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Abstract— This paper presents a reinforcement learning-

based approach for optimizing the performance of 5G mobile 

networks. By leveraging Deep Q-Networks (DQN), our system 

autonomously tunes network parameters across macro, micro, 

and pico cells, adapting to the dynamic distribution in a 

heterogeneous network environment. The agent is tasked with 

optimizing several Key Performance Indicators (KPIs) such as 

throughput, latency, interference, and Quality of Service (QoS). 

Each cell in the network can perform actions such as adjusting 

power levels, changing handover thresholds, allocating 

bandwidth, and performing interference mitigation. Our 

approach demonstrates significant improvements in user 

experience, resource utilization, and network efficiency over 

traditional static optimization methods. The results show that the 

proposed reinforcement learning -based algorithm not only 

reduces latency and interference but also ensures better load 

balancing and throughput optimization across heterogeneous 

cells. 
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I. INTRODUCTION 

With the widespread deployment of 5G networks and the 
continuous growth in mobile data usage, managing modern 
network architectures (macro, micro, and pico cells) has become 
increasingly complex. Operators face the challenge of 
dynamically managing heterogeneous networks to ensure 
consistent Quality of Service (QoS) across diverse 
environments. In urban settings, users connect to different cell 
types with varying coverage and capabilities, making 
coordinated operation essential. Dynamic factors such as user 
demand, mobility, and environmental changes contribute to 
fluctuations in throughput, latency, and interference, 
necessitating advanced solutions for efficient network 
management. Traditional static network management 
approaches, including fixed settings for power and handover 
thresholds, struggle to adapt in real time. Manual optimization 

lacks scalability, prompting interest in Self-Optimizing 
Networks (SONs) that use machine learning, especially 
Reinforcement Learning (RL), to autonomously optimize 
network parameters. Prior research explored rule-based power 
control in small cells to improve energy efficiency, though it 
proved limited in dense environments. Recently, Deep 
Reinforcement Learning (DRL) has been used to enhance 
power allocation and interference management, but mainly in 
homogeneous or macrocell-focused networks [1],[2],[3],[4],[5]. 

Several studies have explored the use of machine learning in 
network optimization. For instance, Huang et al. [2] 
demonstrated the application of Multi-Agent Reinforcement 
Learning (MARL) for resource allocation and interference 
coordination in small-cell networks. Their approach showed 
promising results but was restricted to homogeneous network 
environments, leaving heterogeneous setups underexplored. 
Similarly, Xiang et al. [1] utilized MARL for Device-to-Device 
(D2D) communication power control, achieving efficiency 
gains in single-layer network configurations. While effective, 
these studies lack a comprehensive focus on multi-cell, multi-
layer architectures like those in 5G heterogeneous networks. 
Other recent works [6], [7], [8] also applied RL to 5G scenarios, 
demonstrating performance improvements in aspects such as 
handover optimization, energy efficiency, and network slicing; 
however, these studies often lack integration of multiple 
heterogeneous cell types or simultaneous KPI optimization. 

In addition to RL, hybrid approaches combining supervised 
learning and optimization techniques have been proposed for 
network management. Gao et al. [9] applied Graph 
Convolutional Networks (GCNs) with Long Short-Term 
Memory (LSTM) models to optimize resource allocation in 5G 
networks, highlighting the potential of deep learning in 
addressing complex temporal and spatial dependencies. 
However, such models often rely on static datasets, limiting 
their adaptability to dynamic environments. Our approach 
builds on this foundation, introducing a Deep Q-Network 
(DQN) to optimize multiple KPIs dynamically in a 
heterogeneous network environment. 



Our approach addresses a multi-cell heterogeneous network 
where macro, micro, and pico cells interact dynamically. Unlike 
earlier work focused on single parameters, we simultaneously 
optimize multiple Key Performance Indicators (KPIs): 
throughput, QoS, latency, and interference. We leverage a DQN 
agent in a simulated 10x10 km environment with 1000 users 
connected across various cells. The DQN agent continuously 
adjusts network parameters, learning from real-time feedback to 
enhance network performance. The remainder of this paper is 
organized as follows: Section II details our reward function 
balancing key KPIs; Section III covers the DQN algorithm; 
Section IV describes the testbed environment setup, and Section 
V presents our performance evaluation. Finally, Section VI 
outlines future research directions, including user mobility and 
advanced RL algorithms. 

