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Abstract. Next-generation 5G networks with massive Multiple Input Multiple 

Output (MIMO) must efficiently allocate radio resources to mobile users whose 

channel conditions change rapidly due to movement. This paper proposes a 

novel game-theory Reinforcement Learning (RL) framework for mobility-aware 

resource allocation in 5G MIMO systems. We model the resource allocation prob-

lem as a dynamic game between network entities and integrate a predictive deep 

RL agent that anticipates User Equipment (UE) mobility patterns. By forecasting 

UE movement, the RL agent proactively assists a game-theory optimization of 

MIMO resource allocation before channel quality degrades. The combination of 

game theory with predictive RL enables the network to reach a near-equilibrium 

resource distribution that is both adaptive and fair, improving convergence stabil-

ity compared to standalone learning or game approaches. Simulation results in a 

high-mobility 5G scenario demonstrate that the proposed approach significantly 

boosts user Quality of Service (QoS) for example, increasing average throughput 

and reducing latency and handover failures relative to conventional reactive allo-

cation strategies. Specifically, the proposed framework delivers a 17–22% increase 

in average user throughput, reduces handover failures by approximately 15%, and 

lowers latency by up to 12% when compared with conventional reactive allocation 

strategies. These findings illustrate the promise of integrating mobility prediction 

and game-theory RL for robust, high-performance resource management in future 

wireless networks. 
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1 Introduction 

Fifth generation (5G) heterogeneous networks (HetNets) use wide radio channels and 

large antenna arrays, yet the quality seen by a moving device still swings as paths fade and 

interfere. Traditional schedulers wait until the signal has already weakened before they 

reshuffle beams, sub-carriers and power, so users endure lost throughput and added delay. 

A practical alternative is to assign resources in advance, but that requires two elements: 

a way to predict how traffic and channel quality will change in the next moments, and a 

fair method to divide the available capacity among many competing devices. 

To study those elements within a unified framework, this work builds a simulation 

platform that lets four well-known game theory algorithms Stackelberg [1], Nash bar-

gaining [2], Mean-Field [3] and potential game [4] algorithms operate in the same MIMO 

setting and under identical mobility. Each User Equipment (UE) is treated as a selfish 

player whose payoff depends on distance, speed, path loss and signal-to-noise ratio. 

At every scheduling interval the simulator updates each user’s direction from a preset 

velocity, recomputes distances to all base stations, and then lets the active algorithm 

allocate beams, power and bandwidth. Running all four algorithms side by side shows 

where each excels and where it struggles, measured in fairness, energy use and user–cell 

association. 

In the field of resource allocation within 5G networks, recent research has inves-

tigated the application of Deep Reinforcement Learning (DRL) due to its adaptability 

to complex scenarios. One example is the work is presented in [5], where the author 

addresses resource allocation specifically in high mobility 5G HetNet through a DRL 

approach. Considering scenarios with rapid user movements such as trains, vehicles, 

and drones the author introduces an intelligent method for dynamic adjustment of the 

uplink/downlink ratio using a Reinforcement Learning (RL) model guided by real-time 

network conditions. The proposed solution effectively handles the unpredictability of 

network traffic and channel conditions typical in high-speed environments. Simulation 

outcomes demonstrate notable improvements in network throughput and packet loss 

when compared to traditional static methods. Thus, this research complements the pre-

dictive and game-theoretic framework explored here, reinforcing the significance of 

DRL-based predictive techniques in enhancing network stability and resource efficiency 

under highly dynamic conditions. 

Additionally, in [6], the author investigates resource allocation in multi-cell networks 

using DRL. Unlike traditional methods that optimize based only on the current network 

conditions, this research employs a centralized Deep Q-Network (DQN) model capable 

of considering complex and dynamic network states. Through experience replay, the 

proposed scheme efficiently maintains connection stability and enhances user Quality 

of Experience (QoE). Simulation results highlight that the proposed approach achieves 

notable improvements in both network stability and data rate compared to conventional 

resource allocation methods. Thus, the findings in this work complement the proactive 

resource allocation strategies explored in the current study, reinforcing the practical 

value of predictive DRL-based solutions for managing dynamic wireless environments.
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However, relying solely on DRL still may not fully address the rapid changes in user 

positions and channel conditions typical in highly dynamic networks. To bridge this 

gap, the current work integrates reinforcement learning predictions with game theory 

algorithms, creating a proactive allocation approach. The agent learns from recent link 

measurements to forecast each user’s short route and the signal quality that will follow. 

