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Abstract—In recent years, Generative Adversarial Networks 

(GANs) have emerged as powerful tools for improving signal 

processing in advanced communication systems, particularly in 

the context of 5G networks. In this paper, we present a novel 

approach for distinguishing signal from noise in 5G Multiple 

Input Multiple Output (MIMO) systems using GANs. Our 

method leverages the generative capabilities of GANs to 

produce realistic noise signals and the discriminative power of 

GANs to accurately identify real signals amidst noise. By 

training the GAN on a combination of real-world noisy signals 

and pure noise, our model achieves robust signal detection and 

classification. We evaluate our approach using synthetic data, 

demonstrating significant improvements over other techniques 

such as the autoencoders. Our results highlight the potential of 

GANs in enhancing the reliability and performance of 5G 

MIMO communications. 
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I. INTRODUCTION 

Signal detection and noise classification are critical in 5G 
Multiple Input Multiple Output (MIMO) networks, where 
accurately distinguishing signals from noise ensures reliable 
communication and optimal spectrum use. Over the years, 
researchers have explored various techniques to address these 
challenges, ranging from traditional signal processing 
methods to advanced machine learning models. 

Traditional methods such as adaptive filtering, Fourier 
transforms, and wavelet transforms have been widely used to 
enhance the Signal-to-Noise Ratio (SNR). Adaptive filters 
like the Wiener filter are effective under stable conditions, 
while wavelet transforms enable multi-scale analysis to isolate 
noise components. However, in dynamic and complex noise 
environments typical of 5G systems, these approaches often 
fall short [1], [2]. For instance, wavelet-based methods may 
struggle with highly variable interference patterns in dense 
deployments. 

Machine learning approaches, including Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs), have shown promise in signal discrimination by 
learning features from noisy data. CNNs excel at identifying 
spatial patterns, and RNNs capture temporal dependencies in 
signal sequences. However, both require large amounts of 
labeled training data, which is often difficult to obtain in 

practice, and may not generalize well across diverse noise 
conditions [3]. 

Feature extraction plays a crucial role in bridging raw 
signal data and learning models. Short-Time Fourier 
Transform (STFT) is widely used to convert time-domain 
signals into frequency-domain representations, capturing both 
frequency components and their evolution over time [4]. To 
emphasize perceptually relevant frequency bands, Mel-
spectrograms are often used, providing robust visual 
representations suitable for deep learning [5]. 

Recently, Generative Adversarial Networks (GANs) have 
emerged as powerful tools in machine learning, capable of 
generating highly realistic synthetic data. GANs consist of a 
generator and a discriminator trained adversarially, and have 
been applied in wireless communications for tasks like 
channel estimation, noise modeling, and data reconstruction 
[6]. For example, GANs have been used to simulate realistic 
noise environments and modify time-scale features in speech 
signals [7]. However, their potential in signal detection and 
noise classification for 5G MIMO systems remains 
underexplored. 

In this paper, we extend GAN applications to signal 
detection in 5G MIMO systems, using STFT and Mel-
spectrograms for feature extraction. These transformations 
allow the GAN to effectively distinguish and denoise signals 
by learning from realistic noise samples that mimic complex 
interference patterns typical of 5G environments. While the 
current study focuses on single-channel signal processing, the 
proposed architecture is inherently scalable and can be 
extended to full MIMO systems. By leveraging multiple 
antenna streams and feeding multi-channel spectrograms into 
the GAN, the model could exploit inter-antenna correlations, 
potentially enhancing noise suppression in dense, real-world 
deployments. Our GAN-based approach is adaptive, requires 
minimal manual intervention, and aims to outperform 
traditional techniques including CNN-based autoencoders in 
both accuracy and robustness, demonstrating strong potential 
for future 5G applications. 

The rest of the paper is structured as follows: Section II 
reviews recent GAN and autoencoder methods in signal 
detection, Section III details the mathematical model of GANs 
used, Section IV describes signal generation techniques, 
Section V presents experimental results comparing our GAN-
based approach with CNN-based autoencoders, and Section 
VI discusses implications, applications, and limitations. 



