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A B S T R A C T   

In this work Laser-Induced Breakdown Spectroscopy (LIBS) and absorption spectroscopy aided by machine 
learning are employed for discriminating some extra virgin Greek olive oils of different olive cultivars for the first 
time. LIBS and absorption spectra of extra virgin olive oils belonging to Kolovi and Koroneiki cultivars, as well as 
mixtures of them, were collected, analyzed, and used to develop classification schemes employing Linear 
Discriminant Analysis and Gradient Boosting, the latter allowing the determination of the most important 
spectral features. Both algorithms were found to provide efficient classification of the olive oil spectra with 
accuracies exceeding 90%. Furthermore, for the first time, the emission spectra of LIBS were fused with the 
absorption spectra to create predictive models and their accuracies were found to be significantly improved. This 
work demonstrates the enhanced capabilities of LIBS and absorption spectroscopy and the potential of their 
combination for olive oil quality monitoring and control.   

1. Introduction 

The quality of extra virgin olive oil (EVOO) is determined by its 
composition and can be influenced by several factors that affect both the 
fruit physiology and the obtained oil. Factors like the olive cultivar, the 
climatic conditions, the type of soil, the harvesting and fruit ripening 
influence the distributions of various olive oil constituents, as e.g., fatty 
acids and triglycerides (Boskou, 2015). A common practice for pro-
ducing olive oils with unique quality and characteristics and allowing a 
brand name in the market is the use of monovarietal olive fruits. In that 
way, the resulting olive oil is highly dependent on the olive cultivar, 
geographical origin and climatic conditions. The knowledge of cultivar 
and geographical origin can be of high commercial interest, especially 
for premium and high-quality olive oils that can bear marks such as 
protected designation of origin (PDO), protected geographical indica-
tion (PGI) and traditional specialty guaranteed (TSG) (Kosma et al., 
2017). However, such extra virgin and premium olive oils are often 
adulterated using anonymous or less expensive oils as well as other types 
of vegetable oils. For these reasons, there is an emerging need for 

developing appropriate methodologies to guarantee oil traceability and 
identification of geographical origin and/or cultivar (Conte et al., 2020). 

During the last decades, several analytical methods have been 
developed for the determination of authenticity of olive oil such as Gas 
and High-Performance chromatography (Aparicio, Morales, 
Aparicio-Ruiz, Tena, & García-González, 2013), Fourier Transform IR 
spectroscopy (Valand, Tanna, Lawson, & Bengtström, 2019) and Raman 
spectroscopy (Berghian-Grosan & Magdas, 2020). For the classification 
of olive oils based on their cultivar/variety, a common strategy is the 
combination of analytical techniques with chemometric and machine 
learning methods. For example, Casale, Sinelli, Oliveri, Di Egidio, and 
Lanteri (2010) have shown the potential of Near- and Mid-Infrared 
spectroscopy combined with Linear Discriminant Analysis (LDA) for 
cultivar identification of extra virgin olive oils, while Maléchaux, 
Laroussi-Mezghani, Le Dréau, Artaud, and Dupuy (2020) applied Partial 
Least Squares Discriminant Analysis (PLS-DA) on both gas chromato-
graphic and mid-infrared spectroscopic data, for classification of some 
Tunisian olive oils’ varieties (i.e., Chemlali, Chetoui and Oueslati). In 
another study, Binetti et al. (2017), have applied multilayer perceptron 
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neural networks for the classification of NMR and NIR data of olive oils 
from four different Italian cultivars. 

