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Abstract. Today, the Internet of Things (IoT) has been introduced in our lives,
giving a variety of solutions and applications. The critical requirements for devices
connected to the IoT are long battery life, long coverage, and low deployment cost.
Some applications require the transmission of data over long distances, thus Low
Power Wide Area Networks (LPWAN) have emerged, with LoRa being one of
the most popular players of the market. In order, to improve energy consumption
and connectivity problems, machine learning can be used in LoRa networks. In
this paper, we intend to improve the energy consumption of end nodes by using
machine learning models. For this reason, we present a comparison of classifi-
cation algorithms, specifically, the k-NN, the Naïve Bayes, and Support Vector
Machines (SVM), for the Spreading Factor (SF) assignment in LoRa networks.
The simulation results indicate that, both energy efficiency and reliability in IoT
communications could be significantly improved using the proposed learning app-
roach. These promising results, which are achieved using lightweight learning,
make our solution favorable in many low-cost low-power IoT applications.
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1 Introduction

As the Internet of Things (IoT) market is growing with fast rates, intending to solve
major problems such as, climate change e.g. by monitoring crucial areas, or to provide
Search and Rescue Systems [1] new technologies have been introduced. One of these
technologies is Low Power Wide Area Networks (LPWAN). LPWAN comes to solve
the problem of transmitting data to long distances, with very small energy consumption.
Some examples of LPWAN technologies are LoRa, Narrowband IoT (NB-IoT), SigFox,
Weightless [2]. Each technology, has its advantages and disadvantages, tries to provide
energy-efficient, long-distance, low-cost solutions, sacrificing high throughput, and low
latency similar to what cellular technologies provide. As mentioned before, IoT tries to
cope with different parameters in the context of the application. One of the most important
challenges that should be taken into consideration during the development of a system,
is the appropriate resource allocation. Resource allocation can be focused on energy
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consumption, latency, throughput, packet loss, etc. Many techniques have been proposed
for resource allocation, one of them being the use of Machine Learning (ML). The rest
of this work is organized as follows: In the next section related work is being described.
We briefly discuss the LoRa technology in Sect. 3. Section 4 refers to the architecture of
our ecosystem while Sect. 5 describes and analyzes the Machine Learning Integration
perspective in our research study. Section 6 includes the performance evaluation of the
proposed mechanism. Section 7 concludes our study and presents our future work.

2 Related Work

LPWAN networks have recently being attracting great attention in the IoT community.
As energy consumption and the connectivity with Network Server (NS)should be of
great importance, we should be led to the integration of machine learning solutions that
could offer improvement to the specific issue. Several studies have been proposed and
studied network simulators and tools to replicate real network operations without the
need for real hardware. In [3], the authors present the most important LoRa simulation
environments available in the literature and after that a comparative evaluation of LoRa
simulation environments. The benefits, the disadvantages, and the highlights of each
LoRa simulation environment are also presented. The reference above led us to the
choice the FLoRa simulator for this research work. In [4] authors have implemented a
classification IoT system that benefits from the use of LoRa and embedded ML using k-
NN (k-Nearest Neighbors) [5] classification. The scope of this research work is to reduce
power consumption and increase battery life of IoT devices. Artificial neural networks
for wearable devices can greatly improve detection and data analyses. Moreover, [6]
aims to push beyond the current power walls for neural networks and move toward a
micro-power neural network. This requires working on algorithms, architecture, circuits.

In [7], authors have conducted a survey of machine learning algorithms importance
for IoT data analysis. They suggest that the big data generated by the IoT devices can
lead to a tremendous benefit to human, when machine learning is combined, making
the IoT applications smarter. Also, a comprehensive explanation of supervised, unsu-
pervised, and reinforcement learning algorithms is presented, and in which application
each algorithm is better suited is presented as well. Moreover in [8], an irrigation sys-
tem is proposed focusing on the advantages of LoRa technology with ML. The results
showed that this combination can lead to a smart and accurate irrigation system that can
be widely used in agriculture. Another domain that ML can be combined with LoRa
technology is geolocation. In paper [9], ML techniques such as Random Forests and
neural networks are introduced to deal outdoor geolocation. The results were promising.

