
A Reinforcement Learning Approach On Self-

Optimizing Heterogeneous Networks

Nikolaos Prodromos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

 Email: up1072549@ac.upatras.gr

Vasileios Kokkinos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

Email: kokkinos@cti.gr

Damianos Diasakos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece
Email: up1084632@ac.upatras.gr

Christos Bouras

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

Email: bouras@upatras.gr

Apostolos Gkamas

 Department of Chemistry University

of Ioannina Ioannina, Greece
Email: gkamas@uoi.gr

Philippos Pouyioutas

 Computer Science Department

 University of Nicosia

 Nicosia, Cyprus
Email: pouyioutas.p@unic.ac.cy

Abstract— This paper presents a reinforcement learning-

based approach for optimizing the performance of 5G mobile

networks. By leveraging Deep Q-Networks (DQN), our system

autonomously tunes network parameters across macro, micro,

and pico cells, adapting to the dynamic distribution in a

heterogeneous network environment. The agent is tasked with

optimizing several Key Performance Indicators (KPIs) such as

throughput, latency, interference, and Quality of Service (QoS).

Each cell in the network can perform actions such as adjusting

power levels, changing handover thresholds, allocating

bandwidth, and performing interference mitigation. Our

approach demonstrates significant improvements in user

experience, resource utilization, and network efficiency over

traditional static optimization methods. The results show that the

proposed reinforcement learning -based algorithm not only

reduces latency and interference but also ensures better load

balancing and throughput optimization across heterogeneous

cells.

Keywords—Reinforcement Learning, Self-Optimizing

Networks, Deep Q-Network, Multi-Cell Networks, Throughput

Optimization, Latency Minimization, QoS, Interference Mitigation

I. INTRODUCTION

With the widespread deployment of 5G networks and the
continuous growth in mobile data usage, managing modern
network architectures (macro, micro, and pico cells) has become
increasingly complex. Operators face the challenge of
dynamically managing heterogeneous networks to ensure
consistent Quality of Service (QoS) across diverse
environments. In urban settings, users connect to different cell
types with varying coverage and capabilities, making
coordinated operation essential. Dynamic factors such as user
demand, mobility, and environmental changes contribute to
fluctuations in throughput, latency, and interference,
necessitating advanced solutions for efficient network
management. Traditional static network management
approaches, including fixed settings for power and handover
thresholds, struggle to adapt in real time. Manual optimization

lacks scalability, prompting interest in Self-Optimizing
Networks (SONs) that use machine learning, especially
Reinforcement Learning (RL), to autonomously optimize
network parameters. Prior research explored rule-based power
control in small cells to improve energy efficiency, though it
proved limited in dense environments. Recently, Deep
Reinforcement Learning (DRL) has been used to enhance
power allocation and interference management, but mainly in
homogeneous or macrocell-focused networks [1],[2],[3],[4],[5].

Several studies have explored the use of machine learning in
network optimization. For instance, Huang et al. [2]
demonstrated the application of Multi-Agent Reinforcement
Learning (MARL) for resource allocation and interference
coordination in small-cell networks. Their approach showed
promising results but was restricted to homogeneous network
environments, leaving heterogeneous setups underexplored.
Similarly, Xiang et al. [1] utilized MARL for Device-to-Device
(D2D) communication power control, achieving efficiency
gains in single-layer network configurations. While effective,
these studies lack a comprehensive focus on multi-cell, multi-
layer architectures like those in 5G heterogeneous networks.
Other recent works [6], [7], [8] also applied RL to 5G scenarios,
demonstrating performance improvements in aspects such as
handover optimization, energy efficiency, and network slicing;
however, these studies often lack integration of multiple
heterogeneous cell types or simultaneous KPI optimization.

In addition to RL, hybrid approaches combining supervised
learning and optimization techniques have been proposed for
network management. Gao et al. [9] applied Graph
Convolutional Networks (GCNs) with Long Short-Term
Memory (LSTM) models to optimize resource allocation in 5G
networks, highlighting the potential of deep learning in
addressing complex temporal and spatial dependencies.
However, such models often rely on static datasets, limiting
their adaptability to dynamic environments. Our approach
builds on this foundation, introducing a Deep Q-Network
(DQN) to optimize multiple KPIs dynamically in a
heterogeneous network environment.