In the present work, two spectroscopic techniques, namely Laser- 
Induced Breakdown Spectroscopy (LIBS) and Absorption Spectroscopy 
are employed for the classification of olive oils based on their olive 
cultivar origin, with the aid of machine learning. LIBS is an emerging 
analytical technique in food analysis (Peng et al., 2019; Senesi, Cabral, 
Menegatti, Marangoni, & Nicolodelli, 2019; Velásquez-Ferrín, Babos, 
Marina-Montes, & Anzano, 2020) and, very recently, has been applied 
for olive oil analysis and classification (Bellou, Gyftokostas, Stefas, ; 
Caceres et al., 2013; Gazeli, Bellou, Stefas, & Couris, 2020; Gyftokostas, 
Stefas, & Couris, 2020). LIBS is a laser-based technique capable to 
provide very rapidly the elemental analysis of a sample, independently 
of its state of matter and physical properties (e.g., solid, gas, liquid, 
dielectric or conductive), by creating a plasma on the sample’s surface 
using a focused laser beam. The plasma plume contains the abla-
ted/vaporized material, which is partially atomized, and finally excited 
and/or partially ionized. By monitoring the emission spectrum of the 
radiation emitted from the plasma, the elements present in the ablated 
material can be identified and, eventually, quantified (Fortes, Moros, 
Lucena, Cabalín, & Laserna, 2012). This well-established technique does 
not require any sample preparation or pre-treatment and only a very 
small quantity of the sample is ablated. Moreover, it can be performed in 
situ, on-line and remotely (François et al., 2020). LIBS has been com-
bined with machine learning and chemometrics for various applications 
(Yang, Hao, Zhang, & Ren, 2020; Yu, Ren, & Zhao, 2020) because it can 
quickly create large datasets containing a large number of variables 
depending on the spectral resolution (Képeš, Vrábel, Sťrítežská, ; Vrábel 
et al., 2020). On the other hand, absorption spectroscopy is among the 
most common spectroscopic techniques used routinely in lab providing 
information on the absorption characteristics of a sample. Absorption 
spectroscopy can also produce rapid results and has often been used to 
fingerprint the authenticity of a material or food. The officially autho-
rized method to characterize olive oils by absorption spectroscopy (and 
the most common one) is the determination of the extinction coefficients 
in the UV region, namely K232 and K270, at 232 and 270 nm, respec-
tively, which determine the proportion of oxidized constituents. This 
method is highly recommended by the European Commission, the In-
ternational Olive Council and the American Oil Chemists’ Society 
(Aparicio et al., 2013; Conte et al., 2020). Among the applications of 
absorption spectroscopy for olive oils, some approaches are focusing on 
the multivariate statistical analysis of olive oil absorbance spectra in the 
visible and near–infrared spectral regions. For instance, Kružlicová, 
Mocak, Katsoyannos, and Lankmayr (2008) combined UV-VIS absorp-
tion spectra with machine learning techniques such as quadratic 
discriminant analysis, logistic regression and neural networks for the 
classification of olive oils according to their geographical origin. Violino 
et al. (2020) succeeded in discriminating various olive oils in terms of 
their geographical origin, manipulating their VIS-NIR absorption 
spectra using neural networks and multivariate analysis of variance. In 
other works, UV-VIS spectroscopy is combined with other spectros-
copies. In particular, Milanez et al. (2017) employed chemometric al-
gorithms such as partial least squares on both fluorescence and UV-VIS 
absorption spectra to predict the adulteration of extra virgin olive oils, 
whereas Kontzedaki et al. (2020) applied partial least squares discrim-
inant analysis to Raman, UV-VIS-NIR absorption and fluorescence 
spectroscopic data for EVOOs classification based on their geographical 
origin. In the same spirit, LIBS has been combined with other spectro-
scopic methods, such as Raman spectroscopy for identifying bacterial 
species and strains (Prochazka et al., 2018), wavelength dispersive X-ray 
fluorescence for predicting the contents of various inorganic elements in 
bean seed (Gamela, Costa, Sperança, & Pereira-Filho, 2020) and Ft-IR 
and Raman for quantifying calcium content in infant formula (Zhao 
et al., 2020). 

The present work presents a significant extension of a recent work 
(Gyftokostas et al., 2021), where LIBS emission data and data from 

absorption measurements were used for the geographical discrimination 
of Greek olive oils employing some machine learning algorithmic ap-
proaches. Specifically, in the present work, for the first time, to the best 
of our knowledge, LIBS emission data and absorption data separately 
and also in fused form, assisted by machine learning algorithms are used 
for the discrimination/classification of olive oils in terms of their olive 
cultivar. In that view, LDA and Gradient Boosting algorithms were used 
to classify the olive oil spectra in terms of their olive cultivars, while the 
most important features of the spectra were identified and selected to 
create a dataset with much fewer features. Then, LDA and Gradient 
Boosting were used to create new predictive models, which are subse-
quently assessed and compared with the former models. Finally, a 
hybrid machine learning model is proposed, for the first time for olive 
oils classification/discrimination, whereas data fusion LIBS and ab-
sorption spectra are used to determine the olive cultivar origin of some 
Greek extra virgin olive oils. 