This paper focuses on LPWAN and LoRa, which provides good performance in
terms of reliability and energy consumption. For this reason, we examine the feasibility
of using ML classification algorithms, such as k-NN for the assignment of Spreading
Factor (SF) in LoRa networks. From the literature, it is known that SF is a very important
parameter for LoRa operation. SF value increase leads to an increase of the airtime and
an energy consumption [10]. Using ML, we will be able to extract the appropriate -
ideal SF to be used by the NS. A network architecture contains end-devices, gateways,
and a NS, forming a star topology. It operates at unlicensed frequency ISM (Industrial,
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Scientific, and Medical) bands of 868 MHz and 915 MHz in Europe and the U.S.,
respectively. In this research three classification algorithms are examined: the k-Nearest
Neighbors (k-NN), the Naïve Bayes classifier, and the Support Vector Machine (SVM).
The classifiers’ learning phase is assumed to occur in the NS of the LoRa network. This
assumption is realistic, as the NS is responsible for the network configuration. Also, the
de facto LoRaWAN policy for the SF assignment called Adaptive Data Rate (ADR) is
running on the NS [11], too.

3 LoRa Technology

LoRa is a physical layer LPWAN solution, which is a derivative of Chirp Spread Spec-
trum (CSS). LoRa constitutes a spread spectrum technique designed to work in 433 MHz,
868 MHz, and 915 MHz. LoRa has shown resistance against the Doppler Effect and
multipath fading.

In a typical LoRa deployment there are three main devices: LoRa end-nodes, which
acquire data from sensors at the application later and send these data LoRaWAN; one or
more LoRa Gateways (GWs) that receive the LoRa frames and cast them to be forwarded
through a wired network and one or more Network Servers, usually in the cloud, which
are responsible to process the received and are likely in charge of decision-making.

LoRa’s physical layer uses CSS modulation over a variety of frequency bands in
Europe, USA. The value of 868MHz is one of the common values in most regions.
There are multiple factors that characterize the LoRa communication between the end-
nodes and the GWs such as SF, Transmission Power (TP), Carrier Frequency (CF),
Coding Rate (CR) and of course the Bandwidth (BW). The SF is defined as the ratio
between the symbol rate and chip rate [12]. The number of chips per symbol is defined
as 2SF . The SF values vary from SF7 to SF12, where higher SF values achieve higher
ranges. The relation between the data rate and the SF is defined by Eq. 1, where Rb

signifies the bit rate.

Rb =
2SF

BW
(1)

On the other hand, TP usually ranges from -4dBm to 20dBm. This parameter sets
the intensity in which LoRa end-nodes transmit the LoRa data frames to the GW. Theo-
retically as SF and TP increases, the LoRa coverage area is larger. CR provides security
against interferences, where higher values provide higher protection (4/5, 4/6, 4/7 and
4/8). BW is the frequency width in the transmission band [13].

In general, the communication between LoRa end-nodes and GWs can be unidirec-
tional or bidirectional. LoRaWAN, on the other hand specifies the architecture, layers and
protocols operating over LoRa. Mesh or stars are the two possible topologies supported
in LoRa [14].

4 Architecture

In this section the general simulation architecture is presented, in order to define the
assumption that were made. The simulation environment which was used is the FLoRa
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simulator [15], because it is quite comprehensive, and many parts of a real network are
simulated.

First and foremost, the Log Normal Shadowing model [16] was used. The model
that is presented in Eq. 2:

PL(d) = PL(d0) + 10nlog10

(

d

d0

)

+ Xσ (2)

• PL(d0): the mean path loss for d0 distance
• n: path loss exponent
• Xσ : zero mean Gaussian distributed random variable with deviation σ.