II. REWARD FUNCTION ANALYSIS  

The metrics used for the reward function and their 
mathematical and physical meaning are the following. The 
power level Pi of cell i represents the strength of the signal 
transmitted by the cell. For each cell, its Pi ranges between a Pmin 
and a Pmax which are the minimum and maximum allowable 
power levels for it. The power level is a critical metric that 
influences both the coverage area of the cell, and the 
interference generated in neighboring cells. Adjusting the 
transmission power allows the system to balance between 
extending the cell's coverage and limiting interference to other 
cells. For instance, increasing power may enhance the signal 
quality for users connected to that cell, but it can also increase 
interference for adjacent cells. 

The bandwidth Bi allocated to each cell i reflects the amount 
of spectrum assigned to the cell for data transmission. 
Bandwidth allocation plays a crucial role in determining the 
cell's capacity to handle user traffic. By optimizing bandwidth, 
the system ensures that each cell efficiently serves its connected 
users while minimizing congestion. This allocation is 
particularly important in heterogeneous networks, where 
different types of cells (macro, micro, pico) may have different 
bandwidth capabilities. The bandwidth allocation can be 
adjusted for things like increasing the throughput for a high-
demand cell or reducing the spectrum in underutilized cells to 
free up resources for others. Interference I is a critical metric in 
cellular networks as it measures the negative impact of signals 
from nearby cells on the users connected to cell. Interference 
reduces the signal quality, affecting the overall user experience 
and decreasing the network’s throughput. The level of 
interference experienced by a cell depends on several factors, 
including the transmission power of neighboring cells and their 
geographical proximity. The agent can manage interference by 
adjusting power levels, beamforming, and other parameters. 
Equation 1 below shows the model for interference. 
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Where Pj is the transmission power of interfering cell j, and 
dij is the distance between cells i and j. 

The Signal-to-Noise Ratio (SNR) Si is a measure of the 
signal quality for users connected to cell i. It is the ratio of the 
desired signal strength to the background noise and interference. 
A higher SNR indicates better signal quality, leading to more 
reliable data transmission and higher throughput. The SNR 
depends on both the transmission power of the cell and the level 
of interference from neighboring cells. The SNR for one user 
can be calculated using the distance between the cell and the 
user connected as well as the signal strength of that cell. 
Throughput Ti is a key metric that represents the amount of data 
successfully transmitted to users connected to cell i per unit 
time. Throughput is a direct measure of the network’s efficiency 
and user satisfaction, as higher throughput translates to faster 
data rates for users. The throughput of a cell depends on several 
factors, including its bandwidth allocation, power level, and 
SNR. The reward function R(s,a) seen in equation 2 is designed 
to balance KPIs like the ones explained above. The goal is to 
guide the agent (in this case, the DQN model) to take actions 
that optimize the overall network performance across multiple 
cells and users. The reward function is expressed as: 

�(
, �) = ����� − ����� + ������� − � ��� (1) 

Where Tavg is the average throughput of users across all 
cells. Throughput measures the amount of data successfully 
delivered to users per unit of time. Higher throughput is 
desirable. Iavg is the average interference level across all cells. 
Interference degrades the signal quality and negatively impacts 
user experience. Lower interference is desirable. QoSavg is the 
average QoS score. QoS reflects the users' satisfaction with the 
network service, combining factors like data rate, latency, and 
reliability. Higher QoS is better. Lavg is the average latency 
experienced by users. Latency measures the time it takes for 
data to travel between two points in the network. Lower latency 
is crucial, particularly for real-time applications like video calls 
or gaming. The parameters α, β, γ, and δ are weights assigned 
to each KPI to prioritize certain metrics over others. For 
example, a high value of α would emphasize the importance of 
throughput. A high δ would prioritize reducing latency. A high 
β would penalize the agent more for increasing interference. 
These weights can be tuned depending on the specific objectives 
of the network (e.g., prioritize low latency for real-time 
applications or high throughput for bandwidth-intensive tasks). 
The weights α, β, γ, δ are fixed constants representing the 
relative importance of each KPI in the reward function. These 
constants are determined based on the network's priorities and 
the desired optimization goals. For instance, higher � prioritizes 
throughput, while higher � emphasizes low latency. In this 
study, their values were selected to balance the trade-offs 
between the KPIs, ensuring the algorithm effectively optimizes 
throughput, latency, interference, and QoS in a heterogeneous 
network environment. The goal is to maximize the reward, 
which means maximizing throughput and QoS, minimizing 
latency and interference. 