2. Materials and methods 

2.1. The olive oil samples 

A total of 41 monovarietal olive oil samples (i.e., 38 extra virgin olive 
oils (EVOOs) and 3 virgin olive oils (VOOs) samples) were collected 
from producers, from different areas of the island of Lesvos, Greece, 
belonging to two types of olive cultivars, i.e., Kolovi and Koroneiki. In 
addition, 10 extra virgin olive oil commercial samples were purchased 
from the local market. More information about the olive oil samples is 
presented in Table S1, including sample names, type of olive farming, 
altitude of the olive trees’ locations and kind of olive fruit ripening. Two 
of the EVOOs samples were used to prepare mixtures/blends of the two 
different types of olive cultivars studied here, i.e., the Kolovi and Kor-
oneiki, resulting to 9 more samples corresponding to different mixing 
ratios of each variety, ranging from 10 to 90% v/v (e.g., 10:90, 20:80, 
…, 90:10). 

The spectra obtained from the samples were split into two sets; one 
containing spectra from 44 olive oil samples used for the algorithmic 
training, and the other one comprising the spectra from 16 samples (i.e., 
14 monovarietal olive oil samples out of 51, and 2 mixture samples out 
of 9) used for the external validation of the algorithmic models (see also 
in Table S1 the samples used for training and external validation). It 
should be emphasized at this point that the external validation pro-
cedure is quite important for a realistic assessment of the predictive 
models’ accuracies. All samples, after their collection, were stored in 
dark-colored glass bottles and were kept at a temperature of 2–4 ◦C, 
protected from light and humidity. Prior to the laser measurements, the 
olive oil samples were left at room temperature for several hours. 

2.2. LIBS experimental setup 

LIBS is essentially an emission spectroscopy based technique, where 
a laser beam is used to create a plasma, emitting the characteristic 
emissions of its constituents. For the experiments, about 2 ml of each 
olive oil sample were placed in small Petri dish-like recipient, allowing 
the access of the laser beam on the sample free surface to induce a spark, 
i.e., plasma. For the creation of the plasma, the focused laser beam from 
a 5 ns Q-switched Nd: YAG laser (Quanta-Ray INDI, Spectra Physics) 
operating at its fundamental wavelength at 1064 nm and with a repe-
tition rate of up to 10 Hz, was used. The laser beam was focused 
perpendicular to the sample’s surface by means of a 150 mm focal length 
quartz lens. The energy of the laser pulses was about 90 mJ. The laser 
focusing conditions and the laser energy were optimized to provide a 
good signal-to-noise-ratio (SNR) and minimizing splashing. The plasma 
emission was collected via a quartz lens and fed into a quartz optical 
fiber bundle, being coupled to the entrance slit of a 75 mm focal length 
spectrograph (Avantes, AvaSpec-ULS4096CL-EVO). The spectrograph 
was equipped with a 300 lines/mm grating and a 4096-pixel detector 
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(CMOS) covering the spectral region from 185 to 1347 nm. From these 
pixels, 2754 ones were used corresponding to the 200–1000 nm spectral 
region. The measurements were performed using a time delay (td) of 
1.28 μs and an integration window (tw) of 1.05 ms for the detector. For 
the measurements, every laser shot was inducing a plasma, while ten 
successive laser shots were averaged corresponding to one LIBS mea-
surement. Then, up to 30 such LIBS spectra were collected, from 
different places on the free surface, and were used for the algorithmic 
training. More detailed information about the LIBS experimental setup 
and the spectra acquisition conditions can be found elsewhere (Bellou 
et al., 2020). 

2.3. Absorption spectroscopy experimental setup 

The absorption spectra of the olive oil samples were obtained using a 
spectrophotometer (Jasco V-670), employing 1 mm optical pathlength 
glass cells. The spectral range used was extending from 350 to 750 nm. 
Each olive oil sample was pipetted in a 1 mm glass cuvette and for every 
sample 20 absorption spectra were acquired and used for the algo-
rithmic training. Each spectrum consisted of 801 data points (i.e., 
pixels). 

