
Networking Aspects for Gaming Systems

Christos Bouras, Vassilis Poulopoulos, Ioannis Sengounis and Vassilis Tsogkas
Research Academic Computer Technology Institute,

N. Kazantzaki, Panepistimioupoli Patras, Greece
 bouras@cti.gr, poulop@cti.gr,

jns@sch.gr, tsogkas@cti.gr

Abstract

As the evolution of computer technology introduces

new advances in networks among others, online
gaming becomes a new trend. Following the trends of
our era, Games At Large IST Project introduces an
innovative platform for running interactive, rich
content multimedia applications over a Wireless Local
Area Network. Games at Large project’s vision is to
provide a new system architecture for Interactive
Multimedia which will enhance existing CE devices
such as, Set Top Boxes (STB), Small Screen and other
devices, which are lacking both the CPU power and
the graphical performance to provide a rich user
experience. This paper presents the controllers’ sub-
system of the innovative mechanism that will be
implemented in the context of Games at Large project.
More specifically, it presents the general architecture
of the complete system and focuses on the “capturing”
and “execution of commands” modules at the different
clients and the remote execution of the commands on
server side. The client software captures the input from
the different input devices, sends the commands over a
Wireless Local Area Network and the server is
responsible for receiving and executing the commands
to the corresponding application.

Index Terms — remote control, online gaming,

remote command execution, input device capturing

1. Introduction

Computer games constitute nowadays one of the
most dynamic and fastest changing technological area,
both in terms of market evolution and technology
development. In this area, as the computer games are
evolving and online activities and gaming become
parts of our life, the need of interaction within a client
– server architecture becomes very intense. The
successful paradigms of online gaming such as WoW

[2], Half Life [3] and Second Life [4] are only just the
beginning of a new era for the online games. The idea
that lies behind online gaming is that a game that can
be played by multiple users should not have only a
local context. A client with the basic game software is
installed on the client machine while multiple servers
are assigned with the task of interconnecting all the
possible users to what is called the “world” or the
scenario of the game. Games at Large project goes one
step further than the classical procedure of online
gaming and the main intention is to enhance the idea of
application on demand [1] in order not only to support
games on demand, but also to enable devices that lack
the physical power to load a game, to run games [7].

The main idea is that one or more powerful servers
will actually execute the game for the client and the
client will be presented only with the screens of the
game and not the game loader or the execution of
complex graphics. On the other hand the basic aspect
of a game is the interaction with the end user (gamer).
This means that apart from only presenting the game to
the user (through this client – server architecture) the
system must be able to capture the input from the input
devices of the end user and transfer them to the server
in order to represent the interaction that is done on a
physical level when playing a game.

In this document we present a mechanism for
transferring input commands from any device, acting
as the client, to execution commands at the
corresponding program - game of the server. The
purpose of this mechanism is to be able to control a
program that runs on the centralized server from a
remote operating system. This mechanism is created
within the scope of the Games at Large project.
Meeting the demand of highly interactive multimedia
systems with low cost end devices (CE), requires a
radical change in the system’s architecture.
Games@Large project intends to design a platform for
running interactive rich content multimedia
applications. Games@Large vision is to provide a
novel system architecture for Interactive Multimedia
which will enhance existing CE devices such as, Set

Top Boxes (STB) and other devices which are lacking
both the CPU power and the graphical performance, to
provide a rich user gaming experience.

The future home is an always-on connected digital
home. By 2010, there will be over 420 million
broadband households worldwide [5],[6]. With the
standard set for super-high speed, always-on
connection, the way people view entertainment has
fundamentally changed and created new standards for
consumption. Consumers no longer expect their
internet access to be only from a desktop PC - now
they want it through the TV in their living room or in
the palm of their hand, inside the house and on the go.
The presented scenario [8] bundles video gaming
capabilities into consumer electronics devices, such as
Set-Top Boxes (STBs), Digital Video Recorders
(DVRs), home entertainment systems, TVs, handhelds
and other devices that are not considered, today, as real
gaming devices since they lack the necessary CPU
power and graphical performance. In this paper we
present a new system for pervasive gaming and
multimedia, which is being developed under the EU
FP6 project, Games@Large (GaL) [1]. The paper is
dedicated to the design testing concept elaboration, in
order to base the approach for the development of
evaluation and testing methodologies. Testing and
verification process is part of the iterative, spiral-life
workflow model (user-centered design and incremental
improvement based on feedback from user and expert
evaluation of prototypes).

In this paper we present the general architecture of
the sub-system that controls the input of the devices
and their server side execution. More specifically, we
examine how, input is able to be captured by any input
device on the different end devices and on different
operating systems, how commands are sent over the
network and finally, how commands are executed at
the target software of the server.

