

Dynamic Bandwidth Allocation in MIMO 5G
Networks

Nikolaos Prodromos

Computer Engineering and Informatics

Department

University of Patras

Patras, Greece

Email: up1072549@upnet.gr

Apostolos Gkamas

Department of Chemistry
University of Ioannina

Ioannina, Greece

Email: gkamas@uoi.gr

Damianos Diasakos

Computer Engineering and Informatics

Department

University of Patras

Patras, Greece

Email: up1084632@upnet.gr

 Christos Bouras

Computer Engineering and Informatics

Department

University of Patras

Patras, Greece

Email: bouras@upatras.gr

Vasileios Kokkinos

Computer Engineering and Informatics

Department

University of Patras

Patras, Greece

Email: kokkinos@cti.gr

Philippos Pouyioutas

Computer Science Department

University of Nicosia

Nicosia, Cyprus
Email: pouyioutas.p@unic.ac.cy

Abstract— The advent of 5G technology has ushered in a new

era of wireless communication, characterized by its promise of

high data rates, low latency, and enhanced connectivity. In this

context, Multiple-Input Multiple-Output (MIMO) systems have

emerged as a key enabler, leveraging advanced antenna arrays

to simultaneously serve multiple users with increased spectral

efficiency. This paper investigates the dynamic resource

allocation problem in a MIMO 5G environment, where each

user possesses distinct bandwidth requirements. The focus is on

optimizing user allocation while considering the limited

bandwidth and user capacity of base stations. By harnessing the

power of deep learning techniques, the proposed solution aims

to efficiently manage the allocation of users to base station

antennas, thereby maximizing overall network performance

while accommodating heterogeneous user demands.

Keywords— 5G Networks, User Allocation, Bandwidth

Allocation, Heterogeneous Networks

I. INTRODUCTION

The relentless growth in wireless data consumption,
coupled with the proliferation of Internet of Things (IoT)
devices, has spurred the development of 5G technology to
cater to the escalating demands of diverse applications.
Multiple-Input Multiple-Output (MIMO) systems, which
employ multiple antennas at both the transmitter and receiver
ends, have proven instrumental in realizing the ambitious
goals of 5G networks, such as high data rates and massive
device connectivity [1]. Building upon the successes of
traditional MIMO, MIMO systems integrate techniques to
unravel complex spatial correlations and channel behaviours,
enabling the exploitation of multiuser diversity and achieving
enhanced spectral efficiency.

In MIMO 5G environments, optimizing resource
allocation is crucial due to diverse and dynamic bandwidth
demands across various applications. With finite bandwidth
and user capacity per base station, efficient management of
user-to-antenna allocation is essential for network
performance. This paper addresses the complex challenge of
allocating users in MIMO 5G environments with varying
bandwidth needs to enhance quality of service (QoS). We
propose a novel approach that leverages the capabilities of the
Hungarian algorithm [2] and the Minimum Cost Flow
algorithm [3]. By jointly considering the distinct bandwidth
needs of users and the limitations of base stations, our solution
aims to strike a balance between optimizing bandwidth
distribution and ensuring equitable resource allocation. The
subsequent sections delve into the technical details of the

proposed methodology, highlighting the integration of
optimization techniques, and network performance
evaluation. The simulation results provide insights into the
effectiveness of our approach in comparison to existing
resource allocation schemes in MIMO 5G networks. The
realm of dynamic bandwidth allocation in 5G MIMO
networks has been an active area of research, with numerous
studies exploring various strategies for user-to-base station
assignment [4], [5], [6], [7], [8].

Our research places a strong emphasis on adaptability,
ensuring that the chosen allocation algorithms can respond in
real-time to shifting demands, such as fluctuating user
populations and evolving application requirements. It differs
from the previous ones in the field due to our approach which
focuses on adaptability and maintaining peak performance
even in the face of fluctuating user populations and evolving
application requirements. The Minimum Cost Flow
algorithm, in particular, excels in dynamically optimizing
bandwidth allocation based on user needs and base station
capacities. Furthermore, our approach enhances resource
utilization within 5G MIMO networks, intelligently balancing
user-to-base station assignments to achieve a more equitable
distribution of resources. Through rigorous experimentation
and analysis and in order to address the pressing need for
efficient, flexible, and future-proof dynamic bandwidth
allocation solutions in the complex landscape of 5G MIMO
networks, we demonstrate the superiority of our approach in
terms of achieving the best allocation strategy, optimizing
bandwidth allocation, and advancing the state-of-the-art in
dynamic bandwidth allocation [9].

