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Abstract— The advent of 5G technology has ushered in a new 

era of wireless communication, characterized by its promise of 

high data rates, low latency, and enhanced connectivity. In this 

context, Multiple-Input Multiple-Output (MIMO) systems have 

emerged as a key enabler, leveraging advanced antenna arrays 

to simultaneously serve multiple users with increased spectral 

efficiency. This paper investigates the dynamic resource 

allocation problem in a MIMO 5G environment, where each 

user possesses distinct bandwidth requirements. The focus is on 

optimizing user allocation while considering the limited 

bandwidth and user capacity of base stations. By harnessing the 

power of deep learning techniques, the proposed solution aims 

to efficiently manage the allocation of users to base station 

antennas, thereby maximizing overall network performance 

while accommodating heterogeneous user demands. 

Keywords— 5G Networks, User Allocation, Bandwidth 

Allocation, Heterogeneous Networks 

I. INTRODUCTION 

The relentless growth in wireless data consumption, 
coupled with the proliferation of Internet of Things (IoT) 
devices, has spurred the development of 5G technology to 
cater to the escalating demands of diverse applications. 
Multiple-Input Multiple-Output (MIMO) systems, which 
employ multiple antennas at both the transmitter and receiver 
ends, have proven instrumental in realizing the ambitious 
goals of 5G networks, such as high data rates and massive 
device connectivity [1]. Building upon the successes of 
traditional MIMO, MIMO systems integrate techniques to 
unravel complex spatial correlations and channel behaviours, 
enabling the exploitation of multiuser diversity and achieving 
enhanced spectral efficiency. 

In MIMO 5G environments, optimizing resource 
allocation is crucial due to diverse and dynamic bandwidth 
demands across various applications. With finite bandwidth 
and user capacity per base station, efficient management of 
user-to-antenna allocation is essential for network 
performance. This paper addresses the complex challenge of 
allocating users in MIMO 5G environments with varying 
bandwidth needs to enhance quality of service (QoS). We 
propose a novel approach that leverages the capabilities of the 
Hungarian algorithm [2] and the Minimum Cost Flow 
algorithm [3]. By jointly considering the distinct bandwidth 
needs of users and the limitations of base stations, our solution 
aims to strike a balance between optimizing bandwidth 
distribution and ensuring equitable resource allocation. The 
subsequent sections delve into the technical details of the 

proposed methodology, highlighting the integration of 
optimization techniques, and network performance 
evaluation. The simulation results provide insights into the 
effectiveness of our approach in comparison to existing 
resource allocation schemes in MIMO 5G networks. The 
realm of dynamic bandwidth allocation in 5G MIMO 
networks has been an active area of research, with numerous 
studies exploring various strategies for user-to-base station 
assignment [4], [5], [6], [7], [8]. 

Our research places a strong emphasis on adaptability, 
ensuring that the chosen allocation algorithms can respond in 
real-time to shifting demands, such as fluctuating user 
populations and evolving application requirements. It differs 
from the previous ones in the field due to our approach which 
focuses on adaptability and maintaining peak performance 
even in the face of fluctuating user populations and evolving 
application requirements. The Minimum Cost Flow 
algorithm, in particular, excels in dynamically optimizing 
bandwidth allocation based on user needs and base station 
capacities. Furthermore, our approach enhances resource 
utilization within 5G MIMO networks, intelligently balancing 
user-to-base station assignments to achieve a more equitable 
distribution of resources. Through rigorous experimentation 
and analysis and in order to address the pressing need for 
efficient, flexible, and future-proof dynamic bandwidth 
allocation solutions in the complex landscape of 5G MIMO 
networks, we demonstrate the superiority of our approach in 
terms of achieving the best allocation strategy, optimizing 
bandwidth allocation, and advancing the state-of-the-art in 
dynamic bandwidth allocation [9]. 

