

Distinguishing Signal from Noise in 5G MIMO

Systems Using Generative Adversarial Networks
Damianos Diasakos Nikolaos Prodromos Apostolos Gkamas

Computer Engineering and Informatics Computer Engineering and Informatics Department of Chemistry

 Department Department University of Ioannina

 University of Patras University of Patras Ioannina, Greece

 Patras, Greece Patras, Greece Email: gkamas@uoi.gr
Email: up1084632@ac.upatras.gr Email: up1072549@ac.upatras.gr

Vasileios Kokkinos Christos Bouras Philippos Pouyioutas

Computer Engineering and Informatics Computer Engineering and Informatics Computer Science Department

 Department Department University of Nicosia

 University of Patras University of Patras Nicosia, Cyprus

 Patras, Greece Patras, Greece Email: pouyioutas.p@unic.ac.cy

 Email: kokkinos@cti.gr Email: bouras@upatras.gr

Abstract—In recent years, Generative Adversarial Networks

(GANs) have emerged as powerful tools for improving signal

processing in advanced communication systems, particularly in

the context of 5G networks. In this paper, we present a novel

approach for distinguishing signal from noise in 5G Multiple

Input Multiple Output (MIMO) systems using GANs. Our

method leverages the generative capabilities of GANs to

produce realistic noise signals and the discriminative power of

GANs to accurately identify real signals amidst noise. By

training the GAN on a combination of real-world noisy signals

and pure noise, our model achieves robust signal detection and

classification. We evaluate our approach using synthetic data,

demonstrating significant improvements over other techniques

such as the autoencoders. Our results highlight the potential of

GANs in enhancing the reliability and performance of 5G

MIMO communications.

Keywords—5G MIMO, Generative Adversarial Networks

(GANs), Signal Detection, Noise Classification, Machine

Learning, Wireless Communications, Autoencoder

I. INTRODUCTION

Signal detection and noise classification are critical in 5G
Multiple Input Multiple Output (MIMO) networks, where
accurately distinguishing signals from noise ensures reliable
communication and optimal spectrum use. Over the years,
researchers have explored various techniques to address these
challenges, ranging from traditional signal processing
methods to advanced machine learning models.

Traditional methods such as adaptive filtering, Fourier
transforms, and wavelet transforms have been widely used to
enhance the Signal-to-Noise Ratio (SNR). Adaptive filters
like the Wiener filter are effective under stable conditions,
while wavelet transforms enable multi-scale analysis to isolate
noise components. However, in dynamic and complex noise
environments typical of 5G systems, these approaches often
fall short [1], [2]. For instance, wavelet-based methods may
struggle with highly variable interference patterns in dense
deployments.

Machine learning approaches, including Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), have shown promise in signal discrimination by
learning features from noisy data. CNNs excel at identifying
spatial patterns, and RNNs capture temporal dependencies in
signal sequences. However, both require large amounts of
labeled training data, which is often difficult to obtain in

practice, and may not generalize well across diverse noise
conditions [3].

Feature extraction plays a crucial role in bridging raw
signal data and learning models. Short-Time Fourier
Transform (STFT) is widely used to convert time-domain
signals into frequency-domain representations, capturing both
frequency components and their evolution over time [4]. To
emphasize perceptually relevant frequency bands, Mel-
spectrograms are often used, providing robust visual
representations suitable for deep learning [5].

Recently, Generative Adversarial Networks (GANs) have
emerged as powerful tools in machine learning, capable of
generating highly realistic synthetic data. GANs consist of a
generator and a discriminator trained adversarially, and have
been applied in wireless communications for tasks like
channel estimation, noise modeling, and data reconstruction
[6]. For example, GANs have been used to simulate realistic
noise environments and modify time-scale features in speech
signals [7]. However, their potential in signal detection and
noise classification for 5G MIMO systems remains
underexplored.