Moreover, for a successful LoRa transmission, the value of the received signal power
needs to be higher than the threshold related to the sensitivity of the receiver. The
power of the received signal is affected also by the transmission power and the losses
that are occurred as a result of the shadowing as presented in Eq. 2 and the signal
attenuation. Moreover, the phenomenon of signal interference is taken into account in
the simulation. Thus, it is assumed that two signals that are orthogonal (have different
SFs) do not interfere, while contrariwise, in case of being non-orthogonal they display
collisions when there is an overlap in the time domain. The capture effect is also taken
into consideration. Capture effect is the phenomenon observed in real LoRa networks,
where even in case of collision of two transmissions, the strongest signal (the power
difference of these signals is greater than a threshold) succeeds to be correctly received
by the GW [17]. As far as the energy consumption model is concerned, the values related
current power consumption and the voltage are based on the SX 1272 transceiver [18],
made by Semtech. The energy expenditure is based on the measurement of the nodes
in the states of the transmission. It is assumed that there are three states a) transmit b)
sleep and c) receive. The node is supposed to be in sleep mode, apart from the cases of
transmitting and receiving messages.

As far as the general architecture of the examined system is concerned, the system
consists of nodes that communicate to the Gateway (GW) using LoRa. The GW transmits
the uplink packet and sends it through the Internet to the Network Server. The transmis-
sion from the GW to the NS is conducted using the Internet Protocol (IP) (as far as the
Network layer is concerned). For the simulation of the physical layer of the GW – NS
communication (Wireless-Fidelity) Wi-Fi technology is assumed. The implementation
is based on INET’s Wi-Fi modules.

5 Machine Learning Integration

Nowadays, ML is very promising in helping to solve several problems. ML consists of
different approaches such as supervised learning, unsupervised learning and reinforce-
ment learning [7]. Supervised learning refers to the cases where the training data are
labeled, and on the other hand, the unsupervised learning refers to the techniques where
the training data are not labeled. Reinforcement learning refers to the techniques, where
the goal is to find an equilibrium between the previous knowledge and how learning new
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things is feasible. In this paper three supervised learning techniques are investigated a)
the k-NN, b) the Naïve Bayes, and c) the SVM.

The k-NN algorithm assumes that similar nodes exist in proximity, or similar nodes
are near to each other and have common behavior. Its main characteristic is its ease and
simplicity of implementation and high enough accuracy. Specifically, after the learning
process, the new unseen data is fed to k-NN algorithm as a d-dimensional point. Then the
minimum distance of the input point from the points of the training is calculated. The dis-
tance has an important role in the k-NN algorithm; thus, the appropriate distance metric
selection is vital. The metrics used are the Euclidean, Minkwoski, Manhattan, Maha-
lanobis, and Chebysev distance. Then, the decision in which class should be assigned
is made according to the predominant class of the k nearest points, to the unknown data
point. In this work, the predominant class is computed by a simple majority vote.

Naïve Bayes in reality, is not one classifier, but a class of probabilistic classifiers. The
basic idea is that, given an input vector, that represents the unseen data point, a Naïve
Bayes classifier, applies the Naïve Bayes theorem, assuming independence between the
features of the given input vector. The likelihood of the features can be assumed to
follow a distribution. Thus, the Naïve Bayes classifier can use the Gaussian or Bernoulli
distribution, etc. In this work, the Gaussian variant of the Naïve Bayes classifier is used.
The main advantage of the Naïve Bayes classifier is that can achieve high accuracy with
small data, in contrast to more complex models, such as the neural networks.

The SVMs are in contrary to the Naïve Bayes, a non-probabilistic family of classi-
fiers. The main idea behind the SVMs, is that the objective is to find a hyperplane that
splits the classes of the training set with the largest margin. When the new unseen data
is fed to the SVM, the prediction of the label is occurred based on which part of the
hyperplane it falls. The SVMs can handle both binary and multi class problems and are
supposed one of the best classification algorithms [7].