II. PROPOSED ALGORITHMS 

In this section, we introduce a set of algorithms for 
optimizing user allocation in scenarios with multiple active 
base stations and multiple different user requirements. The 
algorithms are tailored to different scenarios and offer varying 
levels of sophistication. We have already experiment with the 
techniques in our previous study [10]. In this study as said 
before we introduce a dynamic scenario that includes a new 
parameter, the bandwidth requirement from each user. The 
first algorithm focuses on situations with multiple active base 
stations. It utilizes a sorting approach, which involves 
arranging users based on their Signal to Noise Ratio (SNR) 
value to each base station. The second algorithm is based on 
the Hungarian algorithm, a powerful combinatorial 
optimization technique specifically tailored for solving 
assignment problems. The third algorithm is based on the 



Minimum Cost Flow algorithm which provides an effective 
solution for determining the optimal allocation of users to base 
stations. 

A. Simple Algorithm - User Allocation using only 

Simple Loops 

To further advance our research, we aim to explore user 
allocation strategies when multiple base stations are active 
simultaneously. The algorithm’s objective is to navigate 
through an array that stores SNR values for users potentially 
connecting to multiple active base stations. To achieve this, 
we will create an array of structures that will include the users. 
We will iterate through each user in the array and examine if 
a user with the same user ID already exists in a struct inside 
the array. If not, the current user will be added to the end of 
the array. However, if a matching user is found, the code will 
compare the current user’s SNR with the highest SNR value 
among the matching structures. If the current user’s SNR is 
higher, the corresponding structure in the array will be 
updated with the current user’s information. 

Next, we will go through each base station in the array and 
sort each user’s information in descending order based on the 
SNR value specific to that particular base station. 
Subsequently, we will create a new structure to store each 
user’s sorted pathloss value, along with corresponding user 
numbers, base station numbers, distances between base 
stations and users, and SNR values. Additionally, each base 
station has a designated capacity, representing the maximum 
number of users it can accommodate. The algorithm we are 
employing involves a systematic examination of each base 
station to determine whether the number of received SNR/user 
values in a base station surpasses the predefined capacity 
threshold. When the algorithm encounters pathloss values that 
do not exceed the capacity threshold, these users are included 
in the “success” structure. Conversely, if the number of 
received pathloss values surpasses the capacity limit, the 
excess values are directed to the “overflow” structure. 

In the following pseudocode, a methodical technique to 
assigning users to base stations in a wireless communication 
system is described. 

Algorithm 1 

allocatedCapacity_bps = Array of size bs, initialized with zeros 
combinedCostMatrix = Array of size numUsers x numBS, initialized with zeros 
allocatedStruct = Empty array to store allocated users' information 
// Normalize SNR and bandwidth requirements, then calculate combined score 
for each user and base station 
 for i = 1 to numUsers: 
      for currentBaseStation = 1 to bs: 
  userIndex = (currentBaseStation - 1) * numUsers + i 

normalizedSNR =   
Normalize(dynamic_pathloss_bs_ue(userIndex).SNR) 
normalizedBandwidth =  
Normalize(dynamic_pathloss_bs_ue(userIndex).Downstream) 
combinedScore = weightSNR * normalizedSNR + weightBandwidth  
* normalizedBandwidth 

           combinedCostMatrix[i][currentBaseStation] = combinedScore 
// Allocate users to base stations based on combined scores and available 
bandwidth 
for i = 1 to numUsers: 
     bestBaseStation = 0 
     sortedBaseStations = SortIndices(combinedCostMatrix[i]) descending      
      for j = 1 to numBS: 
 currentBaseStation = sortedBaseStations[j] 
 userIndex = (currentBaseStation - 1) * numUsers + i 

userRequirementInHZ =  dynamic_pathloss_bs_ue(userIndex).Downstream  
/ log2(1 + 10^(dynamic_pathloss_bs_ue(userIndex).SNR / 10)) 
if allocatedCapacity_bps[currentBaseStation] + userRequirementInHZ <= 
bscapacity: 

 allocatedCapacity_bps[currentBaseStation] += userRequirementInHZ 
 // Update allocatedStruct with user information 

allocatedStruct.Add({ 
usernumber: dynamic_pathloss_bs_ue(userIndex).usernumber, 
basestation: currentBaseStation, 
distance_bs_ue: dynamic_pathloss_bs_ue(userIndex).distance_bs_ue, 
pathloss: dynamic_pathloss_bs_ue(userIndex).pathloss, 
SNR: dynamic_pathloss_bs_ue(userIndex).SNR, 
service: dynamic_pathloss_bs_ue(userIndex).Services, 
downstream: dynamic_pathloss_bs_ue(userIndex).Downstream, 
upstream: dynamic_pathloss_bs_ue(userIndex).Upstream 
}) 
break // Exit loop after allocation 