2.4. Data Analysis 

For the analysis of the collected spectroscopic data, two machine 
learning techniques were selected, employed and assessed for each kind 
of input dataset, i.e., the LIBS spectral data, the absorption data and the 
combined LIBS-absorption data using the Python library Scikit-learn 
(Pedregosa et al., 2011). The different machine learning algorithms 
applied were Linear Discriminant Analysis (LDA) and Gradient Boosting 
Classifier. Three classes were used for the classification procedure, 
namely Kolovi and Koroneiki (corresponding to the samples from Kolovi 
and Koroneiki cultivars respectively) and Mixtures (corresponding to 
the Kolovi-Koroneiki blended samples). Data analysis was performed 
separately for the LIBS and the absorption spectra. Finally, the emission 
and absorption spectra, from the two techniques, were combined to 
create machine learning models that were simultaneously taking into 
account information about the samples’ elemental composition (pro-
vided by LIBS) and the absorption features (provided from the absorp-
tion measurements). This procedure, where two or more types of 
datasets are combined to create machine learning models, is widely 
known as data fusion (Andrade, De Almeida, De Carvalho, Pereira-Filho, 
& Amarasiriwardena, 2021). According to Borràs et al. (2015) data 
fusion procedures can be categorized in three types, namely low-, mid- 
and high-level of data fusion. Low-level data fusion is the simple, 
sample-wise, concatenation of the independent datasets into a single 
matrix having as many rows as samples analyzed and as many columns 
as the features measured by the different analytical methods. Mid-level 
data fusion is performed when feature extraction or selection is per-
formed on each one of the independent datasets prior to their concate-
nation into a single one. High-level data fusion is performed when 
machine learning models resulting from each independent dataset are 
combined. In this work, the low-level data fusion approach was followed 
on the LIBS and absorption spectroscopic datasets. So, the fused dataset 
consisted of 3555 features, 2754 of them originating from the LIBS 
spectral features and the rest 801 from the absorption spectra of the 
same sample. For the analysis, some data preprocessing was also per-
formed, i.e., the LIBS spectra were normalized by max, while the 
absorbance data were used as is. 

LDA was used for dimensionality reduction, as a pre-processing step, 
as it is often used for different machine learning applications and for 
visualization purposes as well. LDA being a supervised learning tech-
nique, was used for classification purposes as well. As it is known, LDA 
maximizes the ratio of the between-class variance over the within-class 
variance, through a classifier with a linear decision boundary which is 
generated by fitting class conditional densities to the data using Bayes’ 

rule (Hastie, Tibshirani & Friedman, 2009). The LDA model fits a 
Gaussian probability density to each class with the assumption that all 
classes share the same variance-covariance matrix. Gradient Boosting 
classification algorithm (also known as Gradient Boosted Trees classi-
fication) being a supervised ensemble learning algorithm, it produces a 
predictive model in the form of an ensemble of weak learners, i.e., de-
cision trees, in order for the model to be a strong learner. Similarly to 
other tree-based ensemble methods, such as Decision Trees and Random 
Forests, each feature’s importance can be evaluated. In this work, 
Gradient Boosting is used to identify the spectral features that are mostly 
contributing to the efficient classification of the acquired LIBS and ab-
sorption spectroscopic data (Huffman, Sobral, & Terán-Hinojosa, 2019). 

Both supervised algorithms (i.e., LDA and Gradient Boosting) were 
applied on the raw and the reduced data as well. The latter ones were 
obtained by using the Gradient Boosting algorithm on the raw data and 
using the resulting important features next, as inputs for both classifi-
cation algorithms. In general, such pre-treatment procedures can result 
in effective reduction of the dataset’s size, thus using much less inputs 
compared to the raw data (i.e., the un-treated ones) and having a direct 
impact on the computational time. 