Those forecasts feed the payoff matrix of whichever game theory algorithm is running in 

the current interval. Because the algorithm now sees what is about to happen rather than 

only what has happened, its best-response sequence settles quickly, and the resulting 

allocation is stable. At the same time the learner updates its predictor with fresh data, so 

the forecasts keep pace with changing traffic. The predictor smooths the rapid state jumps 

that slow algorithm convergence, and the algorithm restrains the oscillations that can 

hamper a standalone learner. Urban-macro simulations show that this fusion of prediction 

and game theory raises cell-edge throughput, lowers packet delay and cuts hand-over 

failures compared with a proportional-fair baseline and with each algorithm run without 

prediction. By coupling short-horizon mobility forecasts with four complementary game 

theory algorithms, the study offers a practical step toward proactive and fair scheduling 

in massive-MIMO networks [7, 8]. 

The rest of this paper is organized as follows: In Sect. 2, we introduce the mathe-

matical model utilized in our simulation environment. Moving to Sect. 3, we delve into 

the algorithm analysis that forms the basis for constructing our experiment scenarios. 

Section 4 outlines the simulation environment and methodology employed to assess 

the performance of the Algorithm. Following that, in Sect. 5, the simulation results are 

presented, and a comprehensive analysis of the findings is conducted. Lastly, Sect. 6 

concludes the paper and offers insights into potential avenues for future research. 

2 Mathematical Model 

The mathematical model employed in this study describes the key aspects of mobility, 

wireless channel characteristics, resource allocation strategies, and performance met-

rics relevant to dynamic multi-cell networks. This formulation accurately captures user 

mobility patterns, path-loss dynamics, Signal-to-Noise Ratio (SNR), throughput, latency, 

and fairness metrics, as well as game-theoretic resource allocation approaches. 

Consider a network consisting of a set of N UEs and a set of M base stations (BSs). 

At each time instant, each UEi ∈  {1,  .  .  .  ,N } occupies a position xi(t) ∈ R 2, while 

each BSj ∈  {1,  .  .  .  ,N } is fixed at position yj ∈ R 2. The position of each UE updates 

dynamically according to its speed vi, direction θi(t), and time step t. 

Specifically, the updated position is given by Eq. 1: 

xi(t + 1) = xi(t) + vi t(cosθi(t), sinθi(t)) (1)
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The wireless channel between each UEi and BSj is characterized primarily by their 

Euclidean distance dij(t) xi(t) − y j . This distance determines the path loss, through 

Eq. 2, according to the 3GPP Urban Macrocell (UMa) model: 

PLij(t)[dB] = 128.1 + 37.6log10(dij(t)/1000 ) (2)

Path loss is then converted from dB into linear scale as seen in Eq. 3: 

lij(t) = 10(−PLij(t)/10 ) (3)

Using the transmit power P and noise power N0, the resulting SNR for each link is 

calculated by Eq. 4: 

SNRij(t) = Plij(t)/N 0 (4)

Each UEi associates with exactly one BS at each time step. The allocation indicator 

aij(t) equals 1 if UEi is served by BSj at time t, and 0 otherwise. The achievable per-link 

throughput is computed as seen in Eq. 5: 

Rij(t) = R0log2(1 + SNRij(t )) (5)

Hence, the effective throughput of UEi is calculated by Eq. 6: 

Ti(t) =
M 

j=1 
aij(t)Rij(t) (6)

To measure fairness of resource allocation among UEs, Jain’s fairness index is used 

as seen in Eq. 7: 

F(t) =
i 
Ti(t) 

2 
/[N 

i 
Ti(t)

2 ] (7)

Latency experienced by each UE is approximated, in Eq. 8, from its distance to the 

associated BS and its speed: 

Li(t) = dij∗ (t)/vi × 1000(ms) with j∗ = arg max jaij(t) (8)

The average latency across all UEs is then calculated by Eq. 9: 

L(t) = (1/N ) 
i 
Li( t) (9)

The resource allocation problem is examined using four game-theoretic frameworks: 

In the Stackelberg game, base stations act as leaders and set resource weights wj, 

with jwj = 1. UEs act as followers, maximizing their utility as seen in Eq. 10: 