B. Assignment using the Hungarian Algorithm 

Our second algorithm serves as an effective solution for 
addressing linear assignment problems. These problems 
involve the allocation of rows to columns in a manner that 
each row is assigned to a column while minimizing the total 
cost of these assignments. To apply this algorithm to our 
resource allocation problem, we transform it into a linear 
assignment problem. Leveraging the Hungarian algorithm, 
which uniquely matches each row to a column based on their 
associated costs, we determine the most suitable base station 
for each user to connect to. By utilizing the M = 
matchpairs(Cost, CostUnmatched) MATLAB function [11] as 
Hungarian Algorithm implementation, we solve the linear 
assignment problem, considering both the rows and columns 
of the 'Cost' matrix. The 'CostUnmatched' parameter provides 
the cost associated with not assigning each row to a column 
and not having a row allocated to each column.  

The algorithm normalizes the SNR and bandwidth 
requirements for each user. Then finds the combined score for 
each user, using the normalized SNR and the normalized 
bandwidth multiplying each one with its corresponding 
weight. The weights are 0.6 for the SNR and 0.4 for the 
bandwidth meaning that in our algorithms we consider the 
SNR metric (which is the signal strength of a user to a base 
station) to have more significance than the requested 
bandwidth metric, when allocating a user to a base station.  

Algorithm 2 – Hungarian Algorithm 

allocatedCapacity_bps = Array of size bs, initialized with zeros 
combinedCostMatrix = Array of size numUsers x (bs * bsAntennas), initialized 
with zeros 
antennaCounter = 1 
minSNR = Minimum SNR value from dynamic_pathloss_bs_ue 
maxSNR = Maximum SNR value from dynamic_pathloss_bs_ue 
// Normalize SNR & bandwidth, calculate combined score for each user & bs 
for i = 1 to numUsers: 
   for currentBaseStation = 1 to bs: 
      for antennaCounter = 1 to bsAntennas: 
         userIndex = (currentBaseStation - 1) * numUsers + i 

 normalizedSNR = (dynamic_pathloss_bs_ue(userIndex).SNR - minSNR) /   
(maxSNR - minSNR) 
 normalizedBandwidth = 
(dynamic_pathloss_bs_ue(userIndex).Downstream - 1000000) / (25000000 
- 1000000) 
combinedScore = weightSNR * normalizedSNR + weightBandwidth * 
normalizedBandwidth 

       columnIdx = (currentBaseStation - 1) * bsAntennas + antennaCounter 
       combinedCostMatrix[i][columnIdx] = combinedScore 
// Find optimal matching pairs using the Hungarian algorithm 
M = HungarianAlgorithm(combinedCostMatrix, 1000) 

Next, we have to store each base station's user assignments 
in three initialized data structures. An overflow matrix is built 
for users who can't be accommodated owing to bandwidth 
restrictions. According to each iteration of the changed matrix, 
downstream values are recalculated, and users are assigned to 
suitable base stations in accordance with their needs. The 
user's information is added to the appropriate structure if the 
base station has enough bandwidth; otherwise, the user is 
flagged for overflow. 