For the evaluation of the model, a train-test split method was applied 
to the data while the training data was split further during cross vali-
dation. In more details, the k-fold cross validation technique was 
implemented to the algorithmic training data to ensure the stability of 
the algorithm and obtain the prediction accuracy with k = 10. In this 
way, the dataset is shuffled and split into k groups, where one group is 
used as test and the remaining k-1 are used as training samples. This 
procedure is performed k times. In this manner, the classification ac-
curacies can be obtained, allowing for the better and more accurate 
assessment of the classification procedure. Finally, to ensure the stability 
of the machine learning models, an external validation procedure with 
the test data was performed using spectra from olive oil samples left out 
from the algorithmic training, i.e., previously un-seen by the algorithms. 
So, the machine learning models are tested and evaluated by checking 
their capacity to accurately predict new spectra from new unknown (i.e., 
un-seen) olive oil samples (Hastie, Tibshirani & Friedman, 2009). 

3. Results and discussion 

3.1. LIBS spectral features 

A representative LIBS spectrum of an olive oil sample is presented as 
an example in Fig. 1a, showing the most characteristic emission features 
(i.e., spectral lines) related to olive oil’s elemental composition. As olive 
oil consists basically of organic constituents, it has to expected that the 
plasma emission spectrum will be dominated by spectral lines of Carbon, 
Hydrogen, Nitrogen and Oxygen. Indeed, the most prevailing of them 
are the atomic carbon line at 247.9 nm, the Hydrogen’s Balmer lines, Hα 
and Hβ, at 656.3 and 486.1 nm respectively, the atomic nitrogen’s triplet 
at 742.4, 744.2 and 746.8 nm, as well as the oxygen’s triplet centered at 
about 777 nm. Moreover, the progression of the molecular emission 
bands of CN and C2, arising from the fragmentation of the different olive 
oil’s constituents and subsequently formed under plasma conditions are 
also clearly visible (Acquaviva et al., 1997; Parigger, 2013). The spectral 
features were assigned and identified using the NIST atomic spectra 
database (Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team) and 
other LIBS-related studies of olive oil and other organic materials 
(Caceres et al., 2013; Gyftokostas et al., 2020; Moros & Laserna, 2019; 
Stefas, Gyftokostas, & Couris, 2020). Following previous works (Bellou 
et al., 2020; Caceres et al., 2013; Gazeli et al., 2020; Gyftokostas et al., 
2020), it should be noted that the classification of different olive oil LIBS 
spectra is a rather challenging task, due to their spectral similarity 
arising from the very similar elemental composition of olive oils. Fig. 1b, 
presents some representative LIBS spectra of olive oil of the Kolovi and 
Koroneiki cultivars, as well as a mixture of them. In this figure, the 
similarities between the spectra are evident while their differences lie 
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basically on their relative intensities. 

3.2. Linear Discriminant Analysis and Gradient Boosting for olive cultivar 
discrimination 

Fig. 1c shows the canonical variable plot of LDA resulting from the 
training dataset. As can be seen, three distinct clusters of data points are 
formed, indicating their successful classification bearing a training ac-
curacy of (92.6 ± 2.3)%. A small overlap can be noticed between the 
Kolovi and Koroneiki samples while their mixtures are clearly discrim-
inated. The first canonical variable describes 96.03% of the dataset’s 
variance and the second one describes 3.97% of it, in such a way that 
class separability is maximized. In that view, the Mixtures samples are 
discriminated from both the Kolovi and Koroneiki samples along the first 
canonical variable axis. For the second canonical variable (describing 
the 3.97% of the total variance), the Mixtures are placed in between the 
Kolovi and Koroneiki samples. This is visualized on Fig. 1c, where each 
data point is projected on the canonical variable’s axes. 

The LDA model achieved a high classification accuracy after the 
training procedure, i.e., (92.6 ± 2.3)%. All misclassifications occurred 
within samples from the Koroneiki and Kolovi cultivars, something 
which can be observed from the two overlapping clusters of Fig. 1c. This 
model was used to identify 16 unknown samples and attained a 90.6% 
accuracy of prediction. Similarly, Gradient Boosting algorithm was used 
to classify the same LIBS spectra and attained (96.0 ± 1.7)% training 
accuracy and 93.8% accuracy on predicting the test data. 