The rest of the paper is structured as follows: the
next section describes the vision and goal of the Games
at Large project. Section 3 describes the general
architecture of the system and the architecture on each
device (the end device and the server). Section 4
describes the command channel infrastructure which is
the main scope of this manuscript while section 5
describes the general Server Side infrastructure and
section 6 the client side infrastructure on the different
end devices and on different operating systems. The
paper finalizes with general remarks and future work to
be done on both server side and client side.

2. Games at Large Project

Games at Large (Games@Large) being an
Integrated Project (IP) intends to research, develop and
implement a new architecture to provide users with a
richer variety of entertainment experience in their
entire houses, hotel rooms, cruise ships and Internet
Cafés, incorporating unprecedented ubiquitous game-
play. The project evolved from the home environment
to other local Focus Areas (FA) regarding the benefits
such FA may gain based on the unique technology
approach of Games@Large. The Integrated Project
includes activities of TV Multimedia and Gaming
using Enhanced Media Extender, Local Processing and
Storage Server(s), Handheld Devices and Local
Wireless Network. Games@Large intends to enhance
the existing Digital Living Network Alliance (DLNA)
and the UPnP Forum standards by introducing the
unique set of features required for running games over
a local network, like all other media and content types
(video, audio).

Market interest is now revolving around capitalizing
on the rapid increase of always-on broadband
connectivity, which becomes ubiquitous. Broadband
connection drives to a new, digital, “Future Home” as
part of a communications revolution, which will affect
every aspect of consumers’ lives, not the least of which
is the change it brings in terms of options for enjoying
entertainment. Taking into account that Movies and
Music provided by outside sources were at home long
before the Internet and Broadband, the challenge is to
invent new content consumption patterns and new
types of content and services.

Games offer a leisure time activity for every
member of the household – from avid gamers to kids,
as well as allowing whole families to play together.
Games offer also leisure time activity for guests in
hotels and visitors in Internet Cafes. Games@Large
offers ubiquitous accessibility for all members of the
household on all desired entertainment devices. The
project focuses on new innovative ideas such as
multiple-game execution on the Games Gateway and
delivery of graphics-rendering meta-data over the
home network via low latency, low bandwidth Pre-
Rendering Protocol to achieve low-cost
implementation of ubiquitous game play throughout
the house, while taking advantage of existing
hardware, and providing multiple members of the
family with the ability to play simultaneously.

Games@Large intends to enable the Games to
diversify from dedicated appliances and a single corner
of the house, to any place at home such as, the TV in
the living room, the handheld device or any other
device with the relevant screen, controls and
connectivity. The project will also provide the required
infrastructure for running games on the hotel guest

room TV or on small screens for people sitting in
Internet Cafés, cruse ships, trains or airplanes.

The technological challenges of the Games@Large
project are:

• Distributed computing and storage
• Video/Image/Graphics delivery with very low

latency through a wired/wireless home
network

• Adaptation of PC screen-images to TV screen
and handheld devices

• Integration of wireless users’ game control
devices

• Translation of user ergonomics to different
devices and form factors

• Research of new class of Media Extenders for
games

• Enhancement of STBs to support video games
• Development of new methods for QoS linking

Consumer prospective with system
measurements

• Enhancement of relevant industry standards
for time critical multimedia content while
maximizing Users Experience

The Games@Large mission is to develop a new
method for ubiquitous video games through unique
technology to transfer graphical data while reducing
latency and ensuring QoS in a cost-effective manner.
Main focus will be given on studying and supporting
the use of video games within four different focus
areas: User’s home, Hotels, Internet Café, and Elderly
Houses. A multi-layer approach will cut horizontally
across the Games@Large focus areas, aiming to assess
the conditions under which a Games@Large platform
may frame within and improve the state of the art of
each business domain, through performing the
following, logically consecutive activities: collecting
user requirements, researching and developing
common Technologies, implementing and integrating
those technologies within the required Servers and
prototype CE Devices, running technology verification
and Training and evaluating all results.

3. System Architecture

The next figure depicts the general system
architecture. As it is obvious, the system consists of
two different “levels”. The first level includes all the
possible servers that will be used for the system, while
the second level includes the connection of the
different end devices of the system. The server side
constitutes of multiple different servers that are
assigned with the task of serving the games and require

a very quick and stable communication between them
while the second level is the interconnection of any
possible end device with the server in order to
communicate and interact in order to load and play a
game. While on the architecture that is described all
the servers can communicate to one another, the end
devices can “see” only one server which is the main
serving and processing server for the games.

Figure. 1 General System Architecture

The server side of the system is assigned with the

task of executing the games and sending the
corresponding scenario of the system to the possible
clients. The clients are sending feedback to the server
which is the commands that are executed for the game.
Thus, the server should be able to have at least two
communication channels with each client: one for
sending the game “pictures” and one for receiving the
commands of the game. In this paper we will focalize
on the command communication channel which is a
direct connection from each client to the server.