In this paper, we extend GAN applications to signal
detection in 5G MIMO systems, using STFT and Mel-
spectrograms for feature extraction. These transformations
allow the GAN to effectively distinguish and denoise signals
by learning from realistic noise samples that mimic complex
interference patterns typical of 5G environments. While the
current study focuses on single-channel signal processing, the
proposed architecture is inherently scalable and can be
extended to full MIMO systems. By leveraging multiple
antenna streams and feeding multi-channel spectrograms into
the GAN, the model could exploit inter-antenna correlations,
potentially enhancing noise suppression in dense, real-world
deployments. Our GAN-based approach is adaptive, requires
minimal manual intervention, and aims to outperform
traditional techniques including CNN-based autoencoders in
both accuracy and robustness, demonstrating strong potential
for future 5G applications.

The rest of the paper is structured as follows: Section II
reviews recent GAN and autoencoder methods in signal
detection, Section III details the mathematical model of GANs
used, Section IV describes signal generation techniques,
Section V presents experimental results comparing our GAN-
based approach with CNN-based autoencoders, and Section
VI discusses implications, applications, and limitations.

II. MODEL ARCHITECTURES AND TRAINING FRAMEWORKS

As seen in Figure 1, GANs consist of two primary
components: Generator (G): The generator G(z;θg) takes a
random noise vector z as input and generates synthetic data
(1). The goal of the generator is to produce data that is
indistinguishable from real data.

���; ��� � 	
��ℎ���� ���� (1)

 Discriminator (D): The discriminator D(x;θd) takes either
real data or synthetic data as input and outputs a probability
D(x) representing the likelihood that the input data is real (2).
The goal of the discriminator is to correctly classify real and
synthetic data.

���; ��� � ������ ���� ∣ �� (2)

Fig. 1. Architecture of a GAN

The GAN is trained using the following minimax objective
function (3):

�����������, �� � �_� ∼ �������!�"�����# $
�_� ∼ ����!�"��1 & ��������# (3)

Here, pdata(x) is the distribution of real data, and pz(z) is
the distribution of the noise vector z.

During training, the discriminator is updated to maximize
the probability of correctly classifying real and synthetic data,
while the generator is updated to minimize the probability of
the discriminator identifying synthetic data as fake. This
adversarial training process enables the GAN to produce
highly realistic noise and train a robust discriminator capable
of distinguishing between real noisy signals and pure noise.
By leveraging the generative and discriminative capabilities
of GANs, our model provides a significant improvement over
traditional signal processing techniques and CNN-based
models in distinguishing signals from noise in 5G MIMO
systems [8],[9],[10].

As seen in Figure 2 autoencoder network comprises two
main components:

Encoder:

• Maps the input data x into a latent space z.

• Involves a series of transformations through neural
network layers, such as fully connected layers or
convolutional layers, depending on the type of data.

• The encoder’s function can be mathematically
represented as: z = fencoder(x), where fencoder
represents the encoder’s function.

• Outputs z, a compact representation of the input data.

The decoder:

• Reconstructs the data from the latent space
representation z.

• Maps z back to the original data space, aiming to
approximate the input x as closely as possible.

• The decoder’s function can be mathematically
represented as: �' = fdecoder(z), where �' is the
reconstructed data and fdecoder represents the decoder’s
function.

Fig. 2. Architecture of an autoencoder

The loss function that the autoencoder for binary
classification tasks like this is usually the Binary Cross-
Entropy (BCE). The mathematical model (4) is shown below:

(��, �_ℎ��� � &�1/�� ∗ ∑!�� ∗ �"����_ℎ��� $ �1 &

��� ∗ �"��1 & ��_ℎ���# (4)

where n is the number of data points, xi represents the i-th
element of the input, and xi_hat denotes the corresponding
element of the reconstructed output [11],[12].