Our approach addresses a multi-cell heterogeneous network
where macro, micro, and pico cells interact dynamically. Unlike
earlier work focused on single parameters, we simultaneously
optimize multiple Key Performance Indicators (KPIs):
throughput, QoS, latency, and interference. We leverage a DQN
agent in a simulated 10x10 km environment with 1000 users
connected across various cells. The DQN agent continuously
adjusts network parameters, learning from real-time feedback to
enhance network performance. The remainder of this paper is
organized as follows: Section II details our reward function
balancing key KPIs; Section III covers the DQN algorithm;
Section IV describes the testbed environment setup, and Section
V presents our performance evaluation. Finally, Section VI
outlines future research directions, including user mobility and
advanced RL algorithms.

II. REWARD FUNCTION ANALYSIS

The metrics used for the reward function and their
mathematical and physical meaning are the following. The
power level Pi of cell i represents the strength of the signal
transmitted by the cell. For each cell, its Pi ranges between a Pmin
and a Pmax which are the minimum and maximum allowable
power levels for it. The power level is a critical metric that
influences both the coverage area of the cell, and the
interference generated in neighboring cells. Adjusting the
transmission power allows the system to balance between
extending the cell's coverage and limiting interference to other
cells. For instance, increasing power may enhance the signal
quality for users connected to that cell, but it can also increase
interference for adjacent cells.

The bandwidth Bi allocated to each cell i reflects the amount
of spectrum assigned to the cell for data transmission.
Bandwidth allocation plays a crucial role in determining the
cell's capacity to handle user traffic. By optimizing bandwidth,
the system ensures that each cell efficiently serves its connected
users while minimizing congestion. This allocation is
particularly important in heterogeneous networks, where
different types of cells (macro, micro, pico) may have different
bandwidth capabilities. The bandwidth allocation can be
adjusted for things like increasing the throughput for a high-
demand cell or reducing the spectrum in underutilized cells to
free up resources for others. Interference I is a critical metric in
cellular networks as it measures the negative impact of signals
from nearby cells on the users connected to cell. Interference
reduces the signal quality, affecting the overall user experience
and decreasing the network’s throughput. The level of
interference experienced by a cell depends on several factors,
including the transmission power of neighboring cells and their
geographical proximity. The agent can manage interference by
adjusting power levels, beamforming, and other parameters.
Equation 1 below shows the model for interference.

 ∑
��

��
��

�	
 (2)

Where Pj is the transmission power of interfering cell j, and
dij is the distance between cells i and j.

The Signal-to-Noise Ratio (SNR) Si is a measure of the
signal quality for users connected to cell i. It is the ratio of the
desired signal strength to the background noise and interference.
A higher SNR indicates better signal quality, leading to more
reliable data transmission and higher throughput. The SNR
depends on both the transmission power of the cell and the level
of interference from neighboring cells. The SNR for one user
can be calculated using the distance between the cell and the
user connected as well as the signal strength of that cell.
Throughput Ti is a key metric that represents the amount of data
successfully transmitted to users connected to cell i per unit
time. Throughput is a direct measure of the network’s efficiency
and user satisfaction, as higher throughput translates to faster
data rates for users. The throughput of a cell depends on several
factors, including its bandwidth allocation, power level, and
SNR. The reward function R(s,a) seen in equation 2 is designed
to balance KPIs like the ones explained above. The goal is to
guide the agent (in this case, the DQN model) to take actions
that optimize the overall network performance across multiple
cells and users. The reward function is expressed as:

�(, �) = ����� − ����� + ������� − � ��� (1)

