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Featured Application: Laser-induced breakdown spectroscopy is used for the detection of honey
adulteration by using the spectral lines of its inorganic elements.

Abstract: In the present work, laser-induced breakdown spectroscopy, aided by some machine
learning algorithms (i.e., linear discriminant analysis (LDA) and extremely randomized trees
(ERT)), is used for the detection of honey adulteration with glucose syrup. In addition, it is shown
that instead of the entire LIBS spectrum, the spectral lines of inorganic ingredients of honey (i.e.,
calcium, sodium, and potassium) can be also used for the detection of adulteration providing effi-
cient discrimination. The constructed predictive models attained high classification accuracies ex-
ceeding 90% correct classification.
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1. Introduction

Honey is a sweet viscous substance made by bees by collecting nectar from the sweet
secretions of trees and plants. Its major constituents are carbohydrates, with the main
types of carbohydrates being sugars. The most common types of sugars found in honey
are glucose and fructose, which account for honey’s sweet flavor [1-4]. Its consumption
has been related with various health benefits and it is widely used as a sugar substitute.
A major issue in the market is to tackle food fraud. Honey is one of the most commonly
adulterated foods, since it is easy to adulterate with other types of syrup, or lower quality
honey [5-7]. Some common techniques to evaluate and quantitively describe its adulter-
ation is isotope ratio mass spectroscopy [8,9], gas and liquid chromatography [10,11], and
near-infrared spectroscopy [12].

In this work, we investigate the use of a spectroscopic method, namely laser-induced
breakdown spectroscopy (LIBS), for the detection of adulteration of honey samples with
glucose syrup. LIBS is a laser-based method, where a focused laser beam is used to excite
and ionize a sample, in one step, to produce a plasma on its surface that contains excited
atoms, ions, electrons, and also various fragments of molecular species existing in the
sample [13,14]. The plasma, resulting from the interaction of the laser with the sample,
emits radiation, which is short-lived, in general, and results from the de-excitation of the
excited atoms and ions, the de-accelerating electron (bremsstrahlung), and the different
recombination processes that can occur. The most important for the present study are the
spectral lines from the de-excitations of atoms and ions, as well as some molecular bands
from small molecules, in principle [15]. The main attribute of this method is that the
plasma radiation emitted light can be recorded and spectrally analyzed, therefore
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providing a mean for qualitative and quantitative (under some conditions) analysis of the
sample’s elemental composition. So far, LIBS has been proposed and applied in many ap-
plications, ranging from the analysis of metals [16,17], to combustion diagnostics [18], art
works restoration/authentication [19], and, more recently, even in space exploration
[20,21]. Due to its ability to analyze highly inhomogeneous materials, LIBS has been pro-
posed as an attractive method for elemental mapping and imaging [22]. Applications can
be found in a wide range of studies, such as the analysis of historical mortar samples [23]
and the detection of selenium enrichment in mushrooms [24]. Moreover, because LIBS can
rapidly provide the results and can create large spectroscopic datasets, it is commonly
combined with machine learning and chemometric algorithms for classification and cali-
bration/regression purposes [25-27], providing new tools for the quantitative and quali-
tative analysis of spectroscopic data.

In the last decade, LIBS has been also proposed for the analysis of foodstuff, e.g., for
the detection of different substances in food [28,29] and for classification of edible olive
oils [30-32], milk [33,34], and honey. Therefore, in a study by Se et al. [35], LIBS was used
for the measurement of the concentrations of some Ca, Mg, and Na minerals using partial
least square regression (PLSR). Lastra-Mejias et al. [36] performed LIBS measurements
supported by chaotic parameters to categorize six European honeys of diverse botanical
origins as well as to detect samples mixed with rice syrup. In the same spirit, Nespeca et
al. [37] employed LIBS, aided by multivariate analytical approaches, to detect and quan-
tify adulterants in honey samples. Similarly, with [37], acacia honey mixed with high-
fructose corn syrup and rape honey were analyzed by LIBS in the work of Peng et al. [38],
in order to determine the characteristic spectral features of pure honey and adulterants
and identify the feature variables that are related to adulteration, and finally to quantify
the adulterant content using univariate and multivariate analysis. Zhao et al. [39] used
LIBS and some machine learning methods to distinguish various honeys based on their
geographical origins. They looked at two distinct honey types (acacia honey and multiflo-
ral honey), each of which had three distinct geographical origins. More recently, Stefas et
al. [40] used LIBS for the classification of honeys based on their floral origin, by analyzing
the LIBS spectra after having performed optimization of the experimental conditions em-
ploying both unsupervised and supervised machine learning approaches, and they deter-
mined the importance of the different spectral features.