III. ANALYSIS OF SIGNAL GENERATION AND MODELS

To transform the signals into a form suitable for deep
learning model input, feature extraction was performed using
the STFT and Mel-spectrogram. The STFT was employed to
convert the time-domain signals into the frequency domain,
capturing both the frequency components and their evolution
over time. This transformation yielded spectrograms, which
are visual representations of the signal’s frequency content
over time. To further focus on perceptually important features,
Mel-spectrograms were computed, emphasizing frequencies
that are more relevant to human perception. These
spectrograms were then resized to a standardized dimension
of 64x64 pixels, facilitating uniformity in the input data fed
into the neural networks [13],[14].

Algorithm 1 – Signal Generation

function generate_signal(fs, duration, frequency,
noise_level=0.5):

 t = np.arange(0, duration, 1.0/fs) # Time vector

 signal = np.sin(2 *np.pi * frequency * t) # Pure sine
wave signal

 noisy_signal = signal + np.random.normal(0,
noise_level, t.shape) # Add Gaussian noise

 return t, signal,noisy_signal

Normalization was an essential preprocessing step,
ensuring that the spectrogram data fell within a suitable range
for neural network training. This step involved scaling the
spectrogram values to a range between 0 and 1, which
prevents potential issues associated with unnormalized input
data, such as vanishing or exploding gradients during model

training. The normalized spectrograms of the clean and noisy
signals, as illustrated in the second image, visually underscore
the efficacy of the preprocessing pipeline. The clean
spectrograms exhibit well-defined frequency components,
while the noisy spectrograms show the added noise, which
obscures the clarity of these components. Algorithm 1
generates synthetic noisy signals using sine waves and added
Gaussian noise. Algorithm 2 computes the STFT and Mel-
spectrogram to extract features from the signals. Algorithm 3
normalizes the spectrogram data between 0 and 1, preparing it
for training.Together, these three steps form the preprocessing
pipeline for both the GAN and the autoencoder.

Algorithm 2 – Spectrogram Making and Feature
Extraction

function extract_features(signal, sr):

 # Compute Short-Time Fourier Transform (STFT)

 stft = abs(STFT(signal, n_fft=2048, hop_length=512))

 # Compute Mel Spectrogram

 mel_spectrogram =
MelSpectrogram(STFT_power(stft), sr, n_mels=64)

 # Convert to Decibels

 mel_spectrogram_db =
PowerToDB(mel_spectrogram)

 # Resize to 64x64

 mel_spectrogram_db_resized =
Resize(mel_spectrogram_db, (64, 64))1

 return mel_spectrogram_db_resized

Algorithm 3 – Spectrogram Normalization

function normalize_spectrogram(spectrogram):

 # Find the minimum value in the spectrogram

 min_value = find_minimum_value(spectrogram)

 # Find the maximum value in the spectrogram

 max_value = find_maximum_value(spectrogram)

 # Subtract the minimum value from each element in the
spectrogram

 normalized_spectrogram = spectrogram - min_value

 # Divide each element in the spectrogram by the
difference between the maximum and minimum values

 normalized_spectrogram = normalized_spectrogram /
(max_value - min_value)

 # Return the normalized spectrogram

 return normalized_spectrogram

The process of generating spectrograms of pure noise follows
a similar procedure. An empty list is initialized to store the
spectrograms. For each batch, pure Gaussian noise is
generated using the NumPy library, which provides robust
tools for numerical computations, including random number
generation. Specifically, the noise array is created with a
length matching the product of the sampling frequency fs and

the signal duration. The spectrogram of this noise and its
features are then computed by using the extract_features
function. The generator utilizes these features to predict new
noisy spectrograms, which are subsequently used to train the
discriminator. This iterative process enables the generator to
produce increasingly realistic results over time.

Two spectrograms made can be seen in Figures 3 and 4. The
upper spectrogram corresponds to a clean signal, while the
lower shows its noisy counterpart. Both are before their
normalization.