Algorithm 2 – Matchpairs Allocation to data structs 

if basestationw == 1: 
   // Allocate users to basestation 1 
   bw1 = bw1 - downstream_valueHZ; 
   if bw1 > 0: 

assignedtobs1.Add({'usernumber': usernumberw, 'Services': 
dynamic_pathloss_bs_ue(matching_index).Services}) 

   else: 
overflow.Add([usernumberw, basestationw]) 

elseif basestationw == 2: 
    // Allocate users to basestation 2 
    bw2 = bw2 - downstream_valueHZ; 
    if bw2 > 0: 

assignedtobs2.Add({'usernumber': usernumberw, 'Services': 
dynamic_pathloss_bs_ue(matching_index).Services}) 

    else: 
overflow.Add([usernumberw, basestationw]) 

else: 
    // Allocate users to basestation 3 
    bw3 = bw3 - downstream_valueHZ; 
    if bw3 > 0: 

assignedtobs3.Add({'usernumber': usernumberw, 'Services': 
dynamic_pathloss_bs_ue(matching_index).Services}) 

    else: 
overflow.Add([usernumberw, basestationw]) 

second_best_snr_users = Empty Array of structs with fields 'usernumber', 
'second_best_snr', 'service', 'bs', and 'reqinHZ' 
// Iterate through overflowed users and find second best SNR users 
for i = 1 to size(overflow, 1): 
     usernumberov = overflow(i, 1); 

current_user_data = Filter dynamic_pathloss_bs_ue where 'usernumber'   
equals  usernumberov 
sorted_data = Sort current_user_data by 'SNR' in descending order   
// Store information of second best SNR user and allocate if possible 
 if size(sorted_data) >= 2: 
        second_best_snr = sorted_data(2).SNR; 
        reqinHZ = Calculate downstream value for second best SNR user 
        if bw1 - reqinHZ >= 0 && sorted_data(2).basestation == 1: 

assignedtobs1.Add({'usernumber': usernumberov, 'Services': 
sorted_data(2).Services}) 

           Set matching row in overflow to zeros 
        elseif bw2 - reqinHZ >= 0 && sorted_data(2).basestation == 2: 

assignedtobs2.Add({'usernumber': usernumberov, 'Services':    
sorted_data(2).Services}) 

            Set matching row in overflow to zeros 
        elseif bw3 - reqinHZ >= 0 && sorted_data(2).basestation == 3: 

assignedtobs3.Add({'usernumber': usernumberov, 'Services': 
sorted_data(2).Services}) 

            Set matching row in overflow to zeros 
    elseif size(sorted_data) >= 3: 
    end 

end 

C. Assignment using the Minimum Cost Flow 

Algorithm 

This study investigates the use of Minimum Cost Flow 
algorithm to further improve the user allocation and 
bandwidth distribution process. A Minimum cost flow 
Algorithm attempts to determine the best possible flow of 
resources across a network while reducing the overall cost of 
the flow. In this study, this method can be applied to allocate 
users to base stations according to their bandwidth demands, 
signal quality, and network conditions. In this algorithm’s 
code we use the required downstream of the user along with 
their SNR to find and allocate them to the optimal base station 
so that the total bandwidth given by all the base stations in the 
end is maximized. The algorithm also tracks the given 
bandwidth of each antenna and ensures that no antenna gives 
more bandwidth than what they are capable of. In cases where 
a feasible assignment cannot be made due to insufficient 
bandwidth, the algorithm tracks overflow instances, storing 
relevant worker information in dedicated matrices. 
Subsequently, a second iteration is performed for overflowed 
workers, attempting to find alternative base stations while 
considering bandwidth constraints. Below is the pseudocode 
of this algorithm. 

Algorithm 2 – Minimum Cost Flow  

# Function to find the next available task for a worker 
function find_next_available_task(worker_id, G, assigned_tasks): 
    available_tasks = get_available_tasks(G, worker_id) - assigned_tasks 
    if available_tasks is not empty: 
        sorted_tasks = sort_tasks_by_weight(available_tasks, G, worker_id) 
        return sorted_tasks[0] 
    else: 
        return None 
# Main function to solve the assignment problem 

function solve_assignment_problem(csv_file): 
    initialize_bandwidth_variables() 
    G = create_graph_from_csv(csv_file) 
    max_worker_id = get_max_worker_id(G) 
    assigned_tasks = empty_set() 
    costs = empty_list() 
    task_ids = empty_list() 
    pathlosses = empty_list() 
    flow_dict = find_min_cost_flow(G) 
    overflow, overflow_matrix = process_workers(G, max_worker_id, 