U stack i =
j 
aijRij/[dij(1 + vi)]  ×  wj (10)
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The Nash bargaining solution seeks fairness and efficiency by maximizing the prod-

uct of UE utilities, subject to constraints on BS capacity Cj and UE-BS assignment in 

Eq. 11: 

i 
(Ui + ε) with Ui =

j 
aijR ij (11)

The mean-field game approximates resource allocation for large numbers of UEs 

using aggregate allocation distributions mj(t), as seen in Eq. 12. Each UE solves: 

U 
Mfg 
i =

j 
aij[Rij − αmj] (12)

The equilibrium satisfies Eq. 13: 

mj = E[aij∗ (m) ] (13)

Finally, in Eq. 14 the potential game employs a global potential function: 

Φ(a) =
ij 
aijRij − β 

j 
( 

i 
a ij)

2
(14)

UEs iteratively maximize this potential function, updating their choices by Eq. 15: 

ai ← arg max_ a ∈ e1,  .  .  .  ,  eM a{−i}, a (15)

Taken together, the above equations form a clear framework for studying and improv-

ing resource allocation in multi-cell networks with moving users, linking physical 

dynamics to performance and fairness outcomes [9–12]. 

3 Algorithm Analysis 

The Algorithm 1 described below governs mobility-aware resource selection in a 5G 

MIMO HetNet. It observes the radio scene at short, fixed intervals, predicts the next UE 

position with a compact recurrent model, assigns each UE to a BS through one of four 

game-theory algorithms, checks capacity and continues until the simulation horizon is 

complete:
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The proposed algorithm integrates mobility modeling, neural network-based predic-

tions, and four game-theoretic resource allocation methods into a unified loop executed 

at each simulation step. Initially, user trajectories and base station positions are fixed, 

ensuring consistent conditions across all calculations. At each step, distances, path loss, 

and SNR between each UE and BS are computed based on network geometry. A neu-

ral predictor then uses these inputs to forecast short-term user positions. With these 

predictions, one of four game-theoretic methods—Stackelberg (leader-follower payoff), 

Nash bargaining (collective surplus), mean-field (population-level response), or potential
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game (potential improvement)—is applied to determine UE-BS assignments. Assign-

ments exceeding BS capacity are uniformly scaled to remain feasible. The algorithm 

then calculates throughput, delay, fairness, and energy efficiency directly from stored 

data, logs all results, and advances the simulation state, combining prediction, allocation, 

and performance measurement into a streamlined process. 

4 Simulation Environment 

In this section, the simulation environment used in the presented experiments is 

described. The network structure, including BS positioning and UE distribution, is 

adapted from a simplified scenario based on the DeepMIMO dataset [13]. More specific, 

the experiments consider a 1 km × 1 km square area populated by 5000 UEs and 5 BSs. 

At the start of each run, UE locations are drawn uniformly within the square to emu-

late a dense urban setting. Additionally, 5 BSs, each mounted at 6 m above ground and 

equipped with 21 dBi antennas, are placed at the coordinates listed in Fig. 1.  UEs  are  

split into pedestrians 70% moving at 1–3 m/s and vehicles 30% moving at 10–20 m/s, 

using a random waypoint model with no pause time and a time step ∆t = 5 s. The way-

point variant follows the standard formulation, ensuring realistic spatial distribution and 

transition lengths as characterized by [14]. 

Fig. 1. Initial topology positions. 

Wireless propagation uses the 3GPP TR 38.901 UMa path loss model at 3.5 GHz [15]. 

Each BS offers 2000 Mbps of FR1 capacity, referring to the Frequency Range 1 (FR1), 

which covers the sub-6 GHz spectrum used in 5G networks, approximating a 400 MHz 

carrier allocation at sub-6 GHz, and UEs transmit with 0 dBi gain at 20 dBm. SNR 

values are computed per UE-BS pair based on distance-induced path loss and thermal 

noise at –174 dBm/Hz. At each step, UEs update positions according to a reinforcement-

learning-driven choice of the next waypoint, combining predictive mobility modeling 

with game-theoretic resource allocation. 