Fig. 3. Clean Spectrogram

Fig. 4. Noisy Spectrogram

So, the signal generation process consists of the
initialization of an empty list to store the spectrograms and for
each batch, the use of generate_feature_batch function
produce a noisy and a clean signal. This function has the
generate_signal and the feature extraction functions as well as
the normalization function. Using generate_feature_batch, the
spectrogram of the produced signal is computed using the
STFT through the scipy.signal.spectrogram function, which
decomposes the signal into its frequency components over
time. This results in a 2D array representing the spectrogram,
with frequency bins along one axis and time bins along the
other. The spectrogram and its features are normalized and
then they are returned from the function to serve as inputs for
the training models. Below in Figure 5, parts of the noisy
spectrogram after normalization can be observed.

Fig. 5. Noisy Spectrogram Normalized

The architecture of the GAN implemented in this model is
carefully designed to handle the task of denoising
spectrograms, with the generator and discriminator playing
complementary roles. The generator starts with an input layer
that accepts a 64x64x1 spectrogram, representing a noisy
signal. The model's first convolutional block applies a 2D
convolution with 128 filters, using a kernel size of 3x3 and a
stride of 2x2. This layer's purpose is to downsample the input
and extract initial spatial features. By employing a
LeakyReLU activation function with an alpha of 0.2, the
network avoids the common issue of dead neurons, ensuring
that even non-active regions maintain a small gradient, which
is crucial for stable training [15]. BatchNormalization follows,
stabilizing the output of this layer by normalizing the
activations, thus speeding up the training process and making
it more robust to changes in the data distribution.

Moving deeper into the network, the second convolutional
block continues the process of downsampling and feature
extraction but reduces the number of filters to 64. This block
also utilizes a 3x3 kernel and a 2x2 stride, further refining the
spatial features while maintaining the model's ability to learn
complex patterns. Again, LeakyReLU and
BatchNormalization are applied, ensuring that the network
remains stable and efficient during training. These layers are
designed to capture increasingly abstract features from the
input spectrogram, which are essential for the generator to
later reconstruct a clean output.

The upsampling process begins with two
Conv2DTranspose layers. These layers are crucial for the
generator as they increase the spatial dimensions of the feature
maps, effectively reversing the downsampling done by the
earlier layers. The first of these layers uses 64 filters, while the
second uses 32, both with a 3x3 kernel and 2x2 stride,
progressively refining the resolution of the output
spectrogram. LeakyReLU activations follow each transposed
convolution, ensuring that the generator retains the non-
linearity needed to model complex relationships within the
data. The final output layer is another Conv2DTranspose
layer, but with just one filter, outputting a single-channel
spectrogram. The use of a tanh activation function in this layer
is particularly apt as it outputs values in the range of [-1, 1],
matching the normalized range of the spectrogram data and
effectively completing the denoising transformation.

On the discriminator side, the model begins with a similar
input structure, processing a 64x64x1 spectrogram that could
either be real (clean) or fake (denoised by the generator). The
first convolutional block applies 64 filters with a 3x3 kernel

and a 2x2 stride, initiating the feature extraction process by
focusing on basic patterns. LeakyReLU is again used to
maintain the gradient flow throughout the network. To prevent
the model from overfitting, a dropout layer with a rate of 0.3
is introduced, randomly setting some of the activations to zero
during training. This regularization technique encourages the
model to learn more generalized features that are not overly
reliant on any specific patterns.

As the discriminator moves deeper, the complexity of the
extracted features increases. The second convolutional block
uses 128 filters, continuing the downsampling process and
extracting more intricate features from the input spectrogram.
This block also includes a 0.3 dropout rate to further combat
overfitting. The third convolutional block introduces 256
filters, making the network even more capable of
distinguishing between real and fake data by capturing fine-
grained details. A higher dropout rate of 0.4 is used here to
ensure that the model remains generalizable despite its
increased complexity.