assigned_tasks, flow_dict, costs, task_ids, pathlosses) 
    print_results(costs, pathlosses, assigned_tasks, overflow, 

overflow_matrix) 
# Function to process workers and handle overflow cases 

function process_workers(G, max_worker_id, assigned_tasks, flow_dict, 
costs, task_ids, pathlosses): 

    overflow = 0 
    overflow_matrix = empty_list() 
    for worker_id in range(1, max_worker_id + 1): 
        task_dict = get_task_dict(flow_dict, worker_id) 
        if task_dict is not None: 
            task_id = find_next_available_task(worker_id, G, assigned_tasks) 
            if task_id is not None: 
                assign_task_to_worker(worker_id, task_id, G, assigned_tasks, 

costs, pathlosses, task_ids) 
            else: 
                print(f"No feasible assignment found for Worker {worker_id}") 
        else: 
            print(f"No feasible assignment found for Worker {worker_id}") 
    handle_overflow_cases(G, assigned_tasks, overflow, overflow_matrix) 
    return overflow, overflow_matrix 
# Function to assign a task to a worker 

function assign_task_to_worker(worker_id, task_id, G, assigned_tasks, 
costs, pathlosses, task_ids): 

    edge_data = G[worker_id][task_id] 
    task_downstream = edge_data['downstream'] 
    task_snr = calculate_snr(edge_data['pathloss']) 
    downstream_value_HZ = task_downstream / log(1 + pow(10, task_snr / 

10), 2) 
    if is_bandwidth_available(worker_id, task_id, downstream_value_HZ): 
        update_bandwidth(worker_id, task_id, downstream_value_HZ) 
        store_assignment_info(worker_id, task_id, G, assigned_tasks, costs, 

pathlosses, task_ids) 
        remove_assigned_task_edges(worker_id, task_id, G) 
    else: 
        handle_overflow_case(worker_id, task_id, G, assigned_tasks) 
# Function to handle overflow cases 

function handle_overflow_case(worker_id, task_id, G, assigned_tasks): 
    overflow += 1 
    print(f"No available bandwidth for Worker {worker_id} and Task 

{task_id}") 
    overflow_matrix.append({'worker_id': worker_id, 

'downstream_valueHZ': downstream_value_HZ}) 
    remove_assigned_task_edges(worker_id, task_id, G) 
# Function to print the final results 

function print_results(costs, pathlosses, assigned_tasks, overflow, 
overflow_matrix): 

    num_users = len(costs) 
    modified_pathlosses = [your_formula(pathloss, num_users) for pathloss in 

pathlosses] 
    total_pathloss = sum(modified_pathlosses) 
    user_data = total_pathloss / num_users 

III. SIMULATION ENVIRONMENT PARAMETERS 

Our simulation environment is based on MATLAB and 
DeepMIMO dataset. The DeepMIMO dataset generation 
framework has two important features. A Ray-tracing scenario 
and the parameters for this scenario [12], [13], [14]. 

A. DeepMIMO Features 

First, the DeepMIMO channel is created based on precise 
ray tracing data obtained from Remcom Wireless InSite [14]. 



Therefore, the DeepMIMO channel captures the dependence 
on the surrounding geometry/material and transmitter/receiver 
position. The DeepMIMO dataset generator focused on 5G, 
generates channel matrices based on the Clustered Delay Line 
(CDL) channel model defined in 3GPP 38.901 with site-
specific statistical distribution parameters obtained from the 
accurate 3D ray-tracing simulator Remcom Wireless InSite. 
The software used for the simulation was MATLAB, which 
generated a channel model that takes into account user path 
loss and a traffic model that simulates user behavior. 

B. Scenario 

To evaluate algorithms and accurately simulate real-world 
scenarios, various parameters must be considered. These 
parameters include the base station and its capacity, transmit 
power, noise power, number of transmit antennas (TX) within 
the base station, users and antenna gain, and the available 
bandwidth that will be “handed over” to the user. The 
resources required from different users, are also included in 
the parameters. So, each user has their own downstream and 
upstream requirements. The scenario used in this document is 
the DeepMIMO O1 (Outdoor 1) scenario with an operating 
frequency of 60 GHz. This scenario consists of 18 base 
stations and 3 user grids with up to 1,184,923 users distributed 
across the sitemap (181 users per row) to accurately represent 
the real-world scenario. Figure 1 shows the scenario sitemap 
used to create the dataset required for algorithm testing. 