II. PROPOSED ALGORITHMS

In this section, we introduce a set of algorithms for
optimizing user allocation in scenarios with multiple active
base stations and multiple different user requirements. The
algorithms are tailored to different scenarios and offer varying
levels of sophistication. We have already experiment with the
techniques in our previous study [10]. In this study as said
before we introduce a dynamic scenario that includes a new
parameter, the bandwidth requirement from each user. The
first algorithm focuses on situations with multiple active base
stations. It utilizes a sorting approach, which involves
arranging users based on their Signal to Noise Ratio (SNR)
value to each base station. The second algorithm is based on
the Hungarian algorithm, a powerful combinatorial
optimization technique specifically tailored for solving
assignment problems. The third algorithm is based on the

Minimum Cost Flow algorithm which provides an effective
solution for determining the optimal allocation of users to base
stations.

A. Simple Algorithm - User Allocation using only

Simple Loops

To further advance our research, we aim to explore user
allocation strategies when multiple base stations are active
simultaneously. The algorithm’s objective is to navigate
through an array that stores SNR values for users potentially
connecting to multiple active base stations. To achieve this,
we will create an array of structures that will include the users.
We will iterate through each user in the array and examine if
a user with the same user ID already exists in a struct inside
the array. If not, the current user will be added to the end of
the array. However, if a matching user is found, the code will
compare the current user’s SNR with the highest SNR value
among the matching structures. If the current user’s SNR is
higher, the corresponding structure in the array will be
updated with the current user’s information.

Next, we will go through each base station in the array and
sort each user’s information in descending order based on the
SNR value specific to that particular base station.
Subsequently, we will create a new structure to store each
user’s sorted pathloss value, along with corresponding user
numbers, base station numbers, distances between base
stations and users, and SNR values. Additionally, each base
station has a designated capacity, representing the maximum
number of users it can accommodate. The algorithm we are
employing involves a systematic examination of each base
station to determine whether the number of received SNR/user
values in a base station surpasses the predefined capacity
threshold. When the algorithm encounters pathloss values that
do not exceed the capacity threshold, these users are included
in the “success” structure. Conversely, if the number of
received pathloss values surpasses the capacity limit, the
excess values are directed to the “overflow” structure.

In the following pseudocode, a methodical technique to
assigning users to base stations in a wireless communication
system is described.

Algorithm 1

allocatedCapacity_bps = Array of size bs, initialized with zeros
combinedCostMatrix = Array of size numUsers x numBS, initialized with zeros
allocatedStruct = Empty array to store allocated users' information
// Normalize SNR and bandwidth requirements, then calculate combined score
for each user and base station
 for i = 1 to numUsers:
 for currentBaseStation = 1 to bs:
 userIndex = (currentBaseStation - 1) * numUsers + i

normalizedSNR =
Normalize(dynamic_pathloss_bs_ue(userIndex).SNR)
normalizedBandwidth =
Normalize(dynamic_pathloss_bs_ue(userIndex).Downstream)
combinedScore = weightSNR * normalizedSNR + weightBandwidth
* normalizedBandwidth

 combinedCostMatrix[i][currentBaseStation] = combinedScore
// Allocate users to base stations based on combined scores and available
bandwidth
for i = 1 to numUsers:
 bestBaseStation = 0
 sortedBaseStations = SortIndices(combinedCostMatrix[i]) descending
 for j = 1 to numBS:
 currentBaseStation = sortedBaseStations[j]
 userIndex = (currentBaseStation - 1) * numUsers + i

userRequirementInHZ = dynamic_pathloss_bs_ue(userIndex).Downstream
/ log2(1 + 10^(dynamic_pathloss_bs_ue(userIndex).SNR / 10))
if allocatedCapacity_bps[currentBaseStation] + userRequirementInHZ <=
bscapacity:

 allocatedCapacity_bps[currentBaseStation] += userRequirementInHZ
 // Update allocatedStruct with user information

allocatedStruct.Add({
usernumber: dynamic_pathloss_bs_ue(userIndex).usernumber,
basestation: currentBaseStation,
distance_bs_ue: dynamic_pathloss_bs_ue(userIndex).distance_bs_ue,
pathloss: dynamic_pathloss_bs_ue(userIndex).pathloss,
SNR: dynamic_pathloss_bs_ue(userIndex).SNR,
service: dynamic_pathloss_bs_ue(userIndex).Services,
downstream: dynamic_pathloss_bs_ue(userIndex).Downstream,
upstream: dynamic_pathloss_bs_ue(userIndex).Upstream
})
break // Exit loop after allocation