In this work, the effect of the addition of glucose syrup in honey LIBS spectra is stud-
ied. More specifically, the spectral features stemming from different inorganic elements
found in honey, e.g., calcium (Ca), sodium (Na), and potassium (K), are identified and
studied and are subsequently used for the detection of the addition of syrup. In that view,
it is shown that the intensities of the spectral lines of these inorganic elements are exhib-
iting a decreasing trend of their intensities with increasing of the added syrup content,
implying their potential in indicating the adulteration of honey. Moreover, by adopting
the methodology previously reported by Stefas et al. [41], linear discriminant analysis
(LDA) is used for dimensionality reduction and classification of the LIBS spectra. The use
of Random Forests permitted us to keep only a few spectral features, basically those be-
longing to the inorganic elements of honey, that contribute importantly, and we assessed
their use for the detection of adulteration.

2. Materials and Methods
2.1. Samples

A total of 15 honeys of different floral origins (e.g., fir, thyme, multifloral, and pine)
were used in this study and were previously characterized by pollen analysis and con-
ventional physicochemical parameters as determined by the European and Greek legisla-
tion. They are listed in Table 1. Adulterated honey samples were prepared by mixing a
fir, a thyme, and a multifloral origin honey with different amounts of glucose syrup
(CsH140Oy). The honey samples were mildly heated in a water bath, and then, they were
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mixed with the preweighed amounts of glucose while a magnetic stirrer was used for
homogenization of the mixtures. Thus, adulterated honey samples of 10, 20, 30, 40, 50, 60,
70, 80, and 90% (w/w) were obtained. The unadulterated honey samples corresponded to
0% w/w, and glucose syrup samples corresponded to 100% w/w.

In total, 45 samples (i.e., the initial 15 honeys, 27 adulterated samples, and 3 glucose
syrup samples) were used for classification purposes following two different approaches.
Initially, the data were split into two sets: one for training and one for testing the algo-
rithm. The training set consisted of 33 samples: 10 honey samples, 21 adulterated honey
samples (7 samples being adulterated fir honey, 7 samples being thyme adulterated
honey, and 7 samples being adulterated multifloral honey), and 2 glucose samples. The
test set consisted of 12 samples: 5 honey samples, 6 adulterated honey samples (2 from
each honey, i.e,, fir, thyme, and multifloral, which were chosen randomly), and 1 glucose
sample.

Following the second approach, the data were split into two sets: the first set contain-
ing 30 samples used for training the algorithms, and the second set containing 15 samples
for testing and validation. The training set contained 10 honey samples, 18 adulterated
honey samples (9 adulterated fir honey samples and 9 thyme adulterated honey samples),
and 2 glucose samples. The test set consisted of 5 honey samples, 9 adulterated honey
samples (resulting from the adulteration of the multifloral honey), and 1 glucose sample.

The above methodology was chosen to assess the effectiveness of the detection of
honey adulteration by LIBS technique by means of two approaches presenting increasing
degree of difficulty. In the first case, the algorithm was trained considering all three adul-
terated honeys (fir, thyme, and multifloral) and was tested on 6 adulterated samples (2
different adulterations randomly selected from each one), while in the second case, the
whole set of the 9 adulterated multifloral honey samples were used for prediction. The
increasing difficulty arises from the fact that in the second approach, the algorithm was
not trained with any adulterated multifloral honey sample, while it was asked to recog-
nize and predict them correctly.

Table 1. Honey samples.