II. MODEL ARCHITECTURES AND TRAINING FRAMEWORKS 

As seen in Figure 1, GANs consist of two primary 
components: Generator (G): The generator G(z;θg) takes a 
random noise vector z as input and generates synthetic data 
(1). The goal of the generator is to produce data that is 
indistinguishable from real data. 
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��ℎ���� ����   (1) 

 Discriminator (D): The discriminator D(x;θd) takes either 
real data or synthetic data as input and outputs a probability 
D(x) representing the likelihood that the input data is real (2). 
The goal of the discriminator is to correctly classify real and 
synthetic data. 

���; ��� � ������ ���� ∣ ��   (2) 

 

Fig. 1. Architecture of a GAN 

The GAN is trained using the following minimax objective 
function (3): 
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Here, pdata(x) is the distribution of real data, and pz(z) is 
the distribution of the noise vector z. 

During training, the discriminator is updated to maximize 
the probability of correctly classifying real and synthetic data, 
while the generator is updated to minimize the probability of 
the discriminator identifying synthetic data as fake. This 
adversarial training process enables the GAN to produce 
highly realistic noise and train a robust discriminator capable 
of distinguishing between real noisy signals and pure noise. 
By leveraging the generative and discriminative capabilities 
of GANs, our model provides a significant improvement over 
traditional signal processing techniques and CNN-based 
models in distinguishing signals from noise in 5G MIMO 
systems [8],[9],[10]. 

As seen in Figure 2 autoencoder network comprises two 
main components: 

Encoder: 

• Maps the input data x into a latent space  z. 

• Involves a series of transformations through neural 
network layers, such as fully connected layers or 
convolutional layers, depending on the type of data. 

• The encoder’s function can be mathematically 
represented as: z = fencoder(x), where fencoder 
represents the encoder’s function. 

• Outputs z, a compact representation of the input data. 

The decoder: 

• Reconstructs the data from the latent space 
representation z. 

• Maps z back to the original data space, aiming to 
approximate the input x as closely as possible. 

• The decoder’s function can be mathematically 
represented as: �'  = fdecoder(z), where �'  is the 
reconstructed data and fdecoder represents the decoder’s 
function. 

 

Fig. 2. Architecture of an autoencoder 

The loss function that the autoencoder for binary 
classification tasks like this is usually the Binary Cross-
Entropy (BCE). The mathematical model (4) is shown below: 
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where n is the number of data points, xi represents the i-th 
element of the input, and xi_hat denotes the corresponding 
element of the reconstructed output [11],[12]. 

III. ANALYSIS OF SIGNAL GENERATION AND MODELS 

To transform the signals into a form suitable for deep 
learning model input, feature extraction was performed using 
the STFT and Mel-spectrogram. The STFT was employed to 
convert the time-domain signals into the frequency domain, 
capturing both the frequency components and their evolution 
over time. This transformation yielded spectrograms, which 
are visual representations of the signal’s frequency content 
over time. To further focus on perceptually important features, 
Mel-spectrograms were computed, emphasizing frequencies 
that are more relevant to human perception. These 
spectrograms were then resized to a standardized dimension 
of 64x64 pixels, facilitating uniformity in the input data fed 
into the neural networks [13],[14]. 

Algorithm 1 – Signal Generation 

function generate_signal(fs, duration, frequency, 
noise_level=0.5): 

  t = np.arange(0, duration, 1.0/fs)  # Time vector 

  signal = np.sin(2  *np.pi * frequency * t)  # Pure sine 
wave signal 

  noisy_signal = signal + np.random.normal(0, 
noise_level, t.shape)  # Add Gaussian noise 

    return t, signal,noisy_signal 

Normalization was an essential preprocessing step, 
ensuring that the spectrogram data fell within a suitable range 
for neural network training. This step involved scaling the 
spectrogram values to a range between 0 and 1, which 
prevents potential issues associated with unnormalized input 
data, such as vanishing or exploding gradients during model 