III. DESCRIPTION OF ALGORITHM 

The DQN algorithm is based on Q-learning, a RL technique. 
The DQN aims to learn a policy π(a∣s) that maximizes the 
cumulative reward over time. The key idea shown in equation 3 



is to estimate the Q-value of each state-action pair (s,a), which 
tells us how good it is to take action a in state s. The Q-value is 
updated iteratively using the Bellman equation, which is 
expressed as: 

�(
, �) ← �(
, �) + "(# + �$�%�’�(
′, �′) − �(
, �)) (3) 

Where Q(s,a) is the Q-value for state s and action a. r is the 
reward received after taking action a in state ss, which is 
calculated using the reward function mentioned above. η is the 
learning rate, a factor between 0 and 1 that determines how 
much the Q-value should be updated. γ is the discount factor, 
which controls the importance of future rewards. A higher γ 
values future rewards more, while a lower γ focuses more on 
immediate rewards. s′ is the next state after taking action a in 
states. Equation 4 is the maximum Q-value over all possible 
actions in the next states. 
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The difference between the current Q-value and the new 
estimate (based on the reward and the maximum possible future 
Q-value) is called the Temporal Difference (TD) Error, which 
is calculated using equation (5): 

      �( )##�# =  # +  �$�%�*�(
′, �′) − �(
, �) (5) 

This TD Error represents how much the Q-value needs to be 
adjusted. The Q-value is then updated by adding a fraction 
(determined by the learning rate η) of the TD Error to the current 
Q-value.  

Finally, the Q-value is updated using the TD: 
Q(s,a)←Q(s,a)+ η×TD Error. 

Over time, this process refines the Q-values, leading to a 
more accurate estimation of the optimal policy. 

The DQN uses a neural network to approximate the Q-value 
function, especially when the state space is large (as it is in your 
network environment). During training, the DQN learns which 
actions lead to higher rewards in different states, eventually 
forming a policy π(a∣s) that chooses the action with the highest 
Q-value for any given state [10],[11],[12]. 

To ensure balanced exploration and exploitation, the DQN 
agent uses the ε-greedy exploration strategy provided by Stable 
Baselines3. In this approach, the agent selects a random action 
with probability ε, which decays over time, and the action with 
the highest estimated Q-value with probability 1−ε. This 
mechanism enables the agent to explore a wide range of actions 
early in training while converging to more optimal behavior as 
learning progresses. 

The policy π(a∣s) shown in equation 6 is derived by 
selecting the action that has the highest Q-value in any given 
state: 

 +(� ∣ 
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In other words, the agent will choose the action that 
maximizes the expected cumulative reward based on its current 
knowledge of the environment. 

Algorithm 1: StableLearningCallback – Adaptive Reward-
Guided Learning   

Input: check_freq, learning_rate_decay_factor ← 0.9   

Initialization: best_mean_reward ← −∞   

Procedure:   

1:  For each training step do   

2:      If n_calls mod check_freq = 0 then   

3:          mean_reward ← average reward of last 100 episodes   

4:          If mean_reward > best_mean_reward then   

5:              best_mean_reward ← mean_reward   

6:              Save current model as “best_stable_model”   

7:          Else if mean_reward < best_mean_reward − 0.1 then   

 8:              new_lr ← current_learning_rate × 

           learning_rate_decay_factor    

9:              Update model learning rate to new_lr   

10:         End if   

11:     End if   

12: End for   

 