15 Honey Samples

4 fir honey samples

5 thyme honey samples

4 multifloral honey samples
2 pine honey samples
27 adulterated honey samples
9 fir honey adulterated samples (10-90% (w/w))
9 thyme honey adulterated samples (10%-90% (w/w))
9 multifloral honey adulterated samples (10%-90% (w/w))

3 glucose syrup samples

In total: 45 samples

2.2. LIBS Setup

For the LIBS experiments a, 4 ns Q-switched Nd: YAG laser (Quanta-Ray INDI, Spec-
tra Physics) operating at a repetition rate of 10 Hz, at its fundamental frequency, at 1064
nm, was used for creating the plasma. The laser energy was set at ~70 mJ and the laser
beam was focused on the sample surface with a 150 mm focal length lens. The plasma
emission was collected by a quartz lens and was introduced to a quartz optical fiber bun-
dle coupled to the entrance slit of a portable spectrograph (AvaSpec-ULS4096CL-EVO
(CMOS)) equipped with a CMOS detector (CMOS linear image sensor, 4096 pixels) and a
diffraction grating with 300 lines/mm. From the 4096 pixels of the detector, only 2751 pix-
els were used, corresponding to the 200 to 1000 nm spectral region. The optimum
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conditions for the detector gating were a gate delay, t4, of 1.28 us, and a gate width, tw, of
1.05 ms. The width of the spectrograph slit was set at 10 pum.

The LIBS measurements of the honey samples were performed according to the fol-
lowing procedure: the LIBS spectra of ten successive laser shots obtained at one location
on the sample’s surface were averaged, corresponding to one LIBS measurement. A total
of 50 such LIBS measurements were collected at different positions on the sample’s surface
and were employed for the subsequent statistical analysis by the machine learning algo-
rithms.

2.3. Data Analysis

The collected LIBS spectroscopic data were analyzed in the Python programming en-
vironment using the libraries Pandas, Numpy, and Scikit-Learn [41]. Pandas and Numpy
were used to read the obtained spectroscopic data, while Scikit-Learn was used for the
classification of the data. Three machine learning methods were used for analyzing the
obtained LIBS spectra: one unsupervised (i.e., multidimensional scaling (MDS) [42]) and
one supervised (i.e., linear discriminant analysis (LDA) [43] and extremely randomized
trees (ERT) [44]).

MDS is an unsupervised algorithm used to visualize LIBS spectroscopic data, taking
into consideration their degree of resemblance. More specifically, MDS generates a matrix
of distances between the raw data or objects, in pairs, and projects each object into an
abstract Cartesian space of lower dimensionality compared to the dimensions of the raw
data objects, so achieving the dimensionality reduction of a given dataset, where the spec-
troscopic data points are plotted, initially in a three-dimensional, and then in a two-di-
mensional, scatter plot, to visualize the LIBS data).

LDA is a supervised algorithm, which is used as a classifier and/or as a dimensional-
ity reduction technique. LDA implements a linear decision boundary, which is generated
by fitting class conditional densities, such as the Gaussian density, to the data. These data
are sorted to certain classes and the LDA model assumes that all classes share the same
covariance matrix. In the present work, LDA is used both as a classifier (i.e., to generate a
predictive model) and as a dimensionality reduction technique as well. In more detail, for
the development of the LDA model, the training dataset was used, and the training pro-
cedure was performed by k-fold cross-validation. k was chosen to have a value of 10, and
the training data were shuffled and split into k groups. The k-1 groups were used to train
the classifier, while the remaining group was used for assessing the predictive ability of
the classifier, by computing its classification accuracy. All of the k subsamples were used
for prediction and the procedure was repeated k-times, with the total accuracy of the clas-
sifier being derived from the averaging of the accuracies of each fold, thus evaluating the
standard deviation of the classifier’s overall accuracy. Furthermore, the predictive ability
of the LDA model was tested via external validation, by predicting the test set described
in Section 2.1, concluding that the prediction accuracy of the LDA model is evaluated by
the confusion matrix, which is a specific table layout used to verify how much of the data
were correctly classified. In this table, the columns represent the actual classes of the sam-
ples and the rows represent the classes predicted by the model. Its diagonal elements in-
dicate the number of spectra that were predicted correctly.

Extremely randomized trees (ERT) were used for assessing the feature importances
by using the experimental LIBS spectra as inputs. This method natively describes the im-
portance of each feature to the classification result. Feature importance refers to tech-
niques that assign a score to the input features based on how useful they are in predicting
a target variable.

