 185

on those relationships identifying patterns and higher order temporal relations [28]. This 186

hierarchical process allows the architecture to capture more than one order of temporal 187

patterns which is particularly useful in traffic prediction where both immediate changes 188

and long-term patterns can be found in the data. The input is a set of 120 timesteps with 5 189

features each; i) the actual value of user traffic of that timestep, ii) the rolling mean of the 190

last 10 timesteps, iii) a rolling standard deviation of the last 10 timesteps, iv) a first-order 191
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difference that represents the momentum of the user traffic, and finally v) the percentage 192

change of the current timestep compared to the first of the rolling window. 193

Figure 2. The architecture of our LSTM User Traffic Prediction module.

A custom solution that combines the loss from Mean Squared Error, a Trend Direction 194

loss calculation to assist the consistency of the directionality of the time-series, and a 195

Volatility-based loss to reduce patterns of statistical dispersion was implemented as the 196

loss function. This combined loss strategy improves consistency by taking into account 197

the volatility of the data as well as the magnitude and penalizes model parameters that 198

would just optimize for one or the other. This way we overcome the natural limitation of 199

optimizing for magnitude prediction by just using Mean Squared Error. Adam [29] with 200

decay rate and early stopping was used as the optimizer to exploit the adaptive learning 201

mechanism in the root mean squared error propagation method and the momentum 202

mechanism employed in the gradient descent process. 203

The equation for the custom loss is shown below. With Lt we symbolize total loss, Lm 204

is the loss component from the mean squared error calculation, Ld is the loss component 205

from trend direction loss and Lv is the loss component from volatility-based loss. As wx we 206

symbolize the weighting of each loss component, from 0 to 1 and x is that component, e.g. 207

wm is the weight of the mean squared error component. In the models demonstrated in this 208

work we used wm = 0.3, wd = 0.3, wv = 0.4. 209

Lt = wm ∗ Lm + wd ∗ Ld + wv ∗ Lv

The mean squared error loss is calculated normally. The trend direction loss is calcu- 210

lated as shown in the equation below. With Da we symbolize the actual direction of the 211

series, with Dp the predicted direction. With M(x, y) we symbolize an operator that is 1 if 212

x and y are equal and 0 if not. With t and T we symbolize the current and final timestep 213

and with n and N the sequence index of the sliding window sequence and the length of the 214

sliding window sequence. 215

Ld =
∑N

n ∑T−1
t M(Da(n, t), Dp(n, t))

N ∗ (T − 1)

The volatility-based loss is calculated as shown in the equation below. With Di f fa 216

we symbolize the actual distance of one element of the series to the next and with Di f fp 217

the predicted distance. With ∆(S) we symbolize an operator that calculates the standard 218

deviation of a set of set of distances. With ϵ we symbolize a very small non-zero number 219

that assists with avoiding division with 0. 220
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Lv =
∑N

n

∣∣∣1 − ∆(Di f fa(n)
∆(Di f fp(n)+ϵ

∣∣∣
N

4.1.2. Transformer and Temporal Convolutional Network Variant 221

The Transformer Neural Network is a Hybrid model consisting of a Transformer and 222

a TCN model. The transformer component is effective at capturing long-term temporal 223

dependencies and seasonal patterns [30] due to its self-attention mechanism, which enables 224

focusing on crucial information regardless of its position in the time-series data. Hence, 225

the transformer processes all time steps of a time-series sequence simultaneously, unlike 226

traditional RNN-based models, which process time-series data sequentially. In contrast, 227

the TCN is aimed at extracting local short-term patterns [31], since convolutions are per- 228

formed on windows of data. The TCN model is comprised of 4 attention heads and a 229

64-dimensional key space. Furthermore, the model also incorporates a normalization layer 230

and a 256-unit feed-forward layer with a ReLU activation function for stability during 231

training. The encoding used is a Positional Encoding so that the sequence of temporal 232

information is retained. Finally, 4 sequential transformer blocks for hierarchical feature 233

extraction are added. The TCN model is comprised of Dilated Convolutions with Causal 234