13: Instantiate environment ← MultiCellSelfOptNet()   

14: Instantiate model ← DQN(MlpPolicy, environment,   

       learning_rate=0.0002, verbose=1)   

15: Instantiate callback ←  

      StableLearningCallback(check_freq=1000) 

The StableLearningCallback class is a custom callback 
designed for use in RL algorithms. It inherits from 
BaseCallback (a class in libraries like Stable-Baselines that 
allows for customization of the training process). When the 
StableLearningCallback is initialized, it takes two key 
arguments: check_freq, which specifies how often the callback 
should perform checks and updates, and verbose, which 
controls the level of detail in the printed output. Inside the 
initialization function, two important variables are set: 
best_mean_reward, which is initialized to negative infinity to 
track the best performance during training, and 
learning_rate_decay_factor, which is set to 0.9 and will later be 
used to reduce the learning rate if the model's performance 
declines. The purpose of this initialization step is to set up the 
conditions under which the callback will operate during the 
training process, ensuring that performance monitoring and 
learning rate adjustments can be handled dynamically. 

The _on_step function is the core logic of the callback, and 
it is triggered at each step during training. The function first 
checks whether the current step count (stored in n_calls) is a 



multiple of check_freq. This ensures that the callback intervenes 
periodically instead of at every single step, which helps in 
avoiding over-frequent adjustments. If the condition is met, the 
function computes the mean reward over the last 100 episodes 
by accessing the rewards from the training environment. This 
moving average of rewards serves as a measure of the agent's 
performance over time. If verbose mode is enabled, it prints the 
current step number and the computed mean reward to help 
monitor the training process. The DQN algorithm, built using 
Stable Baselines3, is designed to learn an optimal policy by 
interacting with the environment, receiving feedback (rewards), 
and adjusting network parameters to maximize the overall 
performance. The environment is initialized using the 
MultiCellSelfOptNet() function, which is the initializer of a 
class made by us, to simulate the environment and its possible 
actions. After the algorithm and the environment initialization 
the model is trained using the built-in learn() function and then 
its predict() built-in function is used to predict the optimal action 
for each state so that the reward function is maximized. 

IV. TESTBED ENVIRONMENT 

 The environment simulates a multi-cell wireless network 
consisting of 2 macrocells, 4 microcells, and 4 picocells. 
Macrocells provide large coverage areas but generate higher 
interference. Microcells offer moderate coverage, while 
picocells are designed for dense areas, providing high capacity 
but limited coverage. The cells were placed using a pseudo-
random approach within a 10x10 km grid, ensuring realistic 
spatial distribution. This approach aims to provide balanced 
coverage while accounting for varying user densities and 
minimizing coverage gaps. The pseudo-random placement also 
reflects practical challenges in real-world network deployments, 
where geographic constraints and user demand influence cell 
positioning. 

 

Fig. 1. Map of the area 

The simulation models a 10x10 km grid with 1000 users 
randomly distributed across the area. Each user connects to the 
nearest cell (macro, micro, or pico) based on geographical 
proximity. Figure 1 illustrates the layout of the deployment, 
including the positions of all base stations and users. The 
observation space, or state space, is represented as a matrix 
where rows correspond to cells and columns represent key 
metrics: power level, total bandwidth, average interference, 

average SNR of connected users, and throughput. These 
metrics, described in Section II, define the network state for 
decision-making.  

TABLE I.  INITIAL BASE STATION PARAMETERS 

Cell Type Power 

(Watts) 

Handover 

Margin (db) 

Bandwidth 

Capacity (MHz) 

Macrocell 1  31 5 100 

Macrocell 2 31 5 100 

Microcell 1 5 3 40 

Microcell 2 5 3 40 

Microcell 3 5 3 40 

Microcell 4 5 3 40 

Picocell 1 0.25 1 15 

Picocell 2  0.25 1 15 

Picocell 3 0.25 1 15 

Picocell 4 0.25 1 15 

TABLE II.  ADDITIONAL SYSTEM  PARAMETERS 

Parameter Value Description 

Grid Size 10 x 10 km Represents the 

geographical area for 
the simulation. 