Where Tavg is the average throughput of users across all
cells. Throughput measures the amount of data successfully
delivered to users per unit of time. Higher throughput is
desirable. Iavg is the average interference level across all cells.
Interference degrades the signal quality and negatively impacts
user experience. Lower interference is desirable. QoSavg is the
average QoS score. QoS reflects the users' satisfaction with the
network service, combining factors like data rate, latency, and
reliability. Higher QoS is better. Lavg is the average latency
experienced by users. Latency measures the time it takes for
data to travel between two points in the network. Lower latency
is crucial, particularly for real-time applications like video calls
or gaming. The parameters α, β, γ, and δ are weights assigned
to each KPI to prioritize certain metrics over others. For
example, a high value of α would emphasize the importance of
throughput. A high δ would prioritize reducing latency. A high
β would penalize the agent more for increasing interference.
These weights can be tuned depending on the specific objectives
of the network (e.g., prioritize low latency for real-time
applications or high throughput for bandwidth-intensive tasks).
The weights α, β, γ, δ are fixed constants representing the
relative importance of each KPI in the reward function. These
constants are determined based on the network's priorities and
the desired optimization goals. For instance, higher � prioritizes
throughput, while higher � emphasizes low latency. In this
study, their values were selected to balance the trade-offs
between the KPIs, ensuring the algorithm effectively optimizes
throughput, latency, interference, and QoS in a heterogeneous
network environment. The goal is to maximize the reward,
which means maximizing throughput and QoS, minimizing
latency and interference.

III. DESCRIPTION OF ALGORITHM

The DQN algorithm is based on Q-learning, a RL technique.
The DQN aims to learn a policy π(a∣s) that maximizes the
cumulative reward over time. The key idea shown in equation 3

is to estimate the Q-value of each state-action pair (s,a), which
tells us how good it is to take action a in state s. The Q-value is
updated iteratively using the Bellman equation, which is
expressed as:

�(, �) ← �(, �) + "(# + �$�%�’�(′, �′) − �(, �)) (3)

Where Q(s,a) is the Q-value for state s and action a. r is the
reward received after taking action a in state ss, which is
calculated using the reward function mentioned above. η is the
learning rate, a factor between 0 and 1 that determines how
much the Q-value should be updated. γ is the discount factor,
which controls the importance of future rewards. A higher γ
values future rewards more, while a lower γ focuses more on
immediate rewards. s′ is the next state after taking action a in
states. Equation 4 is the maximum Q-value over all possible
actions in the next states.

 $�%�’�(′, �′) (4)

The difference between the current Q-value and the new
estimate (based on the reward and the maximum possible future
Q-value) is called the Temporal Difference (TD) Error, which
is calculated using equation (5):

 �()##�# = # + �$�%�*�(′, �′) − �(, �) (5)

This TD Error represents how much the Q-value needs to be
adjusted. The Q-value is then updated by adding a fraction
(determined by the learning rate η) of the TD Error to the current
Q-value.

Finally, the Q-value is updated using the TD:
Q(s,a)←Q(s,a)+ η×TD Error.

Over time, this process refines the Q-values, leading to a
more accurate estimation of the optimal policy.

The DQN uses a neural network to approximate the Q-value
function, especially when the state space is large (as it is in your
network environment). During training, the DQN learns which
actions lead to higher rewards in different states, eventually
forming a policy π(a∣s) that chooses the action with the highest
Q-value for any given state [10],[11],[12].

To ensure balanced exploration and exploitation, the DQN
agent uses the ε-greedy exploration strategy provided by Stable
Baselines3. In this approach, the agent selects a random action
with probability ε, which decays over time, and the action with
the highest estimated Q-value with probability 1−ε. This
mechanism enables the agent to explore a wide range of actions
early in training while converging to more optimal behavior as
learning progresses.

The policy π(a∣s) shown in equation 6 is derived by
selecting the action that has the highest Q-value in any given
state:

 +(� ∣) = �#-$�%.�(, �) (6)

In other words, the agent will choose the action that
maximizes the expected cumulative reward based on its current
knowledge of the environment.