Following the first approach for classification, spectra from 33 samples were used for
training the algorithms, and spectra from 12 samples for external validation. As a result,
the LIBS raw dataset for training consisted of a data matrix of 1650 rows and 2751 col-
umns, while the external validation dataset consisted of a data matrix of 600 rows and
2751 columns. For the second approach, spectra from 30 samples were used for training
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the algorithms and spectra from 15 samples for external validation. As a result, the LIBS
raw dataset for training consisted of a data matrix of 1500 rows and 2751 columns, while
the external validation dataset consisted of a data matrix of 750 rows x 2751 columns.

3. Results
3.1. LIBS Spectra of Honey and Adulterated Honey Samples

Figure 1a shows some representative LIBS spectra of honey, glucose syrup, and a
honey—glucose syrup mixture. The spectra exhibited the characteristic spectral features
which have been reported previously in the LIBS spectra of honey and in other organic
materials [13,14]. Among them, the most prominent features are the atomic lines of neutral
carbon (C (I)) at 247.9 nm and the Balmer series spectral lines of hydrogen (Ha and Hpg) at
696.3 and 486.1 nm, respectively, as well as the molecular bands of CN extending from
350 and 400 nm. However, as shown in Figure 1a, these features are quite similar, and
they cannot be correlated with the degree of adulteration as they are present both in the
honey and the adulterants. Figure 1b,c, show the spectral lines of some of the inorganic
elements present in honey, e.g., the calcium ion lines (Ca (II)) at 393.3 and 396.8 nm and
the sodium D lines (Na (I)) at 589.0 and 589.6 nm, as well as the potassium (K (I)) lines at
766.5 and 769.9 nm. As discussed in the next paragraph, this last group of spectral lines is
of particular interest in this work. As can be seen from the comparison of the LIBS spectra
of honey and the glucose syrup, the spectral features of the inorganic components are
absent from the spectrum of glucose syrup. In addition, from the comparison of the honey
LIBS spectrum (black line) with that of an adulterated honey (red line), it is evident that
the adulterated sample exhibits notably lower intensity spectral lines of these inorganic
species. These qualitative observations indicate that the spectral lines of these inorganic
elements can be, in principle, employed for the detection of honey’s adulteration. In Fig-
ure 1d, the spectral lines of Ca (II), Na (I), and K (I) obtained from honey samples mixed
with glucose syrup at various ratios are presented in more detail. From this figure, it be-
comes evident that the relative intensities of these spectral lines are reduced as the glucose
content (i.e., the honey—glucose ratio) is increasing.
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Figure 1. (a) LIBS spectra of honey, adulterated honey (50% w/w), and glucose syrup samples. (b) CN band and Ca (II)
spectral lines, (c) Na (I) and K (I) spectral lines in a honey, an adulterated honey, and a glucose syrup sample. (d) Ca (II),
Na (I), and K (I) spectral lines of different % adulterated honey samples.

3.2. Dimensionality Reduction and Classification of LIBS Spectra for Adulteration Detection

For the visualization of the level of similarity of the collected LIBS spectra, multidi-
mensional scaling was used (Figure 2). As can be seen, some honey samples are clearly
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distinguished from the others, forming a large cluster, while the rest of the samples are
grouped in a second cluster that contains honey, adulterated honey, and glucose samples.
The mixing of the honey samples with the adulterated ones is due to the fact that they
were used to make the adulterated ones, thus exhibiting similar spectral characteristics.
Moreover, some adulterated samples were found placed near to the glucose ones, again
indicating their similarities, because the high glucose content adulterated honey samples
have very similar spectral characteristics with those of glucose samples.

O Honey

. Adulterated

O Glucose

Figure 2. Multidimensional scaling (MDS) of the LIBS spectra.

Next, the training and test set of the first approach (see Samples section) were used
for the construction of the predictive model by means of the LDA algorithm. It must be
noted that except for the construction of a predictive model, LDA is capable of visualiza-
tion of multidimensional data (see also Data Analysis section), and the corresponding plot
is presented in Figure 3a. As can be seen, all of the classes (i.e., honey, adulterated honey,
and glucose syrup samples) are clearly distinguishable between them, indicating the dif-
ferences between the samples. The obtained classification accuracy determined via 10-fold
cross-validation was (95.6 + 1.2)% and the test accuracy obtained via external validation
was 91.8%. For a more detailed insight of the classification results, the corresponding con-
fusion matrix is presented in Figure 3b. As can be seen, from the 200 honey spectra, only
five were misclassified as adulterated honeys, and also, from the 400 adulterated honey
spectra, 38 were misclassified as honey and two as glucose syrup spectra, while all of the
50 glucose syrup spectra were correctly predicted. It should be noted that, in the case of
the adulterated honey spectra that were misclassified as honeys, they belonged to samples
with relatively low percentage of adulteration (i.e., 10% and 20% (w/w)), while the two
misclassified spectra that were predicted as glucose belonged to the 90% (w/w) adulterated
sample.