 

Fig. 1. DeepMIMO O1 scenario outdoors. 

Using the parameters shown in Table 1. we calculated the 
SNR for each user, the average throughput per user and taking 
into account the downstream/upstream requirements of each 
user (Table II) along with the bandwidth each base station can 
give in total, we calculate their optimal allocation to base 
stations and base station antennas. 

TABLE I.  SIMULATION PARAMETERS 

 

TABLE II.  USERS BANDWIDTH REQUIREMENTS 

 

The antenna gain is 21 dBi so that the radiation pattern of 
the antenna may be more efficiently directed or concentrated 
in a specific direction. The formula for calculating noise 
power is -174+10 * log10(bandwidth). To increase coverage 
and serve more consumers, the base station adds 1000 Tx 
antennas with 45dBm transmission power which is the 
standard transmission power of a macro cell base station. Each 
base station has a set user capacity of 1000 and a bandwidth 
of 400Mhz, corresponding to a real-world scenario in which a 
single base station supports a heterogeneous group of users 
with varying signal intensities and requirements. Each user 
will match with 1 antenna. NRB expresses the transmission 
bandwidth configuration, in units of resource blocks. 

IV. ALGORITHM COMPARISON 

In this section, we evaluate several user allocation 
techniques in MIMO 5G networks, as stated in Section II. 
First, we assess Algorithm 1, which focuses on allocating 
users to base stations based on sorting. We present simulated 
results that show the implications of increasing user 
connections on throughput, SNR, and network performance. 
The Hungarian and Minimum Cost Flow algorithms are being 
implemented to improve user allocation efficiency and to be 
compared to prior methods. Our goal is to find the best user 
allocation strategy for MIMO 5G networks. 

A. Algorithm 1 – Sorting Algorithm 

We run simulations for 181 to 2534 users by selecting the 
part of the row closest to the active base station. We 
specifically used the combination from lines 1090 to 1103 for 
the simulation. Figure 2 and 3 illustrates the number of users 
assigned to each base station and the bandwidth distribution 
for each simulation of active users and Table III summarizes 
the results. The 4th column (overflow) in figure 2 represents 
the users that didn’t connect to a base station because they 
were all full.  It is important to mention that the use of this 
algorithm has as result some of the users not being able to 
connect and receive service due to the inefficient management 
of network resources by the proposed algorithm. As the above 
table shows in the last two scenarios with 2353 and 2534 
users, users with total 126.35Mhz and 202.1Mhz cannot be 
served by the network due to the non-optimal distribution of 
the users to the base stations.  

 

Fig. 2. User Allocation for Algorithm 1 

Simulation Parameters Value 

Base Station Bandwidth 400Mhz 

Subcarrier Spacing 120 Khz 

NRB 264 

Active Subcarriers 64 

User Gain 0 

User Antenna 1 

Antenna Gain 21 dBi 

Tx Antennas 1000 

Transmission Power 45 dBm 

Services Downstream/Upstream in Mbps 

Browsing/Email 5/2 

HDTV 16/0.5 

Video Streaming 25/1 

Podcasts 2/0.5 

VoIP 1/1 



 

Fig. 3. Bandwidth Distribution for Algorithm 1 

TABLE III.  ALGORITHM 1 BANDWIDTH 

B. Algorithm 2 – Hungarian Algorithm 

 As with our previous simulations, we run experiments for 
181, 362, 905, 1267, 2353 and 2534 users. This function 
enabled experimental analysis and proved to be a major 
advance in research. The Hungarian algorithm function 
showed remarkable efficiency in solving the assignment 
problem of assigning users to base stations. Through careful 
optimization, this method achieved significant improvements 
in average throughput per user and bandwidth allocation as 
well as a better distribution of users through the base stations. 
The results are particularly noticeable in Figure 4 and 5, 
showing a more balanced and fair distribution of users and 
bandwidth across base stations. Table V presents the results. 
Using this algorithm, we have unassigned users only in the 
2534 users scenario and the unassigned users are only 94 
comparing with the previous algorithm which has 390 
unassigned users. Moreover, using this algorithm we 
bandwidth of the unassigned users is only 94Mhz compared 
to 202.1Mhz of the previous algorithm. 