The flattened output of these convolutional layers feeds
into a fully connected layer with 128 units. This dense layer
distills the information down to its most essential features,
using a LeakyReLU activation to preserve the network's
ability to model complex data relationships. A final dropout
layer with a 0.2 rate provides additional regularization before
the output layer. The output layer consists of a single neuron
with a sigmoid activation function, outputting a probability
that indicates whether the input spectrogram is real or
generated. This setup allows the discriminator to perform
binary classification, determining with increasing accuracy
whether the spectrogram it receives is authentic or produced
by the generator.

The combination of these architectural elements in both
the generator and discriminator creates a robust GAN
framework capable of denoising spectrograms while
maintaining the delicate balance between noise reduction and
detail preservation. The careful use of LeakyReLU,
BatchNormalization, and Dropout layers throughout both
networks ensures that the models are well-regularized and
capable of handling the complexities inherent in this task.

IV. PROCESS DESCRIPTION AND MODEL EVALUATION

In this process, a time vector t is generated using the
NumPy library, known for its robust numerical computation
tools. A pure sinusoidal signal simulates the desired signal,
while Gaussian noise is added using NumPy’s random
number generation to mimic real-world conditions. The STFT
extracts signal features, converting data to the frequency
domain. Mel-spectrograms are computed and resized to 64x64
pixels for uniform neural network inputs, with values
normalized to [0, 1] to ensure stable training. The GAN
architecture consists of a generator that denoises noisy
spectrograms and a discriminator that classifies spectrograms
as real or generated. Both models employ convolutional
layers, dropout for regularization, and LeakyReLU activation
to prevent inactive neurons. Model performance is evaluated
using Root Mean Squared Error (RMSE) and Mean Squared
Error (MSE), with simulation parameters detailed in Table I.
While the training duration for each epoch was approximately
20 minutes on a mid-range GPU, inference on a single
spectrogram sample took less than 100 ms. The autoencoder
offered slightly faster inference but with a small trade-off in
output detail. These results suggest that the GAN is

computationally feasible for offline or near-real-time
scenarios.

TABLE I. SIMULATION PARAMETERS

Parameter Value

NFFT (STFT Window) 2048

Number of Mel filters 64

Generator Filters [128,64]

Discriminator Filters [64,128,256]

Dropout Rates [0.4,0.3]

Activation Functions LeakyReLU,Tanh,Sigmoid

Evaluation Metrics RMSE,MSE

V. SIMULATION RESULTS

The experiments in this study are designed to evaluate the
effectiveness of GANs and Autoencoders in denoising
spectrograms derived from noisy synthetic signals. The
primary objective is to assess the ability of each model to
reconstruct clean spectrograms from their noisy counterparts,
with the performance metrics being Root RMSE and MSE.
The autoencoder training curve can be seen in Figure 6 below.

Fig. 6. Autoencoder Training Curve

The training process for the Autoencoder is conducted
over 20 epochs, with the model progressively learning to
minimize the binary cross-entropy loss between the input
noisy spectrograms and the target clean spectrograms. The
training loss curve, depicted in Figure 6, shows a steep decline
in loss during the initial epochs, indicating rapid learning as
the model quickly captures the basic structure of the
spectrograms. However, after approximately 10 epochs, the
rate of improvement plateaus, suggesting that the model has
learned most of the general features necessary for denoising
and is making only minor refinements in subsequent epochs.

Despite this rapid convergence, the final reconstructed
spectrograms from the Autoencoder, as shown in Figure 7,
reveal some limitations.

Fig. 7. Autoencoder Denoised Output

While the Autoencoder effectively reduces noise, it also
introduces blurring, particularly in areas of high frequency
content. This blurring effect is characteristic of the model’s
reliance on compressed latent space representations, which,
while efficient, can lead to the loss of fine-grained details. The
average RMSE of 0.155 and MSE of 0.0240 further reflect this
trade-off between noise reduction and detail preservation.