Next, the capabilities of the constructed predictive model were assessed using only
the spectral lines of Ca, Na, and K (see Figure 1d), and, more specifically, by using the
spectral regions 392-399 nm, 587-592 nm, and 765-772 nm. The results obtained using the
LDA algorithm are shown in Figure 3c. As can be seen, some of the glucose syrup samples
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are slightly overlapping with the adulterated honey samples, as well as with some honey
samples. The overlapping honey samples belong to the samples that were used to prepare
the adulterated honey samples, while the rest of the honey samples are clearly distinguish-
able. The obtained classification and test accuracies were found to be (91.2 + 2)% and
96.2%, respectively. Then, for more detailed overview of the constructed model’s perfor-
mance, the confusion matrix is presented in Figure 3d, as before. In this case, a better al-
gorithmic behavior was observed, since only 20 adulterated samples’ spectra (19 as honey
and one as glucose syrup spectra) of the total 300 were misclassified, while just one glu-
cose syrup spectrum was predicted as an adulterated one, and none of the honey spectra
were falsely predicted. Despite the fact that the accuracies are slightly lower than using
the whole LIBS spectra, these results are quite impressive because they indicate that honey
adulteration can be detected equally effectively by using only specific emissions (Ca, Na,
and K) with great success.
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Figure 3. (a) LDA canonical variable plot employing the LIBS spectra. (b) Confusion matrix showing the prediction of the
test samples using the LDA algorithm employing the LIBS spectra. (c) LDA canonical variable plot employing only the
spectral lines of Ca (II), Na (I), and K (I) (see Figure 2). (d) Confusion matrix showing the prediction of the test samples
using the LDA algorithm employing only the spectral lines of Ca (II), Na (I), and K (I).

Afterwards, the data from the second approach (see Samples section) were used as
input for the algorithms. Thus, LDA was used to classify the LIBS spectra into three clas-
ses, namely the honey, the adulterated honey, and the glucose syrup classes. LDA is used
here both for dimensionality reduction and as a classifier. The LDA output is graphically
presented in Figure 4a. As can be seen the glucose samples are clearly separated from all
the other samples. The honey samples and the adulterated honey samples are also clearly
separated, although they are not very distant, indicating their similarities, as well as the
fact that some overlapping could potentially occur between them, for instance when
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trying to predict new samples that are previously unseen by the algorithm. The classifica-
tion accuracy is (95.6 + 0.8)% and resulted from a 10-fold cross-validation performed using
the training data. The external validation accuracy was determined to be 90.5%. The cor-
responding confusion matrix is presented in Figure 4b. As can be seen, 60 spectra arising
from the adulterated honey samples were misclassified as honey samples. These spectra
correspond to samples that contain 10% and 20% (w/w) of glucose syrup. It is, thus, evi-
dent that some misclassifications may occur at low percentages of adulteration. Moreover,
only three spectra from the adulterated samples were misclassified as glucose syrup.
However, these spectra correspond to adulterated honey samples containing 90% (w/w)
of glycose syrup. In fact, in this case, the LIBS spectra tend to be very similar to the spectra
of glucose syrup, lacking the spectral lines of the inorganic elements (see Figure 1d) ob-
served in the honey samples. Last, but not least, eight spectra of honeys were misclassified
as adulterated honey samples.
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Figure 4. (a) LDA canonical variable plot employing the LIBS spectra. (b) Confusion matrix showing the prediction of the
test samples using the LDA algorithm employing the LIBS spectra. (c) LDA canonical variable plot employing only the
spectral lines of Ca (II), Na (I), and K (I) (see Figure 2). (d) Confusion matrix showing the prediction of the test samples
using the LDA algorithm employing only the spectral lines of Ca (II), Na (I), and K (I).