Algorithm 1: StableLearningCallback – Adaptive Reward-
Guided Learning

Input: check_freq, learning_rate_decay_factor ← 0.9

Initialization: best_mean_reward ← −∞

Procedure:

1: For each training step do

2: If n_calls mod check_freq = 0 then

3: mean_reward ← average reward of last 100 episodes

4: If mean_reward > best_mean_reward then

5: best_mean_reward ← mean_reward

6: Save current model as “best_stable_model”

7: Else if mean_reward < best_mean_reward − 0.1 then

 8: new_lr ← current_learning_rate ×

 learning_rate_decay_factor

9: Update model learning rate to new_lr

10: End if

11: End if

12: End for

13: Instantiate environment ← MultiCellSelfOptNet()

14: Instantiate model ← DQN(MlpPolicy, environment,

 learning_rate=0.0002, verbose=1)

15: Instantiate callback ←

 StableLearningCallback(check_freq=1000)

The StableLearningCallback class is a custom callback
designed for use in RL algorithms. It inherits from
BaseCallback (a class in libraries like Stable-Baselines that
allows for customization of the training process). When the
StableLearningCallback is initialized, it takes two key
arguments: check_freq, which specifies how often the callback
should perform checks and updates, and verbose, which
controls the level of detail in the printed output. Inside the
initialization function, two important variables are set:
best_mean_reward, which is initialized to negative infinity to
track the best performance during training, and
learning_rate_decay_factor, which is set to 0.9 and will later be
used to reduce the learning rate if the model's performance
declines. The purpose of this initialization step is to set up the
conditions under which the callback will operate during the
training process, ensuring that performance monitoring and
learning rate adjustments can be handled dynamically.

The _on_step function is the core logic of the callback, and
it is triggered at each step during training. The function first
checks whether the current step count (stored in n_calls) is a

multiple of check_freq. This ensures that the callback intervenes
periodically instead of at every single step, which helps in
avoiding over-frequent adjustments. If the condition is met, the
function computes the mean reward over the last 100 episodes
by accessing the rewards from the training environment. This
moving average of rewards serves as a measure of the agent's
performance over time. If verbose mode is enabled, it prints the
current step number and the computed mean reward to help
monitor the training process. The DQN algorithm, built using
Stable Baselines3, is designed to learn an optimal policy by
interacting with the environment, receiving feedback (rewards),
and adjusting network parameters to maximize the overall
performance. The environment is initialized using the
MultiCellSelfOptNet() function, which is the initializer of a
class made by us, to simulate the environment and its possible
actions. After the algorithm and the environment initialization
the model is trained using the built-in learn() function and then
its predict() built-in function is used to predict the optimal action
for each state so that the reward function is maximized.

IV. TESTBED ENVIRONMENT

 The environment simulates a multi-cell wireless network
consisting of 2 macrocells, 4 microcells, and 4 picocells.
Macrocells provide large coverage areas but generate higher
interference. Microcells offer moderate coverage, while
picocells are designed for dense areas, providing high capacity
but limited coverage. The cells were placed using a pseudo-
random approach within a 10x10 km grid, ensuring realistic
spatial distribution. This approach aims to provide balanced
coverage while accounting for varying user densities and
minimizing coverage gaps. The pseudo-random placement also
reflects practical challenges in real-world network deployments,
where geographic constraints and user demand influence cell
positioning.

Fig. 1. Map of the area

The simulation models a 10x10 km grid with 1000 users
randomly distributed across the area. Each user connects to the
nearest cell (macro, micro, or pico) based on geographical
proximity. Figure 1 illustrates the layout of the deployment,
including the positions of all base stations and users. The
observation space, or state space, is represented as a matrix
where rows correspond to cells and columns represent key
metrics: power level, total bandwidth, average interference,

average SNR of connected users, and throughput. These
metrics, described in Section II, define the network state for
decision-making.

TABLE I. INITIAL BASE STATION PARAMETERS

Cell Type Power

(Watts)

Handover

Margin (db)

Bandwidth

Capacity (MHz)

Macrocell 1 31 5 100

Macrocell 2 31 5 100

Microcell 1 5 3 40

Microcell 2 5 3 40

Microcell 3 5 3 40

Microcell 4 5 3 40

Picocell 1 0.25 1 15

Picocell 2 0.25 1 15

Picocell 3 0.25 1 15

Picocell 4 0.25 1 15

TABLE II. ADDITIONAL SYSTEM PARAMETERS

Parameter Value Description

Grid Size 10 x 10 km Represents the

geographical area for
the simulation.