training. The normalized spectrograms of the clean and noisy 
signals, as illustrated in the second image, visually underscore 
the efficacy of the preprocessing pipeline. The clean 
spectrograms exhibit well-defined frequency components, 
while the noisy spectrograms show the added noise, which 
obscures the clarity of these components. Algorithm 1 
generates synthetic noisy signals using sine waves and added 
Gaussian noise. Algorithm 2 computes the STFT and Mel-
spectrogram to extract features from the signals. Algorithm 3 
normalizes the spectrogram data between 0 and 1, preparing it 
for training.Together, these three steps form the preprocessing 
pipeline for both the GAN and the autoencoder. 

Algorithm 2 – Spectrogram Making and Feature 
Extraction  

function extract_features(signal, sr): 

    # Compute Short-Time Fourier Transform (STFT) 

    stft = abs(STFT(signal, n_fft=2048, hop_length=512)) 

    # Compute Mel Spectrogram 

    mel_spectrogram = 
MelSpectrogram(STFT_power(stft), sr, n_mels=64) 

 

    # Convert to Decibels 

    mel_spectrogram_db = 
PowerToDB(mel_spectrogram) 

    # Resize to 64x64 

    mel_spectrogram_db_resized = 
Resize(mel_spectrogram_db, (64, 64))1 

    return mel_spectrogram_db_resized 

Algorithm 3 – Spectrogram Normalization  

function normalize_spectrogram(spectrogram): 

    # Find the minimum value in the spectrogram 

    min_value = find_minimum_value(spectrogram) 

    # Find the maximum value in the spectrogram 

    max_value = find_maximum_value(spectrogram) 

    # Subtract the minimum value from each element in the 
spectrogram 

    normalized_spectrogram = spectrogram - min_value 

    # Divide each element in the spectrogram by the 
difference between the maximum and minimum values 

    normalized_spectrogram = normalized_spectrogram / 
(max_value - min_value) 

    # Return the normalized spectrogram 

    return normalized_spectrogram 

The process of generating spectrograms of pure noise follows 
a similar procedure. An empty list is initialized to store the 
spectrograms. For each batch, pure Gaussian noise is 
generated using the NumPy library, which provides robust 
tools for numerical computations, including random number 
generation. Specifically, the noise array is created with a 
length matching the product of the sampling frequency fs and 

the signal duration. The spectrogram of this noise and its 
features are then computed by using the extract_features 
function. The generator utilizes these features to predict new 
noisy spectrograms, which are subsequently used to train the 
discriminator. This iterative process enables the generator to 
produce increasingly realistic results over time. 

Two spectrograms made can be seen in Figures 3 and 4. The 
upper spectrogram corresponds to a clean signal, while the 
lower shows its noisy counterpart. Both are before their 
normalization. 

 

Fig. 3.  Clean Spectrogram 

 

Fig. 4. Noisy Spectrogram 

So, the signal generation process consists of the 
initialization of an empty list to store the spectrograms and for 
each batch, the use of generate_feature_batch function 
produce a noisy and a clean signal. This function has the 
generate_signal and the feature extraction functions as well as 
the normalization function. Using generate_feature_batch, the 
spectrogram of the produced signal is computed using the 
STFT through the scipy.signal.spectrogram function, which 
decomposes the signal into its frequency components over 
time. This results in a 2D array representing the spectrogram, 
with frequency bins along one axis and time bins along the 
other. The spectrogram and its features are normalized and 
then they are returned from the function to serve as inputs for 
the training models. Below in Figure 5, parts of the noisy 
spectrogram after normalization can be observed. 