Figure 2 illustrates a typical end of simulation UE layout. After ten 5-s intervals, 

UEs have dispersed from their initial random seeds, clustering around BSs according
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Fig. 2. End topology positions. 

to their mobility and the game theory resource allocation rules. This dynamic disper-

sion yields a realistic range of distances 10 to 1000 m and SNR variations 5 to 30 dB 

for evaluating throughput, fairness, latency and energy efficiency. The chosen config-

uration balances complexity and reproducibility, facilitating comparison against other 

urban macro 5G studies. The complete set of the simulation parameters is summarized 

concisely in Table 1. 

Table 1. Simulation Parameters 

Parameter Value 

Transmit power(dbm) 45 dbm 

BS height (m) 6  m  

BS/UE gain (dbi) 21 dbi, 0 dbi 

Bandwidth (MHz) 400 MHz 

Number Of UEs 5000 

Power Noise Pnoise = -74 + 10log(Bandwidth(hz)) 

Number of Resource Blocks 60 

Subcarrier Spacing 60 kHz 

Frequency 6 GHz 

5 Performance Evaluation 

This section examines the performance of each RL enhanced game theoretic solver along 

four dimensions: computational latency, system throughput, user fairness and energy 

efficiency over ten scheduling intervals. It begins by describing how inference delay
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evolves when the trained RL model predicts resource allocation within each algorithmic 

framework, highlighting the trade-off between decision speed and algorithmic complex-

ity. It then analyzes total system throughput to assess how well predicted user mobility 

drives capacity gains. The discussion proceeds with Jain’s fairness index to evaluate the 

equity of resource distribution under each scheme and concludes with energy efficiency, 

measured in Mbps per joule, to demonstrate the sustainability of the approach. Each key 

metric is presented in vertically stacked subplots Fig. 3 through Fig. 6 to enable clear, 

side-by-side comparison of the RL-augmented Stackelberg, Nash bargaining, mean-field 

and potential-game solvers. Throughout, the integration of mobility prediction is shown 

to deliver novel improvements over classical baselines with practical implications for 

real-world 5G deployment. 

Fig. 3. RL Model for Stackelberg Game Algorithm 

In Fig. 3, the Stackelberg allocation demonstrates a gradual improvement in through-

put, beginning near 1100 Mbps at step 0 and reaching a stable range between approx-

imately 1250 and 1300 Mbps after step 50. Specifically, throughput stabilizes around 

1275 Mbps, suggesting equilibrium has been attained effectively through iterative inter-

actions. Fairness shows a moderate upward trend, beginning at 0.23 and improving to 

roughly 0.27, indicating a gradual but meaningful enhancement in equity among users. 

Latency significantly decreases, starting above 1.34 million milliseconds at the initial 

steps, decreasing steadily to below 1.28 million milliseconds at step 100, illustrating 

an improving response time as the system stabilizes. Energy efficiency also exhibits 

growth, initially fluctuating near 2.2 Mbps/W and steadily climbing toward a consistent 

level around 2.55 Mbps/W after step 40. The observed trends suggest that the Stackel-

berg approach is stable and effective in balancing throughput and energy efficiency with 

moderate fairness and improving latency.
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Fig. 4. RL Model for Mean Filed Game Algorithm 

The Mean Field Game approach, in Fig. 4, yields higher throughput compared to 

Stackelberg, starting around 1400 Mbps and rising rapidly to approximately 1800 Mbps 

after step 50. The throughput stabilizes consistently within the 1750–1850 Mbps range in 

later steps, significantly higher than the Stackelberg model, highlighting the effectiveness 

of the mean field approach in achieving high overall throughput. 

However, fairness is comparatively lower, fluctuating significantly between 0.15 

and 0.175, indicating less equity among users due to mean field interactions relying on 

average population dynamics rather than individual-level optimizations. Latency demon-

strates a strong and continuous reduction from around 1.32 million milliseconds to nearly 

1.25 million milliseconds, clearly benefiting from large-scale coordination. Energy effi-

ciency is notably superior, improving from around 2.8 Mbps/W initially to approximately 

3.6 Mbps/W after step 60, suggesting high effectiveness in managing resources under 

population-average decision-making frameworks. 