In Figure S1 the confusion matrices for both LDA and Gradient 
boosting predictions of the test data are depicted, outlining how accu-
rately each instance from the unknown samples’ spectra is predicted. 
The confusion matrix of LDA on Figure S1a, shows that only 45 of 330 
instances (i.e., spectra) of Kolovi origin, are falsely predicted as of 
Koroneiki origin, corresponding to the overlap of the two classes, 
noticed previously in Fig. 1c. The instances of Koroneiki origin and the 
mixtures, in total, were accurately predicted within their class. 
Figure S1c, shows that merely 30 out of 330 instances of Kolovi origin, 
are confused with Koroneiki origin but only 1 of 90 instances of 

Koroneiki is predicted as Kolovi origin. The 60 instances of the mixture, 
in total, were accurately predicted. 

3.3. Feature importances of the LIBS spectra 

Gradient Boosting algorithm can estimate the important features 
from a trained predictive model, as it has been discussed above. In 
principle, importances are computed as scores, that indicate how useful 
each feature is for constructing the model’s boosted decision trees. Thus, 
for each feature (i.e., wavelength) of the dataset (which has a total of 
2754 features), the feature importances were calculated and are asso-
ciated with the LIBS spectra. In Fig. 1d, an olive oil LIBS spectrum and 
the resulting important features after the implementation of the 
Gradient Boosting algorithm are shown. As it can be seen, the most 
important features (i.e., those over a threshold of about 0.018) are 
coinciding with some spectral lines. These are the band-head of the CN 
progression, lying at 388.3 nm, the ionic nitrogen line at 500.5 nm, the 
C2 progression’s band-head at 516.5 nm, as well as, the atomic nitrogen 
lines at 746.8 and 868.0 nm. Two more features correspond to the 
atomic lines of carbon at 962.1 and 965.8 nm. Other spectral lines seem 
to have weak or negligible importance, as for instance the Hα and Hβ 
lines and some lines of oxygen, carbon and nitrogen. By using these 
seven spectral features, the creation of LDA and Gradient Boosting 
models were performed, and their performances are assessed. Fig. 1e 
shows the canonical variable plot of LDA resulting from the training 
dataset. 

As it can be observed from Fig. 1e, along the first Canonical Vari-
able’s axis, which explains 82.24% of the total variance, the Kolovi and 
Koroneiki samples are completely separated from their intermediate 
mixtures. However, along the second Canonical Variable’s axis, 
explaining 17.56% of the variance, the samples seem not to be well- 
separated. This model’s classification accuracy is (90.2 ± 2.9)% and in 
comparison, with the LDA model prior to the feature selection (i.e., 
(92.6 ± 2.3)%) it performed quite well, considering that only 7 features 
were used. Concerning the prediction of the unknown samples, the al-
gorithm predicted 91.5% of the unknown instances. 

Fig. 1. a) LIBS spectrum of an olive oil, showing the most important emission spectral lines and molecular bands. b) Comparison of LIBS spectra originating from 
olive oils of the Kolovi and Koroneiki cultivars, and a Kolovi-Koroneiki olive oil mixture. c) Canonical Variable plot resulting from the LDA algorithm showing the 
distribution of LIBS spectra after dimensionality reduction. d) Feature importances resulting from the Gradient Boosting algorithm and their comparison with an olive 
oil LIBS spectrum. e) Canonical Variable plot resulting from the LDA algorithm after applying the feature selection procedure, with a threshold of 0.018. 
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The Gradient Boosting algorithm, also, performed quite successfully, 
with the trained model presenting an accuracy of (92.7 ± 1.8)% and a 
90.8% prediction accuracy of the unknown data. Despite the accuracies 
of these feature-reduced models being slightly lower than the original 
models (i.e., (96.0 ± 1.7)% training accuracy and 93.8% testing accu-
racy), the obtained results are quite satisfactory taking into account the 
massive features’ reduction, namely from 2754 features to only 7 of 
them. 

3.4. Olive oil absorption spectra and Linear Discriminant Analysis/ 
Gradient Boosting for olive cultivar discrimination 

Some representative absorption spectra of olive oil corresponding to 
the visible spectral region 350–750 nm, are depicted in Fig. 2a. The 
observed absorption bands are due to pigments, such as carotenoids and 
chlorophylls (Domenici et al., 2014; Jimenez-Lopez et al., 2020). As can 
be seen, Kolovi, Koroneiki and their mixtures absorption spectra exhibit 
significant differences among them, due to the different amounts of 
these pigments. 