Number of Users 1000 Users are randomly

distributed across the
grid.

Modulation Schemes QPSK, 16-QAM, 64-

QAM, 256-QAM

Standard 5G

modulation

techniques used to
balance data rate and

signal quality.

User Scheduling
Techniques

Round-robin,
Maximum

Throughput, QoS-

aware

Scheduling
techniques

implemented to

balance fairness,
speed, and QoS

Observation Metrics Power, Bandwidth,

Interference, SNR,
Throughput

Metrics used to

define the network
state and guide the

agent's actions.

Action Space 110 Total discrete actions

available for
optimization across

all cells.

Cell Placement
Method

Pseudo-random Ensures realistic cell
distribution,

reflecting geographic

and user demand
constraints.

The action space includes 110 discrete actions, representing
11 possible adjustments for each of the 10 cells. Actions include
adjusting power levels, changing handover threshold margins,
allocating bandwidth, adjusting beamforming, activating carrier
aggregation, reconfiguring cell sectors, adjusting modulation
and coding schemes, enabling or disabling a cell, adjusting user
scheduling, managing interference mitigation, and enabling
network slicing. The agent learns to take the most appropriate
action for each cell based on the current network state. Table I
outlines the initial base station parameters, such as power levels,
handover margins, and bandwidth capacities, which were
selected to simulate a realistic heterogeneous network. Table II

provides additional details about other parameters used in the
simulation, their values, and their relevance to the testbed.

The possible modulation schemes are QPSK, 16-QAM, 64-
QAM and 256-QAM. The user scheduling techniques that were
available for use were round-robin scheduling, maximum
throughput scheduling and QoS-aware scheduling [13],[14].

V. PERFORMANCE EVALUATION

In this section, the algorithm is evaluated on 2000 steps. The
self-optimizing network RL algorithm was trained for 100000
episodes (where one episode consists of 200 actions). After
that, the algorithm was judged on 2000 actions. In Figures 2,3
and 4 the latency over time, the interference over time and the
QoS over time are observed in those 2000 actions (known as
steps) made by the trained algorithm and how these metrics are
decreasing or increasing over time since the reward function of
the algorithm works mostly to lower latency and interference
and strengthen the QoS. The metrics of latency, QoS and
interference are scaled in the (0,1) range. Figure 2 illustrates the
evolution of average user latency (measured in milliseconds)
during the 2000-step process. The primary goal of the algorithm
was to optimize the network for lower latency, as minimizing
delay is crucial for ensuring smooth user experience,
particularly for real-time applications like video conferencing or
gaming. At the beginning of the process, the latency fluctuates
between 0.59ms and 0.67ms, with some noticeable spikes.
These spikes can be attributed to moments when the network
reconfigures critical parameters such as power levels,
handovers, or user scheduling strategies. As this progresses, the
algorithm learns to adjust network parameters more effectively,
reducing the frequency and severity of these latency spikes. By
the end, the latency stabilizes, demonstrating that the algorithm
has successfully learned to minimize delay.

Fig. 2. Latency over 2000 steps

Figure 3 tracks the average interference levels across all
cells. Interference is measured on a normalized scale, where
lower values indicate less interference. In the early stages, the
interference fluctuates between 0.68 and 0.64, reflecting the
challenges the algorithm faces in managing network congestion
and inter-cell interference. As the algorithm adjusts power
levels, beamforming, and scheduling strategies, interference
begins to increase, from 0.64 peaking at 0.66. This is likely due
to moments when the algorithm is experimenting with higher
power levels and bandwidth allocation to improve throughput
and coverage. However, by the later stages, the interference
decreases, indicating that the algorithm has found a better
balance between cell power levels and user distribution.