Padding and dilation rates that are exponentially increasing. This ensures that only past 235

information is used for predictions. Moreover, it consists of Residual Connections for gradi- 236

ent flow and two 1D Convolutional Layers each with its own ReLU activation function. The 237

integration between the two models is achieved with 2 fully connected layers of 128 and 64 238

units each, followed by a ReLU activation layer and an output of 60 for the 60 predicted 239

timesteps. In the output layer, an average pooling is applied. 240

For this network, the same loss function and optimizer (Adam [29]) that were used to 241

train our LSTM model were utilized. 242

4.2. User Allocation Module 243

The user allocation module is influenced by the model presented in [32]. As depicted 244

in Figure 3, we created a CNN-based model consisting of three convolutional 128-unit 245

layers with ReLU activations and three Dense layers with widths of 256, 128, and 18, 246

respectively. CNNs succeed in extracting spatial features from geospatial data such as base 247

station positions, as well as processing multi-dimensional data. The input of this model 248

is the geographical longitude and latitude of each user as derived from the DeepMIMO 249

dataset, while the output is an 18 one-hot encoded output, corresponding to 18 stations 250

where the users are allocated. This model was trained over a maximum of 1000 epochs 251

with a batch size of 32. An early stopping mechanism with a patience of 25 was employed; 252

thus, the 1000 epochs were never reached. Adam [29] was selected as the optimizer 253

with a learning rate of 0.001 to improve the convergence of training and reduce the risk 254

of gradient descent being stuck in local minima. The way this is achieved is through 255

the adaptive learning mechanism in the root mean squared error propagation method 256

and the momentum mechanism employed in the gradient descent process. Multi-class 257

cross-entropy [33] was employed as the loss function for this multi-class task. The above 258

architecture and hyperparameters are optimal as arises from the analysis carried out in 259

[32]. 260

In order to allocate users to base stations based on user traffic predictions, we rank the 261

base stations based on their perceived future traffic. Base stations with very high traffic 262

have a virtual increase in user distance to that base station relevant to the intensity of the 263

predicted high traffic. That distance is analogous to the percentage of total base station 264

allocated users compared to the user capacity of that base station. So if we would want the 265

users of a base station to fall by some percentage point, we would virtually position them 266
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Figure 3. A general overview of our CNN-based User Allocation module.

relatively that much farther away from the high traffic station than they are. Hence, user 267

traffic predictions are used in an adjusted virtual position mechanism to the user allocation 268

module. With this approach the models for allocating users take into account the future 269

traffic of base stations. 270

The virtual distance is calculated through the equation below. Da is the distance actual, 271

Dv is the resulting distance virtual, Lp is the load predicted in total users for that base 272

station and Lmax is the capacity of that base station. A parameter λ can be used to intensify 273

this effect depending on the performance in a production environment. When λ = 1 is 274

set for simplicity the equation performs calculations that would put base stations at exact 275

capacity, so setting λ a small percent higher than 1 would be better. For example setting 276

λ = 1.005 would allocate in a way that 0.5% of the base station capacity is left available. 277

Dv = λ ∗ Da ∗ (Lp/Lmax)

5. Results 278

The results presented in this section come from two datasets that are detailed in 279

subsection 3. The machine used for training and running the models was an AMD Ryzen 280

5600X 6-Core 3.7GHz CPU with a GeForce RTX 3060 GPU with 12GB memory. The models 281

show an increase in accuracy and capacity to digest larger datasets as the hardware scales 282

up, but at a diminished rate the more it scales. As discussed in [34] artificial neural networks 283

of increased size and complexity yield stronger results but seem to be governed by laws of 284

scaling that mandate diminishing returns in the logarithmic scale relevant to the increase 285

in computation. 286

The metrics utilized to assess the performance of our framework are the Absolute 287

Error metric and its percentage. By performing evaluations on variations of our selected 288

models, we account for ablation studies. 289

5.1. User Traffic Prediction Module Results 290

The user traffic prediction dataset is processed into a time-series of user traffic on the 291

network per 1 time step. In this way, features and trends in time can be extracted through 292

ML, and make future predictions. 293

5.1.1. Long Short Term Memory Results 294

The architecture described in Section 4.1.1 resulted from trials done with different 295

configurations of LSTM-based architectures. The models were trained to a maximum of 100 296
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epochs with a mechanism for early stopping (i.e. the 100 epochs were usually not reached 297

due to early stopping). 298

Table 2. Long Short Term Memory Trials

1 LSTM layer 2 LSTM layer 3 LSTM layer

AbsError percent AbsError percent AbsError percent

3225±153 0.52%±0.06 1059±47 0.17%±0.02 1592±70 0.25%±0.03

Comparison between different architectures for our LSTM user traffic model in terms of
Absolute Error and its percentage.

In Table 2, the tests carried out to select the number of LSTM layers, which are the 299

core part of any LSTM model, are recorded. The results show that a 2-layer LSTM is better 300

and that seems to align with fundamental principles of DL regarding the complexity and 301

bias-variance trade-off of models [35]. An observation of the results is that the 1-layer 302

LSTM is slightly underfitting and more than 2 layers are slightly overfitting the dataset 303

with the current hardware. 304

Figure 4. User traffic in active users predicted for the next 60 time steps of an instance in the dataset
with the LSTM model.