In Fig. 2b the canonical variable plot of LDA is shown, resulting from 
the training dataset. As can be seen, three distinct clusters of data points 
are formed, indicating a remarkably successful classification attaining a 
training accuracy of (100.0 ± 0.0)%. The first canonical variable de-
scribes 59.62% of the dataset’s variance while the second one describes 
the rest 40.38% of it. However, when the LDA model was put to the test, 
only 86.3% of the unknown data were correctly predicted (see, i.e., the 
confusion matrix in Figure S2a). Next, Gradient Boosting algorithm was 
used to classify the same absorption spectra. It has attained a training 
accuracy of (99.8 ± 0.5)% and 80.6% accuracy on predicting the test 
data (see, i.e., the confusion matrix in Figure S2b). The features that 
Gradient Boosting algorithm which were found to be important were 
determined to be in the spectral range 400–430 nm and 650–660 nm, as 
can be seen in Fig. 2c. The performance of both LDA and Gradient 

Boosting were investigated for various threshold values. So, the opti-
mum threshold value was determined to 0.01, resulting to only 16 fea-
tures (i.e., wavelengths) having the highest importances. LDA attained 
an accuracy of (91.6 ± 3.9)% for training and 84.4% for testing. 
Correspondingly, the Gradient Boosting attained an accuracy of (99.5 ±
0.6)% for training and 87.2% for testing. The confusion matrices for 
both LDA and Gradient Boosting can be found in Figure S2c and 
Figure S2d, respectively. However, these results are rather affected by 
overfitting of the training data, as the LDA and Gradient Boosting 
models correspond exactly on the training data and therefore they lose 
their ability to generalize when new previously unseen data are used for 
prediction. Actually, overfitting is a very common situation in machine 
learning and chemometrics, and the most efficient way to check for it, is 
through the control of the efficiency of a model to predict new data. In 
the present case, the observed overfitting can have two origins. Either 
the spectral information of the absorption spectra within the 350–750 
nm range is not satisfactory for predicting the cultivar origin of olive 
oils, or to the low spectral variances of the absorption spectra, the latter 
not allowing the algorithms to “learn” efficiently from the observed 
absorption patterns and perform successful classification. On the con-
trary, the intensities of the LIBS spectral data exhibiting large variances 
allow for the efficient training of the predictive model. In general, LIBS 
can provide large data sets in very short time (i.e., hundreds of spectra 
per second), the corresponding spectra consisting of thousands of vari-
ables with high spectral resolution and large variances. The high vari-
ance of the LIBS spectra is commonly addressed by averaging the 
emission collected from several shots, or the comparable approach of 
numerically averaging the spectra after the acquisition (Képeš, Pořízka, 
& Kaiser, 2019). The latter is especially effective in the analysis of ho-
mogenous samples, such as olive oils. 

Fig. 2. a) Comparison of olive oil absorption spectra from olive oils of Kolovi and Koroneiki cultivars and a Kolovi-Koroneiki mixture. b) Canonical Variable plot 
resulting from the LDA algorithm. c) Feature importances resulting from the Gradient Boosting algorithm in comparison with an indicative olive oil absorp-
tion spectrum. 
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3.5. Use of fused emission (LIBS data) and absorption data for the 
creation of machine learning models 

In this section, the performance of the fusion of LIBS and absorption 
data is examined for the classification of olive oils in terms of their 
cultivar origins. In that view, machine learning models are created using 
both LIBS and absorption data as a single data file (i.e., fusing the 
emission and the absorption data) and it is shown that high classification 
accuracies of the olive oils in terms of the olive cultivar origin can be 
obtained. In fact, the determined classification accuracies were found to 
be significantly improved compared with the classification accuracies 
obtained using only each one of the two types of spectroscopic data 
separately. In addition, the overfitting issues encountered, e.g. when the 
absorption spectroscopic data were used as inputs to the machine 
learning models, seem to be avoided in this case. A fused LIBS - Ab-
sorption spectrum is presented in Fig. 3a, where the two types of spectra 
have been merged. The x-axis of the plot indicates the number of fea-
tures of the combined spectra (3555 features, 2754 stemming from the 
LIBS spectrum and 801 from the corresponding absorption spectrum). 
The y-axis indicates the numerical value of each feature (which origi-
nates from the normalized intensities and the absorbance value of the 
LIBS and the absorption spectra, respectively). The presented results 
were obtained after preprocessing of the spectroscopic data (as 
mentioned in Section 2.4 Data Analysis). More information can be found 
in the supplementary material, i.e., see Figure S4. When using the LDA 
algorithm, the training accuracy was (96.0 ± 1.7)% and the testing ac-
curacy was 82.5%. The resulting canonical variable plot is shown in 
Fig. 3b. However, when using the Gradient Boosting algorithm both high 
training and testing accuracies were attained, ca. (99.4 ± 0.9)% and 