Number of Users 1000 Users are randomly 

distributed across the 
grid. 

Modulation Schemes QPSK, 16-QAM, 64-

QAM, 256-QAM 

Standard 5G 

modulation 

techniques used to 
balance data rate and 

signal quality. 

User Scheduling 
Techniques 

Round-robin, 
Maximum 

Throughput, QoS-

aware 

Scheduling 
techniques 

implemented to 

balance fairness, 
speed, and QoS 

Observation Metrics Power, Bandwidth, 

Interference, SNR, 
Throughput 

Metrics used to 

define the network 
state and guide the 

agent's actions. 

Action Space 110 Total discrete actions 

available for 
optimization across 

all cells. 

Cell Placement 
Method 

Pseudo-random Ensures realistic cell 
distribution, 

reflecting geographic 

and user demand 
constraints. 

The action space includes 110 discrete actions, representing 
11 possible adjustments for each of the 10 cells. Actions include 
adjusting power levels, changing handover threshold margins, 
allocating bandwidth, adjusting beamforming, activating carrier 
aggregation, reconfiguring cell sectors, adjusting modulation 
and coding schemes, enabling or disabling a cell, adjusting user 
scheduling, managing interference mitigation, and enabling 
network slicing. The agent learns to take the most appropriate 
action for each cell based on the current network state. Table I 
outlines the initial base station parameters, such as power levels, 
handover margins, and bandwidth capacities, which were 
selected to simulate a realistic heterogeneous network. Table II 



provides additional details about other parameters used in the 
simulation, their values, and their relevance to the testbed. 

The possible modulation schemes are QPSK, 16-QAM, 64-
QAM and 256-QAM. The user scheduling techniques that were 
available for use were round-robin scheduling, maximum 
throughput scheduling and QoS-aware scheduling [13],[14]. 

V. PERFORMANCE EVALUATION 

In this section, the algorithm is evaluated on 2000 steps. The 
self-optimizing network RL algorithm was trained for 100000 
episodes (where one episode consists of 200 actions). After  
that, the algorithm was judged on 2000 actions. In Figures 2,3 
and 4 the latency over time, the interference over time and the 
QoS over time are observed in those 2000 actions (known as 
steps) made by the trained algorithm and how these metrics are 
decreasing or increasing over time since the reward function of 
the algorithm works mostly to lower latency and interference 
and strengthen the QoS. The metrics of latency, QoS and 
interference are scaled in the (0,1) range. Figure 2 illustrates the 
evolution of average user latency (measured in milliseconds) 
during the 2000-step process. The primary goal of the algorithm 
was to optimize the network for lower latency, as minimizing 
delay is crucial for ensuring smooth user experience, 
particularly for real-time applications like video conferencing or 
gaming. At the beginning of the process, the latency fluctuates 
between 0.59ms and 0.67ms, with some noticeable spikes. 
These spikes can be attributed to moments when the network 
reconfigures critical parameters such as power levels, 
handovers, or user scheduling strategies. As this progresses, the 
algorithm learns to adjust network parameters more effectively, 
reducing the frequency and severity of these latency spikes. By 
the end, the latency stabilizes, demonstrating that the algorithm 
has successfully learned to minimize delay. 

 

Fig. 2. Latency over 2000 steps 

Figure 3 tracks the average interference levels across all 
cells. Interference is measured on a normalized scale, where 
lower values indicate less interference. In the early stages, the 
interference fluctuates between 0.68 and 0.64, reflecting the 
challenges the algorithm faces in managing network congestion 
and inter-cell interference. As the algorithm adjusts power 
levels, beamforming, and scheduling strategies, interference 
begins to increase, from 0.64 peaking at 0.66. This is likely due 
to moments when the algorithm is experimenting with higher 
power levels and bandwidth allocation to improve throughput 
and coverage. However, by the later stages, the interference 
decreases, indicating that the algorithm has found a better 
balance between cell power levels and user distribution. 