Next, the spectral lines of Ca, Na, and K, shown in Figure 1d, were used to assess the
distinguishability of the adulterated honey samples from the honey samples. The results
obtained using the LDA algorithm are presented in Figure 4c. As can be seen while the
glucose syrup samples are separated from the other samples, some honey samples are
overlapping with the adulterated honey samples. Again, they were the honey samples
that were used for the preparation of the adulterated honey samples. The honey samples
that were not used to prepare any adulterated samples are totally distinguished from the
rest of the samples.
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The obtained classification accuracy was (90.2 + 1.8)% and resulted from a 10-fold
cross-validation of the training data. The external validation accuracy was found to be
90.5%. The corresponding confusion matrix is shown in Figure 4d. A total of 64 spectra of
adulterated honey samples were misclassified as honey, and five of them as glucose
syrup. Additionally, only six spectra of honey samples were misclassified as adulterated
honey samples. Despite the lower accuracies obtained compared to using the entire LIBS
spectra, these results are remarkably interesting as they indicate that honey can be dis-
criminated from adulterated mixtures with quite high accuracies by using the spectral
lines of only three inorganic elements (i.e., Ca (II), Na (I), and K (I)), thus suggesting that
these spectral lines can be used for the efficient detection of honey adulteration via LIBS.

In Figure 5a, the important features (blue color lines) identified using the ERT algo-
rithm are presented. As can be seen, there are several spectral peaks that are recognized
as important by the algorithm, although they appear rather weak in the experimental LIBS
spectra. Figure 5b,c present the spectral regions where the most important features occur
together with the corresponding spectral regions of the LIBS spectrum. Therefore, in Fig-
ure 5b, the spectral features of Ca (II) at 393.3 and 396.8 nm are shown, exhibiting the
highest importances. It is interesting to note that the algorithm seems to identify spectral
features that are not clearly observed in the LIBS spectra, such as those of Mg (II) at 279.6
and 280.3 nm, and that of Ca (I) at 422.7 nm. In Figure 5c, the most important features
corresponding to the K (I) and Na (I) spectral lines are shown. These findings confirm the
importance of the spectral lines of these inorganic elements for the detection of adultera-
tion in honey. It is interesting that the spectral lines of Mg (II) and Ca (I) have been also
suggested by Lastra-Mejias et al. [36] as important for the selection of the most important
features for botanical origin classification. Similarly, many of the spectral features pre-
sented in the present work were also identified by Nespeca et al. [37] using the backward
interval partial least squares method. In the same spirit, Peng et al. [38], trying to select
the most efficient variables for the quantification of honey adulteration with high-fructose
corn syrup, used different algorithms and also concluded with the same spectral features
determined in the present work.
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Figure 5. Feature importance plot obtained using the ERT algorithm together with a honey LIBS
spectrum in the (a) 200-1000 nm, (b) 240-500 nm, and (c) the 560-780 nm spectral regions.

4. Conclusions

In the present work, LIBS was used to assess the feasibility of detection of adultera-
tion of honey with some glucose syrup. In that view, LIBS spectra of honey samples, adul-
terated honey samples, and glucose syrup were acquired and were compared. The
amount of added glucose syrup in the honey samples ranged from 10% to 90% (w/w). The
assessment of the discrimination procedure was conducted following two different ap-
proaches of samples split into train and test sets, each one exhibiting a different level of
difficulty concerning the algorithmic procedure. The obtained accuracies were quite high,
exceeding 90%, for both approaches. Furthermore, it was found that some of the observed
spectral lines, in particular those of some inorganic ingredients of honey (i.e., calcium,
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sodium, and potassium), were strongly varying in the degree of adulteration, exhibiting
a clearly decreasing trend as the degree of adulteration increased. Based on this observa-
tion, the spectral lines of these three elements were selected as key parameters for the
detection of honey adulteration, using LDA for classification, resulting in quite high ac-
curacies. This result is very useful, since, instead of the whole LIBS spectrum, only three
spectral lines are used for the construction of a successful predictive model for honey
adulteration. Finally, the application of ERT confirmed the importance of these features
for the detection of honey adulteration, and identified spectral features that are not clearly
observed in the spectra (e.g., they are very weak, or overlap with nearby stronger features,
etc.), such as those of Mg (II) at 279.6 and 280.3 nm and Ca (I) at 422.7 nm. The present
findings suggest the great potential of LIBS aided by machine learning for the detection
of honey adulteration.
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