Figure 4 shows how the average user experience evolves
throughout the process, measured as a normalized QoS score
ranging from 0 to 1. Initially, the QoS increases rapidly as the
algorithm optimizes basic parameters like power and bandwidth
allocation. The graph reflects a steady rise in QoS, peaking at
0.74, before encountering periodic drops as the algorithm makes
trade-offs between QoS, interference, and latency optimization.
Since the focus of this scenario was on reducing latency and
interference, the algorithm prioritizes those goals, which can
occasionally lead to a reduction in QoS as seen in the later
stages. However, despite these dips, the overall QoS score
stabilizes, indicating that the algorithm has managed to balance
network performance effectively.

Fig. 3. Interference over 2000 steps

Fig. 4. QoS over 2000 steps

Fig. 5. Reward over 2000 steps

The reward over time seen in Figure 5, is a function of the
above metrics, representing the overall performance of the
network as the algorithm progresses. Initially, the reward
fluctuates, reflecting the challenges the algorithm faces as it
learns to balance the various network metrics. As we continue,
the reward gradually improves while still exhibiting
fluctuations. This indicates that the algorithm has found a
configuration that better balances the conflicting objectives of

lower latency, reduced interference, and higher QoS. By the
end, the reward shows bigger stability, indicating that the
algorithm has effectively learned an efficient policy for
managing the network. This progressive increase in reward with
reduced variance over time also indicates that the DQN training
was stable and converged toward an effective policy. As can be
deduced, with minimal training, this algorithm was able to
constantly maximize the reward function which depends on the
QoS (which it maximized), the latency (which it minimized)
and the interference (which it minimized). Further adjustments
could allow it to avoid the “spikes” and to converge to optimal
and adaptive solutions easier.

VI. CONCLUSION AND FUTURE WORK

This work presented a reinforcement learning-based
approach using Deep Q-Networks (DQN) to optimize the
performance of self-organizing 5G heterogeneous networks
composed of macro, micro, and pico cells. By simulating 1,000
users across a 10×10 km grid, the proposed model dynamically
adjusted network parameters such as transmission power,
handover margins, and bandwidth allocation. The results
demonstrate significant improvements in latency and
interference reduction while preserving high throughput and
Quality of Service (QoS), validating the effectiveness of the
proposed reward function in balancing conflicting optimization
goals. A key strength of this approach lies in its ability to
simultaneously manage multiple KPIs in a multi-layer, multi-
cell network environment—an area often underexplored in prior
work. However, some limitations remain. The current model
assumes static user positions and does not incorporate real-
world constraints such as user mobility, physical obstacles, or
dynamic interference patterns. Additionally, the impact of
hyperparameter sensitivity, reward function weighting, and
training dynamics on DQN stability and performance has not
been thoroughly analyzed. To address these limitations, future
work will incorporate dynamic user mobility to simulate
realistic handover scenarios and shifting interference patterns.
We also aim to conduct sensitivity analysis on the reward
function weights (α, β, γ, δ) to better understand how different
optimization priorities affect network performance. Moreover,
future work will include benchmarking against traditional
baselines such as random assignment, round-robin, and static
heuristic approaches to quantitatively demonstrate the
performance improvements of the proposed DQN method.
Expanding the reward function to include additional metrics
such as energy efficiency, packet loss, and jitter will further
enhance alignment with real-world KPIs. Additionally, scaling
the framework to support thousands of users and hundreds of
cells will be explored through decentralized learning
techniques, such as Multi-Agent Reinforcement Learning
(MARL). We also plan to investigate the training stability and
convergence behavior of the DQN model, analyzing how
exploration strategies, learning rate schedules, and replay buffer
dynamics influence performance. Finally, we aim to extend the
simulation by modeling 3GPP-compliant gNB behavior and
evaluating the system using real-world datasets to bridge the
gap between simulation and deployment.

ACKNOWLEDGMENT

The research project was supported by the Hellenic
Foundation for Research and Innovation (H.F.R.I.) under the
"2nd Call for H.F.R.I. Research Projects to support Faculty
Members & Researchers" (Project Number: 02440).