In Figure 4, the predicted next 60 time steps of user traffic of an instance of the dataset 305

is depicted. As shown in Figure 4, the first few time steps have very high accuracy and the 306

further the predictions move from these time steps, the chance of inaccurate predictions 307

increases, as can be seen in the time step 50 and thereafter. Though the general trend of 308

the traffic seems to be predicted correctly, the actual value of the users is miscalculated. 309

Another interesting detail is that some 1-time step spikes in traffic are usually not predicted 310

as they are not part of some trend and seem to be accidents in the general trend of the traffic 311

caused by some external factor. 312

The results are satisfactory and show a very promising inclination to improve with 313

just simple hardware upgrades, as the dataset is large enough to support stronger and 314

larger training trials. More specifically, the error in predictions is significantly less than 1% 315

and the absolute error being at about 1000 users is a great result. The latter might suggest 316

the ability to predict even further in time with insignificant inaccuracies. 317

5.1.2. Transformer and Temporal Convolutional Network Results 318

The architecture chosen for the Transformer and TCN hybrid approach resulted from 319

trials done with both Transformer models, TCNs, and each one separately. Just as in the 320

case of our LSTM model, these models were also trained to a maximum of 100 epochs with 321
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a mechanism for early stopping, meaning that 100 epochs were not reached during the 322

learning process. 323

Table 3. Transformer-TCN Trials

Transformer-TCN

AbsError percent

1215±55 0.19%±0.02

Table 3 illustrates the calculated error of the Transformer and TCN hybrid approach. 324

Even though the error seems to be larger than the one of our LSTM model, there is a 325

qualitative distinction that makes the hybrid approach more promising. That distinction is 326

that the latter architecture captures better the directionality and trends of the time-series of 327

the user traffic. 328

Figure 5. User traffic in active users predicted for the next 60 time steps of an instance in the dataset
with the Transformer-TCN model.

In Figure 5 we can see the predicted next 60 time steps of user traffic of an instance 329

of the dataset. This Figure shows that the first time steps are not accurately predicted as 330

it was with the LSTM model. The main advantage of this approach is the trends that are 331

being predicted as it can predict trends as deep as the predicted 40th to 60th time step as 332

seen in Figure 5. These trend captures can be seen across the Figure for instance in time 333

steps 7 to 18 and time steps 24 to 30. This is a very promising result due to the fact that if 334

the erroneous artifacts are eliminated, the results can become by far superior to the Long 335

Short Term Memory model. An example of the erroneous artifacts would be the one in 336

time steps 20 to 24 of the graph in the Figure. 337

5.1.3. Ablations 338

Ablation studies were conducted for the loss function components of our proposed 339

hybrid Transformer-TCN and LSTM models. We evaluated our models under 4 different 340

loss configurations, as reported in Table 4, using: i) only an MSE loss, ii) a trend direction 341

MSE loss, iii) a volatility MSE loss, and iv) a MSE loss incorporating trend direction and 342

volatility. These ablation studies were performed on a short and a long horizon of the test 343

data. Error metrics are reported when the model processes data at the beginning of the test 344

dataset, and similarly at the middle and at the end of the test set. Our findings in terms of 345

RMSE are illustrated in Table 5. 346

In Table 5, we observe that training our model with an MSE loss with trend direction 347

and volatility (MSE_Dir_Vol) produces slightly worse results, compared with the loss 348

configuration without volatility (MSE_Direction). However, when evaluating the figures 349
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Table 4. Loss configurations

Loss Configuration Trend Direction Volatile

MSE_Only - -
MSE_Direction ✓ -
MSE_Volatile - ✓
MSE_Dir_Vol ✓ ✓

Table 5. Loss configurations results

RMSE

Loss Configuration Beginning Middle End

MSE_Only 3500.426 2963.618 1300.578
MSE_Direction 2820.053 2543.905 1040.686
MSE_Volatile 3274.975 2359.294 1344.490
MSE_Dir_Vol 3311.516 2395.418 1298.337

The RMSE and Directional Accuracy metrics are reported during inference at test points
at i) the beginning, ii) the middle, and iii) the end of the test dataset.

qualitatively, as an example Figure 5, we deduce that the graph better approximates the 350

ground-truth, but is sparsely producing deviations that impact the loss in a significant way. 351

Overall, the results of the ablation study should be compared only in relation to themselves, 352

since the training of the Transformer-TCN was conducted in fewer epochs. 353

5.2. User Allocation Module Results 354

The architecture of the model used for user allocation is inspired by [32]. The CNN 355

model was trained to a maximum of 1000 epochs with a mechanism for early stopping. 356