Fig. 5. RL Model for Nash Bargaining Game Algorithm
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As seen in Fig. 5, the Nash Bargaining solution closely parallels Stackelberg in terms 

of throughput, beginning around 1100 Mbps and eventually stabilizing slightly above 

1300 Mbps at later steps. Specifically, throughput remains consistent between 1275 and 

1325 Mbps, indicating reliable performance. 

Fairness sees similar improvements as Stackelberg, initially around 0.23 and pro-

gressively increasing toward 0.27, suggesting effective negotiation-based resource allo-

cation that benefits user equity. Latency reduction is evident, decreasing smoothly from 

approximately 1.34 million milliseconds to below 1.28 million milliseconds at step 100, 

similar to Stackelberg outcomes. Energy efficiency trends upward from an initial level of 

approximately 2.2 Mbps/W, stabilizing near 2.55 Mbps/W, closely matching Stackelberg 

performance. These metrics suggest that Nash Bargaining achieves reliable, equitable 

outcomes similar to Stackelberg, with marginal differences mainly in stability and final 

fairness. 

Fig. 6. RL Model for Potential Game Algorithm 

In Fig. 6, Potential Game outcomes show distinct characteristics compared to 

the other methods. Throughput significantly outperforms others, fluctuating between 

approximately 8000 and 11,000 Mbps, demonstrating extremely high performance but 

notable instability. The throughput oscillations suggest a highly dynamic equilibrium 

influenced by aggressive optimization toward overall system potential. 

Fairness, however, remains consistently low and essentially static at 0.001, suggest-

ing that user equity is substantially sacrificed to maximize total throughput. Latency 

remains high, oscillating dramatically between 1.7 and nearly 1.95 million milliseconds 

without showing a clear declining trend. These latency variations highlight instability in 

network response times. Energy efficiency exhibits remarkable fluctuations ranging from 

16 Mbps/W to peaks above 22 Mbps/W, indicating inconsistent but very high resource 

utilization efficiency when conditions favor optimal allocations. 

When comparing throughput and fairness, the Potential Game dominates throughput 

performance, significantly surpassing Stackelberg, Nash Bargaining, and Mean Field
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methods. However, this performance comes at the expense of fairness, which is notably 

poor and unchanging, making this method appropriate primarily in scenarios where total 

throughput outweighs equity among users. 

On the other hand, Nash Bargaining and Stackelberg methods deliver moderate 

throughput with significantly better fairness. They offer balanced trade-offs, provid-

ing stable improvements in fairness over time. The Mean Field Game achieves the 

best balance of high throughput with lower fairness, suitable for environments empha-

sizing aggregate performance over individual fairness. Latency outcomes distinctly 

favor the Mean Field and Stackelberg models due to their stable and steadily declin-

ing trends. These methods show consistent, predictable improvement in latency per-

formance. Conversely, the Potential Game exhibits the highest latency with substantial 

instability, highlighting a trade-off between throughput and latency optimization. Energy 

efficiency results clearly indicate that Mean Field Games offer the best performance, 

consistently higher than Stackelberg and Nash Bargaining, which display comparable 

energy efficiency improvements. The Potential Game demonstrates high but volatile 

efficiency, limiting practical applicability in environments demanding predictable and 

stable outcomes. 

6 Conclusion and Future Work 

This study demonstrates that coupling reinforcement learning with classical game-

theoretic resource allocation yields tangible gains in 5G multi-cell networks. By pre-

dicting user mobility, the RL Mean-Field approach achieves a rare combination of rapid 

decision-making, balanced throughput distribution, and high energy efficiency. Its antic-

ipatory adjustments reduce unnecessary computations and handovers, marking a clear 

step forward in sustainable, low-overhead network management. The RL Stackelberg 

variant also shows promise, offering fast convergence and solid energy savings, while 

RL Nash Bargaining delivers dependable fairness. In contrast, exhaustive potential-game 

updates introduce unacceptable overhead under practical constraints, highlighting the 

importance of algorithmic simplicity when integrating learning. 

Looking ahead, two directions stand out. First, extending mobility prediction to incor-

porate real-world traces and non-uniform movement patterns—such as hotspot cluster-

ing or event-driven flows—could further refine allocation accuracy. Second, explor-

ing hybrid formulations that blend mean-field and Stackelberg principles may cap-

ture the best of both: the scalability of aggregate methods with the responsiveness of 

leader–follower dynamics. Together, these avenues promise to enhance the adaptabil-

ity and efficiency of next-generation wireless systems, reinforcing the novel insight that 

lightweight, learning-augmented game theory can meet the demanding performance and 

sustainability. 
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