The classification process involves accumulating several samples from the path-loss
evaluation. The collected samples are then used to extract a set of commonly used features
using the correlation, and statistical tests, such as chi-square, in different topologies. It
is important to note here that the position of the end-node is excluded, and other features
were investigated, as the LoRa localization can have a distance error of 300 m [19]. In
this work, we have concluded to use the TP, total energy consumed, and the total packet
sent as the feature vector.

Finally, it is important to explain how ML is considered in the framework of this
research work. The goal is to assign a value to the SF. As explained in the previous
section, the values of SF vary from 7 to 12. So, the problem of SF assignment can be
considered as a classification problem. Due to the fact that the target values range from
7 to 12, the classes are numbered to 6. Hence, the problem of the SF assignment should
be considered as a multi-class classification problem.
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6 Performance Evaluation

6.1 Simulation Parameters

Regarding the needs of the results’ presentation, we conducted the following experiment
in the FLoRa simulator environment. The necessary simulation parameters for the con-
duction of experiments are presented in Table 1. The LoRa topology consists of multiple
end-nodes varying from 100–700 with a 100-node step, for two different cases.

Table 1. Simulation Configuration.

Parameter Urban Suburban

Network
Size

480 m*480 m 9800 m*9800 m

Number of
Nodes

100–700 100–700

σ 0 0

Spreading
Factors

7–12 7–12

Code Rate 4 4

Number of
GWs

4 4

Bandwidth 125 KHz 125 KHz

In our simulations, we considered a network of urban and suburban setup. For this rea-
son, we used two different models derived from papers [12] and [20] for both cases. Two
different areas examined 480 m*480 m and a topology based on Oulu town with coverage
area of 9800 m*9800 m. The deployment of the end-nodes was determined randomly in
the topology. In this simulation, the stationary mobility model was used. Moreover, the
energy consumption metric is considered as the ratio of the energy consumption of all
LoRa nodes and the cardinality of the messages received by the NS.

6.2 Simulation Results

In this section, the simulation results are presented. The goal in this case is to extract
the suitable SF that could be used for the transmission between NS and the end-nodes.
For this reason, we start by the integration of the classifiers for SF assignment, knowing
the TP, total energy consumed, and the total packet sent. The dataset in which the
classification algorithms were applied was created by running the LoRa simulations.
After checking about missing values and checking the different values, we standardized
the data.

When the dataset is created, the dataset was split into a training, validation and test
dataset. To evaluate the classifiers in the context of LoRa and SF selection, the K-Fold
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cross-validation technique was also used. In K Fold cross-validation, the data is divided
into k subsets. This method is repeated k times, such that each time, one of the k subsets
is used as the test set/validation set and the other k-1 subsets are put together to form a
training set. The error estimation that comes from, is averaged over all k trials to get the
total effectiveness of our model from FLoRa.

Furthermore, as far the k-NN classifier is concerned, it was necessary to find the
optimal k (neighbors) number for our dataset. The results showed that with k = 3 and
cross validation of 10-fold, an accuracy of 95 percent was achieved. In Fig. 1: left diagram
the best number of k, in terms of misclassification error is presented, while in the right the
accuracy of each fold in the cross-validation process in the urban and suburban scenario
is presented.

D = (
∑n

1
|xi − yi|

p)1/p (3)

As shown in the Eq. 3 in order to classify the SF, we calculate the distance between
the features, using p = 2, in order to have the Euclidean distance.

Fig. 1. Left diagram: The optimal number of neighbors. Right diagram: Results of the accuracy
on 10-foldcross-validation.

As far as, the Naïve Bayes classifier is concerned, the Gaussian, Multinomial, the
Bernoulli (for multi-class problem) variants of Naïve Bayes were examined, with 10-
fold cross validation. As it turned out the Gaussian variant with an accuracy around
80% in the cross validation. As far as the SVM is concerned, the SVM parameters were
selected according to the Grid Search and Random Search methods. Specifically, after
limiting the parameters by the Random Search method, the Grid Search was conducted
to the parameters. The parameters that achieve high scores are a) the linear function as
the kernel function, and b) c = 10. The mean validation score is 0.946.