Figure 4 shows how the average user experience evolves 
throughout the process, measured as a normalized QoS score 
ranging from 0 to 1. Initially, the QoS increases rapidly as the 
algorithm optimizes basic parameters like power and bandwidth 
allocation. The graph reflects a steady rise in QoS, peaking at 
0.74, before encountering periodic drops as the algorithm makes 
trade-offs between QoS, interference, and latency optimization. 
Since the focus of this scenario was on reducing latency and 
interference, the algorithm prioritizes those goals, which can 
occasionally lead to a reduction in QoS as seen in the later 
stages. However, despite these dips, the overall QoS score 
stabilizes, indicating that the algorithm has managed to balance 
network performance effectively. 

 

Fig. 3. Interference over 2000 steps 

 

Fig. 4. QoS over 2000 steps 

 

Fig. 5. Reward over 2000 steps 

The reward over time seen in Figure 5, is a function of the 
above metrics, representing the overall performance of the 
network as the algorithm progresses. Initially, the reward 
fluctuates, reflecting the challenges the algorithm faces as it 
learns to balance the various network metrics. As we continue, 
the reward gradually improves while still exhibiting 
fluctuations. This indicates that the algorithm has found a 
configuration that better balances the conflicting objectives of 



lower latency, reduced interference, and higher QoS. By the 
end, the reward shows bigger stability, indicating that the 
algorithm has effectively learned an efficient policy for 
managing the network. This progressive increase in reward with 
reduced variance over time also indicates that the DQN training 
was stable and converged toward an effective policy. As can be 
deduced, with minimal training, this algorithm was able to 
constantly maximize the reward function which depends on the 
QoS (which it maximized), the latency (which it minimized) 
and the interference (which it minimized). Further adjustments 
could allow it to avoid the “spikes” and to converge to optimal 
and adaptive solutions easier. 

VI. CONCLUSION AND FUTURE WORK 

This work presented a reinforcement learning-based 
approach using Deep Q-Networks (DQN) to optimize the 
performance of self-organizing 5G heterogeneous networks 
composed of macro, micro, and pico cells. By simulating 1,000 
users across a 10×10 km grid, the proposed model dynamically 
adjusted network parameters such as transmission power, 
handover margins, and bandwidth allocation. The results 
demonstrate significant improvements in latency and 
interference reduction while preserving high throughput and 
Quality of Service (QoS), validating the effectiveness of the 
proposed reward function in balancing conflicting optimization 
goals. A key strength of this approach lies in its ability to 
simultaneously manage multiple KPIs in a multi-layer, multi-
cell network environment—an area often underexplored in prior 
work. However, some limitations remain. The current model 
assumes static user positions and does not incorporate real-
world constraints such as user mobility, physical obstacles, or 
dynamic interference patterns. Additionally, the impact of 
hyperparameter sensitivity, reward function weighting, and 
training dynamics on DQN stability and performance has not 
been thoroughly analyzed. To address these limitations, future 
work will incorporate dynamic user mobility to simulate 
realistic handover scenarios and shifting interference patterns. 
We also aim to conduct sensitivity analysis on the reward 
function weights (α, β, γ, δ) to better understand how different 
optimization priorities affect network performance. Moreover, 
future work will include benchmarking against traditional 
baselines such as random assignment, round-robin, and static 
heuristic approaches to quantitatively demonstrate the 
performance improvements of the proposed DQN method. 
Expanding the reward function to include additional metrics 
such as energy efficiency, packet loss, and jitter will further 
enhance alignment with real-world KPIs. Additionally, scaling 
the framework to support thousands of users and hundreds of 
cells will be explored through decentralized learning 
techniques, such as Multi-Agent Reinforcement Learning 
(MARL). We also plan to investigate the training stability and 
convergence behavior of the DQN model, analyzing how 
exploration strategies, learning rate schedules, and replay buffer 
dynamics influence performance. Finally, we aim to extend the 
simulation by modeling 3GPP-compliant gNB behavior and 
evaluating the system using real-world datasets to bridge the 
gap between simulation and deployment. 
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