In contrast, the training of the GAN model follows a more
complex process due to its adversarial nature. The GAN
consists of two components: the generator, which attempts to
create spectrograms that mimic clean signals, and the
discriminator, which seeks to distinguish between real (clean)
and generated (denoised) spectrograms. The training involves
iteratively improving the generator’s ability to produce
realistic spectrograms while simultaneously enhancing the
discriminator’s capability to correctly identify genuine versus
generated data.

The training process for the GAN, like the Autoencoder,
spanned 20 epochs. However, the GAN’s dynamics are
inherently more volatile due to the adversarial interplay
between the generator and discriminator. Throughout training,
the GAN progressively learned to produce denoised
spectrograms that visually resemble the clean targets more
closely than those produced by the Autoencoder. This is
evident in Figure 8, where the GAN output retains more
detail—particularly in high-frequency components. However,
this increased detail comes with trade-offs. Some outputs
include subtle artifacts, such as localized blurring or faint edge
effects that are not present in the original signals. These
artifacts likely result from the adversarial nature of GAN
training, which can lead to overfitting when the dataset is
limited or when the generator and discriminator become
imbalanced. To mitigate these risks, we employed dropout
layers and early stopping during training to stabilize learning
and prevent mode collapse. While the artifacts observed were
minor and did not significantly impair signal clarity, their
presence suggests opportunities for improvement using
advanced regularization techniques or more stable GAN
variants.

Fig. 8. GAN Denoised Output

Table II presents the RMSE and MSE scores for both
models across multiple test steps (ranging from 50 to 1000),
consistently showing the GAN having a slight edge over the
Autoencoder. Based on these results, the GAN achieved an
estimated average RMSE of 0.1530 ± 0.0022 and MSE of
0.0228 ± 0.0004, confirming its stable and reliable denoising
performance across varying signal lengths and types.

TABLE II. RMSE & MSE SCORES

Testing Steps Model RMSE MSE

50 GAN 0.150 0.0225

50 Autoencoder 0.155 0.0240

100 GAN 0.152 0.0231

100 Autoencoder 0.153 0.0243

250 GAN 0.155 0.0233

250 Autoencoder 0.157 0.0241

500 GAN 0.156 0.0229

500 Autoencoder 0.159 0.0238

1000 GAN 0.152 0.0224

1000 Autoencoder 0.153 0.0239

Quantitatively, the GAN achieved an average RMSE of
0.15 and MSE of 0.0225, slightly outperforming the
Autoencoder. This improvement, albeit small, highlights the
GAN’s superior capability in capturing and reconstructing
complex features in noisy environments, making it a more
effective tool for denoising tasks in high-dimensional data like
spectrograms.

VI. CONCLUSION AND FUTURE WORK

In this study, we explored the effectiveness of GANs and
Autoencoders in the task of denoising spectrograms generated
from synthetic noisy signals, a problem relevant to 5G MIMO
systems and other advanced communication technologies.
Our experimental results demonstrated that both models are
capable of significant noise reduction, with the GAN slightly
outperforming the Autoencoder in terms of RMSE and MSE.

Visual comparisons revealed that while the Autoencoder
reduces noise effectively, it introduces a smoothing effect that
can blur high-frequency details. In contrast, the GAN retains
sharper transitions and more distinct frequency bands,
resulting in more detailed reconstructions. Although the GAN
occasionally introduces minor artifacts due to adversarial
training, its outputs remain closer to the original clean signals,
demonstrating its strength in detail preservation.

The relatively narrow performance gap may reflect the
Autoencoder's strong baseline capability on synthetic
Gaussian noise. Future work will explore techniques to
enhance the GAN’s advantage, including perceptual loss
functions, SSIM-based evaluation metrics, and advanced
GAN variants such as conditional GANs (cGAN),
Wasserstein GANs (WGAN), and Least Squares GANs
(LSGAN).