100.0%, respectively. The three most important features in this case 
correspond to the oxygen atom triplet at ~777 nm and nitrogen line at 
868.0 nm for the LIBS-related part of the data, and some part of the 
chlorophylls and carotenoids at about 370–390 nm for the absorption- 
part of the data. 

The obtained results are summarized in Fig. 3c, where the training 
and testing accuracies are plotted against the threshold value for the 
important features. The best results have been obtained for a threshold 
value of 0.02 and the training and testing accuracies were (99.3 ± 1.0)% 
and 99.7%, respectively. For this threshold value 9 features were 
selected. Thus, from a total of 3555 features, with only 9 spectral fea-
tures a nearly 100% classification accuracy can be attained. The 
confusion matrices for the predictive models are shown in Figure S3. As 
can be seen, the results are quite high and the validation accuracy falls 
within the standard deviation of the training accuracy, avoiding possible 
overfitting of the predictive model. It is concluded that the accuracy of 
discrimination compared to each method separately is higher and 
improved. 

Such approaches, i.e., data fusion from different spectroscopies and 
analytical techniques, have been widely used for the quality assessment 
and authentication of foodstuff. A detailed overview of this issue can be 
found in the review of Borràs et al. (2015) and the references within. In 
the present work, data obtained from LIBS and absorption spectros-
copies, were fused together for strengthening of the predictive models’ 
capabilities. With this approach, the weaknesses that may occurs in each 
technique can be eliminated resulting to excellent discrimination 
results. 

Fig. 3. a) Fused spectrum consisting of LIBS and absorbance data. Feature importances are also indicated. b) Canonical Variable plot resulting from the LDA al-
gorithm. c) Accuracies for training and predicting unknown data for varying feature importance thresholds by using Gradient Boosting algorithm. 
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4. Conclusion 

In this work, two spectroscopic techniques, an emission spectroscopy 
based one (ca., Laser-Induced Breakdown Spectroscopy) and absorption 
spectroscopy were used for the discrimination of some Greek olive oils 
based on their cultivar origin. LDA and Gradient Boosting algorithms 
were used for the classification and were found to provide excellent 
classification accuracies, with the best results obtained using the LIBS 
data, attaining (96.0 ± 1.7)% for training accuracy and 93.8% for 
external validation, by using the Gradient Boosting algorithm. In the 
case of absorption spectroscopy, the best results were 100% for training 
and 86.3% for external validation and were obtained by implementing 
the LDA algorithm. It was also shown that the classification results can 
be efficiently improved when using the important features recognized by 
the Gradient Boosting algorithm, as a feature selection method. 
Furthermore, the fusion of the two different origins spectroscopic data, i. 
e., the emission and the absorption spectra, and their use by the pre-
dictive models, can lead to an efficient strategy for predicting the 
cultivar origin of olive oils. By the data fusion methodology employed in 
this work, the discrimination of olive oils in terms of their cultivar 
origin, by using Gradient Boosting and LDA, resulted to external vali-
dation accuracies of 100% and 82.5%, respectively. The obtained results 
demonstrate the high potential of such spectroscopic data when assisted 
by machine learning algorithms for olive oil authentication and classi-
fication. In addition, the use and/or the combination of these well 
established and experimentally mature techniques, such as LIBS and 
absorption spectroscopy, which can acquire data very rapidly (e.g., in 
few seconds for LIBS and few minutes for absorption) can be potentially 
an efficient tool of great importance for food safety and food industry. 
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