Table 6. CNN’s Accuracy Metrics

Without UserTrafficPred With UserTrafficPred

loss accuracy loss accuracy

0.37±0.02 0.80±0.01 0.32±0.02 0.84±0.01

In Table 6 the performance of the CNN model with and without using the predictions 357

of the user traffic prediction models, is illustrated. Multi-class cross-entropy was utilized as 358

the loss of this model as mentioned in 4.2. It is observed that by using the adjusted virtual 359

position mechanism (i.e. user prediction preceding resource allocation) the results become 360

more accurate in allocating users to base stations as discussed in [32]. 361

6. Discussion 362

The approach shows very promising results in both predicting user traffic and allo- 363

cating to base stations based on the predicted traffic. The combination of ML-based traffic 364

prediction and our adaptive user allocation strategy shows the potential of the model to be 365

applied to operational 5G networks, with the aim to improve the QoS and reduce network 366

congestion in densely populated urban centers. 367

The capability to combine the capture of temporal features in user traffic and spatial 368

features from our previous work in user allocation is a significant step towards a holistic 369

approach in data-driven resource allocation for 5G networks. Moreover, the ability to 370

anticipate network demands through the user traffic prediction module can also be used 371

separately with all user allocation systems that can integrate future predictive resource 372
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demand into their strategy. The most significant advantage of the framework is the incor- 373

poration of historical trends in real-time data, which creates the ability to quickly adapt to 374

changing conditions of the network. 375

Capturing long-term trends in user traffic data is underexplored in current literature 376

with most works focusing in short-range predictions [18] or predictions depending on the 377

previous frame [19]. 378

In [21], the authors present their GNN approach and other frameworks for user 379

traffic prediction in the literature comparing the results of their datasets. They report a 380

performance of at best 88% accuracy, while previous methods go up to 76%. The dataset 381

is of cellular network traffic in the city of Milan and seems to be more sensitive to data 382

volatility. This could be due to the difference in network requirements of the users and 383

the fact that it is just cellular network traffic instead of complete internet traffic that the 384

5G Traffic dataset consists of. Moreover, the LSTM presented in [6] indicates a better 385

performance up to 95% accuracy for long-term user traffic prediction. This method shows 386

a performance very similar to ours. Our method shows more than 99% accuracy, but this is 387

due to the dense nature of the data stemming from a very large dataset. 388

The hybrid Transformer-TCN architecture used for the traffic prediction module has 389

been shown to be simple yet effective for both short- and long-term predictions. In this 390

architecture, the Transformer module could be replaced by the Informer [36] one and 391

perform just as well or even better. The Informer is an extension of the Transformer model, 392

with many modifications focusing on efficiency. The whole hybrid architecture could also 393

be compared to the Temporal Fusion Transformer (TFT) [37], which is capable of handling 394

multi-horizon temporal dependencies. The incorporation of either models in the framework 395

remains as future work. 396

The main limitation of the system is its dataset. As with most data-oriented approaches, 397

the data is the most important part of any such system. The data used to train the models 398

is gathered in dense urban environments, which creates strong statistical features through 399

the very large number of users and common patterns between them. So, a question arises 400

about the efficiency of the system in more sparse rural environments. Another limitation is 401

the hardware used to run and train the models of the system, as the main hardware used 402

was an office machine which can be said to be a rather weak processing unit to calculate 403

the kind of operations that neural networks do. This limitation though can be said to be a 404

strength of the approach as it shows very strong results despite the weak processing power. 405

In terms of results, our traffic prediction model tends to approximate the long-term 406

trends in data (e.g. in the span of 60 time steps), however lacking in point-by-point 407

predictions. To address this issue, more experiments in large datasets and employing 408

larger Transformer-TCN models are to be conducted. The latter entails more computational 409

resources. One more limitation involves the training of the user allocation module on 410

synthetic data, which may not capture the entirety of real-world complexities. 411

7. Conclusion 412

This work presented a pair of modules that together predict the traffic of users and 413

allocate them at base stations within a realistic urban scenario. The proposed system was 414

quantitatively tested through a secondary test dataset and performed satisfactory in its 415

ability to predict traffic of users and improved on a previous method of allocating users 416

to base stations by using the predictions of the traffic prediction module. In future work, 417

we would like to address the main limitation being the data. We aim to train our system 418

with more diverse and larger real-world datasets hoping for both better performance and 419

accurate predictions into further time windows. This aim though would also need stronger 420

hardware and a more sophisticated approach to absorb the amount of data that we aim for. 421
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Another goal is the deployment of this system in an active 5G network to test its capabilities 422

with real-time data so we can study and understand the challenges of user traffic prediction 423

in a live 5G environment. 424
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