4. Command Channel Infrastructure

The idea that lies beneath the communication
command channel architecture is depicted on the
following flow diagram. Each end device consists of
many possible input devices that enable the user to
interact with the device and thus enable the user to
interact with the game that is played on the end device.

Figure. 1: Communication Channel Architecture.

When the client program starts, it initiates the device
discovery procedure, which may be offered either by a
separate architectural module, e.g. the device discovery
module which uses UPnP, or by a system call causing
the discovery for input devices attached to the system.
It is essential afterwards, that the results of the device
discovery are registered in our program so that we are
aware of the existing input devices marking out several
other non-existing.

The next step of the procedure is to capture the input
coming from the input controllers. This is achieved by
recording the key codes coming from the input devices.
Input devices such as mice or keyboards are interrupt-
driven while with joysticks or joy pads the polling
method is used for reading. The previous means that
whenever an input event is caused by a keyboard or a
mouse, an interrupt message is sent to the message
queue of our program; then it is translated and finally
recorded. However, the polling case of joysticks or
joy-pads means that these devices have to be polled by
a program's thread in order to sense motion or button
presses. The polling period has to be small enough to
capture any input, but not too small to monopolize the
system's CPU. A period of 10ms seems to be a wise
trade off.

After an input key code has been captured, the
transmission of it takes place. This is achieved using an
already open socket connection with the server side.
Data is transmitted through the socket in the form of a
string with a certain communication protocol.

The socket connection can either be of TCP or UDP
protocol. Since UDP emphasizes on real time, low
latency transmission, it is preferable for this type of
communication. Even if some key codes are lost in the
process of transmitting them over the network, there is
no real loss since there is a flow of key codes that can
overcome this possible threat. However, in real life,
error prune networks, such as WiFi's, the TCP protocol
is preferred avoiding the possible game experience fall
caused by lost controller's packets transmission.

Since the key codes have arrived at the server side,
they are executed at the running game instance. At this
point, there needs to be a distinction between the
different types of transmitted key codes. There are
basically four types of possible input device’s data
transmission. Commands may be coming from: (a)
keyboard, (b) mouse, (c) joystick / joy-pad device or
(d) any other HID input device.

In the first case, the server has to recognize the
virtual key code, or the “pressed” / “released” event of
a keyboard button, then do a possible mapping to some

other key code, based on the game and user profile,
and finally deliver it to the active application window
for execution.

In the case of mouse input, the server has to
recognize the virtual key code or the “pressed” /
“released” event of a mouse button, recognize any
mouse wheel event or any mouse movement (absolute
or relative), then do a possible mapping to some other
key code, based on the game and user profile, and
finally deliver the key code to the active application
window for execution.

In the case of joystick/joy-pad input, the server
recognizes the state of the joystick/joy-pad device,
maps the state to the appropriate keystrokes using the
xml mapping file of the particular game-joystick/joy-
pad combination. In this way, we are able to emulate
the joystick/joy-pad input using pure keystrokes–
mouse movements that represent the actual behavior of
the input device. Finally the key code is delivered to
the active application window for execution.

For any other HID input device the system treats
input similarly to the joystick/joy-pad. The only
prerequisite is the existence of a mapping file in order
to convert the commands to keyboard and mouse
instructions

5. Server Infrastructure

As long as we are creating an environment with one
server and multiple clients, it is essential to analyze
how each end device will be able to capture all the
commands from the input devices. This is because the
unique server of the system should receive data that are
sent over the network and execute the commands on
the specific procedure that runs each game.

The “gateway” of the servers is the LPS (Local
Processing Server). The main goal of Local Processing
Server is to run multiple games simultaneously on the
server, whereas each game runs in its own game
environment and is streamed to an end-device. The
game environment is an isolated and encapsulated
“sandbox,” providing the environment for game
execution. The procedure, that makes the simultaneous
running of multiple games possible, decouples the
game execution from the game output, directed to
display card/PC monitor, and all user-facing I/O,
directed to the keyboard/mouse/HID.

This “sandbox” environment for the server is
created dynamically according to: a) the current
occupancy of the resources and the hardware
requirements that the game sets on the server, b) the
software requirements on the client side and c) the
current network condition. In order to be able to run a
game on the server, the system monitors in a periodical

manner the hardware resources of the server and the
network conditions (jitter, latency and bandwidth).
Additionally, according to the end device
specifications (hardware and software), the server
decides on the manner that the game will be executed
on the client side.

6. Client Side Infrastructure

The possible different clients of the G@L
environment are: (a) a Laptop with Windows XP /
Vista environment, (b) a Set-Top Box with either
Linux or Windows CE and (c) an enhanced handheld
device with either Windows CE or a Linux version for
small screen devices.