 

Fig. 4. User Distribution for Hungarian Algorithm 

 

Fig. 5. Bandwidth Distribution for Hungarian Algorithm 

 
Fig. 6. User Distribution for Minimum Cost Flow Algorithm 

TABLE IV.  HUNGARIAN ALGORITHM BANDWIDTH 

C. Algorithm 3 – Minimum Cost Flow Algorithm 

Running our simulations with 181, 362, 905, 1267, 2353 
and 2534 users the Minimum Cost Flow algorithm showed 
great efficiency in maximizing the per-user throughput as well 
as achieving a user distribution close to the one achieved with 
the Hungarian algorithm. Figures 6, 7 show the user allocation 
results and the bandwidth distribution for Minimum Cost 
Flow. Table V summarizes the bandwidth results. Using this 
algorithm, we have unassigned users only in the 2534 users 
scenario and the unassigned users are 142. Comparing with 
the previous algorithms, this algorithm is better than the first 
algorithms but performs worse than the second algorithm. 
Moreover, using this algorithm we bandwidth of the 
unassigned users is only 75,97Mhz. Again, comparing with 
the previous algorithms, this algorithm is better than the first 
algorithms but performs worse than the second algorithm. 
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Fig. 7. Bandwidth Distribution for Minimum Cost  Flow Algorithm  

TABLE V.  MINIMUM-COST FLOW BANDWIDTH  

The overall comparison between the three algorithms 
shows us that in cases of 181, 362, 905, 1267 users, all three 
algorithms exhibited a similar performance. However, as the 
user count increased to 2353 and 2534, notable distinctions 
emerged. The Minimum Cost Flow and Hungarian algorithms 
demonstrated superior per-user throughput compared to the 
simple allocation method. Additionally, the Hungarian 
algorithm exhibited the least number of overflowed users, 
emphasizing its capability to achieve a more even distribution 
among base stations. This aligns with the algorithm's intrinsic 
preference for equitable resource allocation. In contrast, the 
Minimum Cost Flow algorithm, exhibited slightly more 
overflowed users, as it prioritizes maximizing throughput for 
each user and the total given bandwidth. Comparing the total 
given bandwidth across the three algorithms, the Minimum 
Cost Flow algorithm allocated the most, followed by the 
Hungarian algorithm and then the simple allocation.  

V. CONCLUSION & FUTURE WORK 

In conclusion, the evaluation of resource allocation 
algorithms, including the simple allocation, Hungarian, and 
Minimum Cost Flow algorithms, has provided valuable 
insights into their respective strengths and limitations. For 
scenarios involving a large user base, all algorithms exhibited 
comparable results in terms of the percentage of users 
attaining their requested bandwidth. However, as the user 
count decreased, the Hungarian, and Minimum Cost Flow 
algorithms demonstrated superior per-user throughput, with 
the Hungarian algorithm notably excelling in achieving a 
more even distribution among base stations and minimizing 
overflowed users. The Minimum Cost Flow algorithm 
exhibited a slightly higher incidence of overflowed users due 
to its emphasis on maximizing individual user throughput and 
total given bandwidth. Overall, the findings underscore the 
importance of aligning the choice of resource allocation 

algorithm with the specific objectives and requirements of the 
given scenario, as each algorithm's design priorities 
significantly influence its performance outcomes. These 
insights can be practically leveraged by system designers to 
tailor their choice of resource allocation algorithm. 
Concluding, incorporating machine learning algorithms to 
address overflow issues presents a promising avenue for 
future research and practical implementation, offering the 
potential to further enhance the adaptability of resource 
allocation systems in real-world settings. 
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