 

Fig. 5. Noisy Spectrogram Normalized 

The architecture of the GAN implemented in this model is 
carefully designed to handle the task of denoising 
spectrograms, with the generator and discriminator playing 
complementary roles. The generator starts with an input layer 
that accepts a 64x64x1 spectrogram, representing a noisy 
signal. The model's first convolutional block applies a 2D 
convolution with 128 filters, using a kernel size of 3x3 and a 
stride of 2x2. This layer's purpose is to downsample the input 
and extract initial spatial features. By employing a 
LeakyReLU activation function with an alpha of 0.2, the 
network avoids the common issue of dead neurons, ensuring 
that even non-active regions maintain a small gradient, which 
is crucial for stable training [15]. BatchNormalization follows, 
stabilizing the output of this layer by normalizing the 
activations, thus speeding up the training process and making 
it more robust to changes in the data distribution. 

Moving deeper into the network, the second convolutional 
block continues the process of downsampling and feature 
extraction but reduces the number of filters to 64. This block 
also utilizes a 3x3 kernel and a 2x2 stride, further refining the 
spatial features while maintaining the model's ability to learn 
complex patterns. Again, LeakyReLU and 
BatchNormalization are applied, ensuring that the network 
remains stable and efficient during training. These layers are 
designed to capture increasingly abstract features from the 
input spectrogram, which are essential for the generator to 
later reconstruct a clean output. 

The upsampling process begins with two 
Conv2DTranspose layers. These layers are crucial for the 
generator as they increase the spatial dimensions of the feature 
maps, effectively reversing the downsampling done by the 
earlier layers. The first of these layers uses 64 filters, while the 
second uses 32, both with a 3x3 kernel and 2x2 stride, 
progressively refining the resolution of the output 
spectrogram. LeakyReLU activations follow each transposed 
convolution, ensuring that the generator retains the non-
linearity needed to model complex relationships within the 
data. The final output layer is another Conv2DTranspose 
layer, but with just one filter, outputting a single-channel 
spectrogram. The use of a tanh activation function in this layer 
is particularly apt as it outputs values in the range of [-1, 1], 
matching the normalized range of the spectrogram data and 
effectively completing the denoising transformation. 

On the discriminator side, the model begins with a similar 
input structure, processing a 64x64x1 spectrogram that could 
either be real (clean) or fake (denoised by the generator). The 
first convolutional block applies 64 filters with a 3x3 kernel 

and a 2x2 stride, initiating the feature extraction process by 
focusing on basic patterns. LeakyReLU is again used to 
maintain the gradient flow throughout the network. To prevent 
the model from overfitting, a dropout layer with a rate of 0.3 
is introduced, randomly setting some of the activations to zero 
during training. This regularization technique encourages the 
model to learn more generalized features that are not overly 
reliant on any specific patterns.  

As the discriminator moves deeper, the complexity of the 
extracted features increases. The second convolutional block 
uses 128 filters, continuing the downsampling process and 
extracting more intricate features from the input spectrogram. 
This block also includes a 0.3 dropout rate to further combat 
overfitting. The third convolutional block introduces 256 
filters, making the network even more capable of 
distinguishing between real and fake data by capturing fine-
grained details. A higher dropout rate of 0.4 is used here to 
ensure that the model remains generalizable despite its 
increased complexity. 

The flattened output of these convolutional layers feeds 
into a fully connected layer with 128 units. This dense layer 
distills the information down to its most essential features, 
using a LeakyReLU activation to preserve the network's 
ability to model complex data relationships. A final dropout 
layer with a 0.2 rate provides additional regularization before 
the output layer. The output layer consists of a single neuron 
with a sigmoid activation function, outputting a probability 
that indicates whether the input spectrogram is real or 
generated. This setup allows the discriminator to perform 
binary classification, determining with increasing accuracy 
whether the spectrogram it receives is authentic or produced 
by the generator. 

The combination of these architectural elements in both 
the generator and discriminator creates a robust GAN 
framework capable of denoising spectrograms while 
maintaining the delicate balance between noise reduction and 
detail preservation. The careful use of LeakyReLU, 
BatchNormalization, and Dropout layers throughout both 
networks ensures that the models are well-regularized and 
capable of handling the complexities inherent in this task.  