Each client implementation should consist of the
following components: (a) a device discovery module,
(b) the game browser and game launcher modules, (c)
authentication modules, (d) input capturing and
command transferring modules and finally, (e)
decoders in order to run the streamed game that is sent
from the server.

The device discovery module is used to seek for an
appropriate LPS to connect to and introduce itself to
the LPS with the End Device capabilities. The G@L
Game Browser, which queries the Games Service on
the LPS for listing the available games to the user,
enables the user to browse the list of available games
and select one to launch. Personalization of the UI
should be available to the user/provider for enabling
different views for users (i.e. Browser skins). When the
user selects a game and requests to launch it, the G@L
Game Browser issues a Start Game request to the
G@L Client Game Launcher. The Game Browser will
show to the user only the list of games that can run on
the End Device by filtering the list according to the
capabilities of the End Device compared with each
game requirement.

Authentication communicates with the G@L Game
Browser to authenticate the user against the LPS
authentication module that authenticates the user
against the Management Server. The Client Game
Launcher controls all modules on the client side. The
Game Launcher communicates with the LPS
discovered by the device discovery module. The
capture controller captures the Human Input Device
(HID) controls and transfers them to the Controller
Emulator on the LPS via the network layer, using the
Controller protocol.

6.1 Capturing commands in Windows OS

As already mentioned, the end devices of the system
can be multiple and thus they may use various

operating systems, whereas the server is based on
Windows operating system. When the client utilizes
Windows operating system, the implementation of the
modules, and more specifically, the command
capturing module, is implemented as a generic driver.
This driver is able to recognize any input device and
transform the command from them to keyboard and
mouse commands, according to mapping files that are
utilized for this scope. The aforementioned is a
windows application, included in the game launcher of
the client, which is called reverse channel module. The
main assignments of the reverse channel module is a)
to ensure that the connection to the server is
established successfully, b) to capture commands from
any input device, and c) to send the commands over the
channel that is present between the client and the
server.

6.2 Capturing commands in Linux OS

When the end device utilizes Linux operating
system, there is no need for a low level driver (as in the
Windows case) to be implemented as a client-side
program in order to capture the input devices’ input.
On the contrary, the command capturing is feasible
through the evdev generic input driver and the evbug
capturing implementation, both of which are available
to any modern Linux kernel. In this way, the generated
devices are manipulated as “files”, and thus it is
possible to create multiple “hooks” for each device in
order to capture any input originating from them.
Finally, the keycodes from any input device are
translated to keyboard and mouse commands and are
then transmitted to the server for execution in the game
instance.

7. General Remarks and Future Work

In this paper we have described the command
execution channel of the Games at Large project, an IP
project with the vision to research, develop and
implement a new architecture to provide users with a
richer variety of entertainment experience in their
entire houses, hotel rooms, cruise ships and Internet
Cafés, incorporating unprecedented ubiquitous game-
play. Running already the second year of the project,
we have managed to interconnect the clients with the
servers and we are able to remotely execute commands
to the server that are sent from a variety of different
clients.

As the system is implemented, more and more
features are included on the release versions, such as
modules that enable encryption of the commands and

modules that utilize network specific characteristics in
order to adapt on the possible network environment.

Additionally, efforts are made towards the direction
of creating software for every possible operating
system in order to enable more end-devices to be
connected to the Games at Large Environment.

REFERENCES
[1] Games at Large project’s official website,

http://www.gamesatlarge.eu
[2] World of Warcraft official website,

www.worldofwarcraft.com
[3] Half Life official website, http://orange.half-life2.com/
[4] Second Life official website, http://www.secondlife.com
[5] By 2010, One-Third of the Predicted 422m Broadband

Households will be Able to Receive IPTV.
http://www.findarticles.com/p/articles/mi_m0EIN/is_20
06_Sept_26/ai_n16837715

[6] Worldwide online access.
http://www.emarketer.com/Report.aspx?bband_world_j
un06&src=report_summary_reportsell

[7] Y. Tzruya, A. Shani, F. Bellotti, A. Jurgelionis,
Games@Large - a new platform for ubiquitous gaming,
BroadBand Europe 2006, Geneva, Switzerland,
November 2006

[8] P. Casas, D. Guerra, I. Irigaray, User Perceived Quality
of Service in Multimedia Networks: a Software
Implementation, Joint Research Group of the Electrical
Engineering and Mathematics and Statistics
Departments, 2006

[9] L. Mathy, C. Edwards, D. Hutchison, Principles of QoS
in group communications, Journal Article,
Telecommunication Systems, Springer Netherlands,
2004, pp. 59-84

[10] Software Quality Assurance & Usability Testing,
http://members.tripod.com/bazman/usability.html?butto
n6=Article+on+Usability+Testing