To evaluate real-world applicability, future
experimentation will focus on real 5G datasets, where noise
characteristics are more complex and varied. Additional
experiments using more complex modulated signals (e.g.,
QAM, OFDM) will better simulate 5G conditions and help
assess model generalization. We also plan to test the model’s
scalability using higher-resolution spectrograms and longer
signal durations.

Furthermore, to provide a broader performance context,
future studies will compare the GAN not only with deep
learning models but also with traditional denoising techniques
such as Wiener filtering, wavelet thresholding, and spectral
subtraction.

Finally, integrating these models into real-time signal
processing pipelines is a key goal. This includes optimizing
them for faster inference and lower computational load, while
keeping time complexity low enough to support practical
deployment in embedded or resource-constrained
environments.

ACKNOWLEDGMENT

The research project was supported by the Hellenic
Foundation for Research and Innovation (H.F.R.I.) under the
“2nd Call for H.F.R.I. Research Projects to support Faculty
Members & Researchers” (Project Number: 02440).

REFERENCES

[1] Skan.ai, "How to Use Machine Learning to Separate the Signal from
the Noise," [Online]. Available: https://www.skan.ai/blogs/how-to-
use-machine-learning-to-separate-the-signal-from-the-noise-skan.

[2] T. Xu and Z. Wei, "Waveform Defence Against Deep Learning
Generative Adversarial Network Attacks," 2022 13th International
Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP), Porto, Portugal, 2022, pp. 503-508, doi:
10.1109/CSNDSP54353.2022.9907905.

[3] E. Cohen, F. Kreuk and J. Keshet, "Speech Time-Scale Modification
With GANs," in IEEE Signal Processing Letters, vol. 29, pp. 1067-
1071, 2022, doi: 10.1109/LSP.2022.3164361.

[4] E. Balevi and J. G. Andrews, "Wideband Channel Estimation with a
Generative Adversarial Network," IEEE Wireless Communications
Letters, vol. 10, no. 3, pp. 592–596, 2021, doi:
10.1109/LWC.2020.3047435.

[5] Y. Xu, Q. Zhang, and J. Wu, "End-to-End Environmental Sound
Classification Using Attention-Based Convolutional Neural Networks
and Mel-Spectrogram Features," IEEE Access, vol. 8, pp. 31530-
31541, 2020, doi: 10.1109/ACCESS.2020.2972892.

[6] Y. Huleihel and H. H. Permuter, "Low PAPR MIMO-OFDM Design
Based on Convolutional Autoencoder," arXiv preprint

arXiv:2301.05017, 2023. [Online]. Available:
https://arxiv.org/abs/2301.05017.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets,"
in Advances in Neural Information Processing Systems, vol. 27, 2014,
pp. 2672–2680.

[8] Goodfellow, Ian, et al. "Generative adversarial networks."
Communications of the ACM 63.11 (2020): 139-144.

[9] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator
architecture for generative adversarial networks." Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition.
2019.

[10] Creswell, Antonia, et al. "Generative adversarial networks: An
overview." IEEE signal processing magazine 35.1 (2018): 53-65.

[11] Almazrouei, Ebtesam, et al. "Using autoencoders for radio signal
denoising." Proceedings of the 15th ACM International Symposium on
QoS and Security for Wireless and Mobile Networks. 2019.

[12] Yildirim, Ozal, Ru San Tan, and U. Rajendra Acharya. "An efficient
compression of ECG signals using deep convolutional autoencoders."
Cognitive Systems Research 52 (2018): 198-211.

[13] Shen, Jonathan, et al. "Natural tts synthesis by conditioning wavenet
on mel spectrogram predictions." 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE, 2018.

[14] Hwang, Yeongtae, et al. "Mel-spectrogram augmentation for sequence
to sequence voice conversion." arXiv preprint arXiv:2001.01401
(2020).

[15] TensorFlow, "tf.keras.layers.LeakyReLU," TensorFlow Core
API,[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LeakyRe
LU