REFERENCES

[1] H. Xiang, Y. Yang, G. He, J. Huang and D. He, "Multi-Agent Deep
Reinforcement Learning-Based Power Control and Resource Allocation
for D2D Communications," in IEEE Wireless Communications Letters,
vol. 11, no. 8, pp. 1659-1663, Aug. 2022, doi:
10.1109/LWC.2022.3170998.

[2] X. Huang, S. Leng, S. Maharjan and Y. Zhang, "Multi-Agent Deep
Reinforcement Learning for Computation Offloading and Interference
Coordination in Small Cell Networks," in IEEE Transactions on
Vehicular Technology, vol. 70, no. 9, pp. 9282-9293, Sept. 2021, doi:
10.1109/TVT.2021.3096928.

[3] Xiao, Y., Nazarian, S., & Bogdan, P. (2019). Self-optimizing and self-
programming computing systems: A combined compiler, complex
networks, and machine learning approach. IEEE transactions on very
large scale integration (VLSI) systems, 27(6), 1416-1427.

[4] Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., & Wang, L. C.
(2019). Deep reinforcement learning for mobile 5G and beyond:
Fundamentals, applications, and challenges. IEEE Vehicular Technology
Magazine, 14(2), 44-52.

[5] Yajnanarayana, V., Rydén, H., & Hévizi, L. (2020, September). 5G
handover using reinforcement learning. In 2020 IEEE 3rd 5G World
Forum (5GWF) (pp. 349-354). IEEE.

[6] F. Kavehmadavani, V. -D. Nguyen, T. X. Vu and S. Chatzinotas, "On
Deep Reinforcement Learning for Traffic Steering Intelligent
ORAN," 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur,
Malaysia, 2023, pp. 565-570, doi:
10.1109/GCWkshps58843.2023.10464606.

[7] A. Staffolani, V. -A. Darvariu, L. Foschini, M. Girolami, P. Bellavista
and M. M. Foschini, "PRORL: Proactive Resource Orchestrator for Open
RANs Using Deep Reinforcement Learning," in IEEE Transactions on
Network and Service Management, vol. 21, no. 4, pp. 3933-3944, Aug.
2024, doi: 10.1109/TNSM.2024.3373606.

[8] V. Sciancalepore, X. Costa-Perez and A. Banchs, "RL-NSB:
Reinforcement Learning-Based 5G Network Slice Broker,"
in IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp. 1543-1557,
Aug. 2019, doi: 10.1109/TNET.2019.2924471.

[9] X. Gao, J. Wang, and M. Zhou, "The Research of Resource Allocation
Method Based on GCN-LSTM in 5G Network," IEEE Communications
Letters, vol. 27, no. 3, pp. 926-930, March 2023, doi:
10.1109/LCOMM.2022.3224213.

[10] Yang, Y., Juntao, L., & Lingling, P. (2020). Multi‐robot path planning
based on a deep reinforcement learning DQN algorithm. CAAI
Transactions on Intelligence Technology, 5(3), 177-183.

[11] Fan, J., Wang, Z., Xie, Y., & Yang, Z. (2020, July). A theoretical analysis
of deep Q-learning. In Learning for dynamics and control (pp. 486-489).
PMLR.

[12] Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P., Singh,
S., & Silver, D. (2020). Discovering reinforcement learning algorithms.
Advances in Neural Information Processing Systems, 33, 1060-1070.

[13] M. P. Mota, D. C. Araujo, F. H. Costa Neto, A. L. F. de Almeida and F.
R. Cavalcanti, "Adaptive Modulation and Coding Based on
Reinforcement Learning for 5G Networks," 2019 IEEE Globecom
Workshops (GC Wkshps), Waikoloa, HI, USA, 2019, pp. 1-6, doi:
10.1109/GCWkshps45667.2019.9024384.

[14] Y. Cai, Z. Qin, F. Cui, G. Y. Li and J. A. McCann, "Modulation and
Multiple Access for 5G Networks," in IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 629-646, Firstquarter 2018, doi:
10.1109/COMST.2017.2766698.