IV. PROCESS DESCRIPTION AND MODEL EVALUATION 

In this process, a time vector t is generated using the 
NumPy library, known for its robust numerical computation 
tools. A pure sinusoidal signal simulates the desired signal, 
while Gaussian noise is added using NumPy’s random 
number generation to mimic real-world conditions. The STFT 
extracts signal features, converting data to the frequency 
domain. Mel-spectrograms are computed and resized to 64x64 
pixels for uniform neural network inputs, with values 
normalized to [0, 1] to ensure stable training. The GAN 
architecture consists of a generator that denoises noisy 
spectrograms and a discriminator that classifies spectrograms 
as real or generated. Both models employ convolutional 
layers, dropout for regularization, and LeakyReLU activation 
to prevent inactive neurons. Model performance is evaluated 
using Root Mean Squared Error (RMSE) and Mean Squared 
Error (MSE), with simulation parameters detailed in Table I. 
While the training duration for each epoch was approximately 
20 minutes on a mid-range GPU, inference on a single 
spectrogram sample took less than 100 ms. The autoencoder 
offered slightly faster inference but with a small trade-off in 
output detail. These results suggest that the GAN is 



computationally feasible for offline or near-real-time 
scenarios. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

NFFT (STFT Window) 2048 

Number of Mel filters 64 

Generator Filters [128,64] 

Discriminator Filters [64,128,256] 

Dropout Rates [0.4,0.3] 

Activation Functions LeakyReLU,Tanh,Sigmoid 

Evaluation Metrics RMSE,MSE 

V. SIMULATION RESULTS 

The experiments in this study are designed to evaluate the 
effectiveness of GANs and Autoencoders in denoising 
spectrograms derived from noisy synthetic signals. The 
primary objective is to assess the ability of each model to 
reconstruct clean spectrograms from their noisy counterparts, 
with the performance metrics being Root RMSE and MSE. 
The autoencoder training curve can be seen in Figure 6 below. 

 

Fig. 6.  Autoencoder Training Curve 

The training process for the Autoencoder is conducted 
over 20 epochs, with the model progressively learning to 
minimize the binary cross-entropy loss between the input 
noisy spectrograms and the target clean spectrograms. The 
training loss curve, depicted in Figure 6, shows a steep decline 
in loss during the initial epochs, indicating rapid learning as 
the model quickly captures the basic structure of the 
spectrograms. However, after approximately 10 epochs, the 
rate of improvement plateaus, suggesting that the model has 
learned most of the general features necessary for denoising 
and is making only minor refinements in subsequent epochs. 

Despite this rapid convergence, the final reconstructed 
spectrograms from the Autoencoder, as shown in Figure 7, 
reveal some limitations.   

 

Fig. 7. Autoencoder Denoised Output 

While the Autoencoder effectively reduces noise, it also 
introduces blurring, particularly in areas of high frequency 
content. This blurring effect is characteristic of the model’s 
reliance on compressed latent space representations, which, 
while efficient, can lead to the loss of fine-grained details. The 
average RMSE of 0.155 and MSE of 0.0240 further reflect this 
trade-off between noise reduction and detail preservation. 

In contrast, the training of the GAN model follows a more 
complex process due to its adversarial nature. The GAN 
consists of two components: the generator, which attempts to 
create spectrograms that mimic clean signals, and the 
discriminator, which seeks to distinguish between real (clean) 
and generated (denoised) spectrograms. The training involves 
iteratively improving the generator’s ability to produce 
realistic spectrograms while simultaneously enhancing the 
discriminator’s capability to correctly identify genuine versus 
generated data. 