After the training phase, the classifiers were evaluated in the test dataset, thus the
confusion matrix (cm) of each classifier in each scenario (urban and suburban) is pre-
sented in Fig. 2. Specifically, x axis of the cm is the actual class of the dataset, and in y
axis is the class that has been predicted by the classifier. Cm also shows the class that
the classifier gave wrong answer. Cm is a very important metric, should be highly taken
into consideration regarding the evaluation. In the first row the cms of the k-NN, Naïve
Bayes, SVM (in this order) for the urban case, while in the second row the cms of the
suburban case are presented (in the same order as previously).
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Fig. 2. The classifiers’ confusion matrices first row the urban scenario, second row the suburban
scenario, from the right to the left the k-NN, Naïve Bayes, SVM

All three classifiers are very accurate in their prediction. The k-NN, predictions are
correct in most of the cases, and only in the classes of SF 7, 8, and 11, some errors may
be found in both urban and suburban cases. The Naïve Bayes performed the least good
as some misclassification errors occurred in the classes SF 7–12 in both cases, but in
acceptable level. The SVM, performed very well, as some errors occurred only in classes
SF7 and 8.

Finally, we present the final metrics included in the tests. The classifiers were eval-
uated by the metrics of accuracy, precision, recall, and F. Accuracy is the ratio of the
correct predictions. Precision per class is the ratio of the number indicating the correctly
predicted answers by the overall answers that predicted this class. Recall per class is the
ratio of the number indicating the correctly predicted answers of the class by the number
of the actual instances of the class. Last but not least, the F1 metric is defined in Eq. 4.

F1 = 2
Precision ∗ Recall

Precision + Recall
(4)

In Table 2, the above-mentioned scores are presented. As the table shows, the k-
NN and SVM algorithms achieve high scores on all 4 metrics, with the highest being
the SVM in the urban case for a small margin to the k-NN, while the k-NN achieved
higher in the suburban case. Naïve Bayes scored the least in the urban case, while in
the suburban case scored less than the other classifiers but with smaller margin. These
high scores imply that k-NN and SVM may be used effectively for the SF assignment
in LoRa networks.
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Table 2. Metric Scores

Metric k-NN Naïve Bayes SVM

Urban Suburban Urban Suburban Urban Suburban

Accuracy 0.9446 0.9429 0.8000 0.9171 0.9679 0.9357

Precision 0.9459 0.9430 0.8012 0.9107 0.9670 0.9357

Recall 0.9458 0.9391 0.7941 0.9243 0.9658 0.9343

F1 0.9456 0.9401 0.7944 0.9391 0.9663 0.9344

7 Conclusions

In this paper, LoRaWAN and ML has been studied in terms of classification for SF
assignment in order to save module’s energy requirements.The proposed mechanism
achieves an improvement on performance accuracy by using ML and k-NN in order to
extract the suitable SF factor for the transmission of the data. In order to have a reliable
and good classifier, it is necessary to study the metrics that allow classifier evaluation.
In this work, Accuracy, Precision, Recall, and F1 metrics were used showing that the
k-NN and the SVM classifiers can be promising, as the scores in terms of these metrics
were high. Finally, the effectiveness of the classifiers is also presented in the confusion
matrices, where in both urban and suburban cases.

Our future work includes the population of a configuration file after the ML study
which will be suitable to configuration network server in OPNET1 topology on the fly
based on SF recommendation of the ML. This library will be implemented as an external
tool able to be integrated for future works and will be able to set various parameters that
will improve the performance accuracy of the system based on a ML model. Specifically,
the NS with the data obtained could update the node’s parameters, whenever downlink
window is opened. Moreover, it is intended to evaluate the above accuracy improvements
in real life scenarios such as for Search and Rescue (SAR) operations, in the framework
of WeSAR project. The evaluation will be conducted using hardware such as the Pycom
modules (e.g. LoPy, FiPy2) and the Dialog DA14861 wearable module.
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