The training process for the GAN, like the Autoencoder, 
spanned 20 epochs. However, the GAN’s dynamics are 
inherently more volatile due to the adversarial interplay 
between the generator and discriminator. Throughout training, 
the GAN progressively learned to produce denoised 
spectrograms that visually resemble the clean targets more 
closely than those produced by the Autoencoder. This is 
evident in Figure 8, where the GAN output retains more 
detail—particularly in high-frequency components. However, 
this increased detail comes with trade-offs. Some outputs 
include subtle artifacts, such as localized blurring or faint edge 
effects that are not present in the original signals. These 
artifacts likely result from the adversarial nature of GAN 
training, which can lead to overfitting when the dataset is 
limited or when the generator and discriminator become 
imbalanced. To mitigate these risks, we employed dropout 
layers and early stopping during training to stabilize learning 
and prevent mode collapse. While the artifacts observed were 
minor and did not significantly impair signal clarity, their 
presence suggests opportunities for improvement using 
advanced regularization techniques or more stable GAN 
variants. 



 

Fig. 8. GAN Denoised Output 

Table II presents the RMSE and MSE scores for both 
models across multiple test steps (ranging from 50 to 1000), 
consistently showing the GAN having a slight edge over the 
Autoencoder. Based on these results, the GAN achieved an 
estimated average RMSE of 0.1530 ± 0.0022 and MSE of 
0.0228 ± 0.0004, confirming its stable and reliable denoising 
performance across varying signal lengths and types. 

TABLE II.  RMSE & MSE SCORES 

Testing Steps Model RMSE MSE 

50 GAN 0.150 0.0225 

50 Autoencoder 0.155 0.0240 

100 GAN 0.152 0.0231 

100 Autoencoder 0.153 0.0243 

250 GAN 0.155 0.0233 

250 Autoencoder 0.157 0.0241 

500 GAN 0.156 0.0229 

500 Autoencoder 0.159 0.0238 

1000 GAN 0.152 0.0224 

1000 Autoencoder 0.153 0.0239 

 

Quantitatively, the GAN achieved an average RMSE of 
0.15 and MSE of 0.0225, slightly outperforming the 
Autoencoder. This improvement, albeit small, highlights the 
GAN’s superior capability in capturing and reconstructing 
complex features in noisy environments, making it a more 
effective tool for denoising tasks in high-dimensional data like 
spectrograms. 

VI. CONCLUSION AND FUTURE WORK 

In this study, we explored the effectiveness of GANs and 
Autoencoders in the task of denoising spectrograms generated 
from synthetic noisy signals, a problem relevant to 5G MIMO 
systems and other advanced communication technologies. 
Our experimental results demonstrated that both models are 
capable of significant noise reduction, with the GAN slightly 
outperforming the Autoencoder in terms of RMSE and MSE. 

Visual comparisons revealed that while the Autoencoder 
reduces noise effectively, it introduces a smoothing effect that 
can blur high-frequency details. In contrast, the GAN retains 
sharper transitions and more distinct frequency bands, 
resulting in more detailed reconstructions. Although the GAN 
occasionally introduces minor artifacts due to adversarial 
training, its outputs remain closer to the original clean signals, 
demonstrating its strength in detail preservation. 

The relatively narrow performance gap may reflect the 
Autoencoder's strong baseline capability on synthetic 
Gaussian noise. Future work will explore techniques to 
enhance the GAN’s advantage, including perceptual loss 
functions, SSIM-based evaluation metrics, and advanced 
GAN variants such as conditional GANs (cGAN), 
Wasserstein GANs (WGAN), and Least Squares GANs 
(LSGAN). 

To evaluate real-world applicability, future 
experimentation will focus on real 5G datasets, where noise 
characteristics are more complex and varied. Additional 
experiments using more complex modulated signals (e.g., 
QAM, OFDM) will better simulate 5G conditions and help 
assess model generalization. We also plan to test the model’s 
scalability using higher-resolution spectrograms and longer 
signal durations. 

Furthermore, to provide a broader performance context, 
future studies will compare the GAN not only with deep 
learning models but also with traditional denoising techniques 
such as Wiener filtering, wavelet thresholding, and spectral 
subtraction. 

Finally, integrating these models into real-time signal 
processing pipelines is a key goal. This includes optimizing 
them for faster inference and lower computational load, while 
keeping time complexity low enough to support practical 
deployment in embedded or resource-constrained 
environments. 
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