B. Assignment using the Hungarian Algorithm

Our second algorithm serves as an effective solution for
addressing linear assignment problems. These problems
involve the allocation of rows to columns in a manner that
each row is assigned to a column while minimizing the total
cost of these assignments. To apply this algorithm to our
resource allocation problem, we transform it into a linear
assignment problem. Leveraging the Hungarian algorithm,
which uniquely matches each row to a column based on their
associated costs, we determine the most suitable base station
for each user to connect to. By utilizing the M =
matchpairs(Cost, CostUnmatched) MATLAB function [11] as
Hungarian Algorithm implementation, we solve the linear
assignment problem, considering both the rows and columns
of the 'Cost' matrix. The 'CostUnmatched' parameter provides
the cost associated with not assigning each row to a column
and not having a row allocated to each column.

The algorithm normalizes the SNR and bandwidth
requirements for each user. Then finds the combined score for
each user, using the normalized SNR and the normalized
bandwidth multiplying each one with its corresponding
weight. The weights are 0.6 for the SNR and 0.4 for the
bandwidth meaning that in our algorithms we consider the
SNR metric (which is the signal strength of a user to a base
station) to have more significance than the requested
bandwidth metric, when allocating a user to a base station.

Algorithm 2 – Hungarian Algorithm

allocatedCapacity_bps = Array of size bs, initialized with zeros
combinedCostMatrix = Array of size numUsers x (bs * bsAntennas), initialized
with zeros
antennaCounter = 1
minSNR = Minimum SNR value from dynamic_pathloss_bs_ue
maxSNR = Maximum SNR value from dynamic_pathloss_bs_ue
// Normalize SNR & bandwidth, calculate combined score for each user & bs
for i = 1 to numUsers:
 for currentBaseStation = 1 to bs:
 for antennaCounter = 1 to bsAntennas:
 userIndex = (currentBaseStation - 1) * numUsers + i

 normalizedSNR = (dynamic_pathloss_bs_ue(userIndex).SNR - minSNR) /
(maxSNR - minSNR)
 normalizedBandwidth =
(dynamic_pathloss_bs_ue(userIndex).Downstream - 1000000) / (25000000
- 1000000)
combinedScore = weightSNR * normalizedSNR + weightBandwidth *
normalizedBandwidth

 columnIdx = (currentBaseStation - 1) * bsAntennas + antennaCounter
 combinedCostMatrix[i][columnIdx] = combinedScore
// Find optimal matching pairs using the Hungarian algorithm
M = HungarianAlgorithm(combinedCostMatrix, 1000)

Next, we have to store each base station's user assignments
in three initialized data structures. An overflow matrix is built
for users who can't be accommodated owing to bandwidth
restrictions. According to each iteration of the changed matrix,
downstream values are recalculated, and users are assigned to
suitable base stations in accordance with their needs. The
user's information is added to the appropriate structure if the
base station has enough bandwidth; otherwise, the user is
flagged for overflow.

Algorithm 2 – Matchpairs Allocation to data structs

if basestationw == 1:
 // Allocate users to basestation 1
 bw1 = bw1 - downstream_valueHZ;
 if bw1 > 0:

assignedtobs1.Add({'usernumber': usernumberw, 'Services':
dynamic_pathloss_bs_ue(matching_index).Services})

 else:
overflow.Add([usernumberw, basestationw])

elseif basestationw == 2:
 // Allocate users to basestation 2
 bw2 = bw2 - downstream_valueHZ;
 if bw2 > 0:

assignedtobs2.Add({'usernumber': usernumberw, 'Services':
dynamic_pathloss_bs_ue(matching_index).Services})

 else:
overflow.Add([usernumberw, basestationw])

else:
 // Allocate users to basestation 3
 bw3 = bw3 - downstream_valueHZ;
 if bw3 > 0:

assignedtobs3.Add({'usernumber': usernumberw, 'Services':
dynamic_pathloss_bs_ue(matching_index).Services})

 else:
overflow.Add([usernumberw, basestationw])

second_best_snr_users = Empty Array of structs with fields 'usernumber',
'second_best_snr', 'service', 'bs', and 'reqinHZ'
// Iterate through overflowed users and find second best SNR users
for i = 1 to size(overflow, 1):
 usernumberov = overflow(i, 1);

current_user_data = Filter dynamic_pathloss_bs_ue where 'usernumber'
equals usernumberov
sorted_data = Sort current_user_data by 'SNR' in descending order
// Store information of second best SNR user and allocate if possible
 if size(sorted_data) >= 2:
 second_best_snr = sorted_data(2).SNR;
 reqinHZ = Calculate downstream value for second best SNR user
 if bw1 - reqinHZ >= 0 && sorted_data(2).basestation == 1:

assignedtobs1.Add({'usernumber': usernumberov, 'Services':
sorted_data(2).Services})

 Set matching row in overflow to zeros
 elseif bw2 - reqinHZ >= 0 && sorted_data(2).basestation == 2:

assignedtobs2.Add({'usernumber': usernumberov, 'Services':
sorted_data(2).Services})

 Set matching row in overflow to zeros
 elseif bw3 - reqinHZ >= 0 && sorted_data(2).basestation == 3:

assignedtobs3.Add({'usernumber': usernumberov, 'Services':
sorted_data(2).Services})

 Set matching row in overflow to zeros
 elseif size(sorted_data) >= 3:
 end

end

C. Assignment using the Minimum Cost Flow

Algorithm

This study investigates the use of Minimum Cost Flow
algorithm to further improve the user allocation and
bandwidth distribution process. A Minimum cost flow
Algorithm attempts to determine the best possible flow of
resources across a network while reducing the overall cost of
the flow. In this study, this method can be applied to allocate
users to base stations according to their bandwidth demands,
signal quality, and network conditions. In this algorithm’s
code we use the required downstream of the user along with
their SNR to find and allocate them to the optimal base station
so that the total bandwidth given by all the base stations in the
end is maximized. The algorithm also tracks the given
bandwidth of each antenna and ensures that no antenna gives
more bandwidth than what they are capable of. In cases where
a feasible assignment cannot be made due to insufficient
bandwidth, the algorithm tracks overflow instances, storing
relevant worker information in dedicated matrices.
Subsequently, a second iteration is performed for overflowed
workers, attempting to find alternative base stations while
considering bandwidth constraints. Below is the pseudocode
of this algorithm.

Algorithm 2 – Minimum Cost Flow

Function to find the next available task for a worker
function find_next_available_task(worker_id, G, assigned_tasks):
 available_tasks = get_available_tasks(G, worker_id) - assigned_tasks
 if available_tasks is not empty:
 sorted_tasks = sort_tasks_by_weight(available_tasks, G, worker_id)
 return sorted_tasks[0]
 else:
 return None
Main function to solve the assignment problem

function solve_assignment_problem(csv_file):
 initialize_bandwidth_variables()
 G = create_graph_from_csv(csv_file)
 max_worker_id = get_max_worker_id(G)
 assigned_tasks = empty_set()
 costs = empty_list()
 task_ids = empty_list()
 pathlosses = empty_list()
 flow_dict = find_min_cost_flow(G)
 overflow, overflow_matrix = process_workers(G, max_worker_id,

assigned_tasks, flow_dict, costs, task_ids, pathlosses)
 print_results(costs, pathlosses, assigned_tasks, overflow,

overflow_matrix)
Function to process workers and handle overflow cases

function process_workers(G, max_worker_id, assigned_tasks, flow_dict,
costs, task_ids, pathlosses):

 overflow = 0
 overflow_matrix = empty_list()
 for worker_id in range(1, max_worker_id + 1):
 task_dict = get_task_dict(flow_dict, worker_id)
 if task_dict is not None:
 task_id = find_next_available_task(worker_id, G, assigned_tasks)
 if task_id is not None:
 assign_task_to_worker(worker_id, task_id, G, assigned_tasks,

costs, pathlosses, task_ids)
 else:
 print(f"No feasible assignment found for Worker {worker_id}")
 else:
 print(f"No feasible assignment found for Worker {worker_id}")
 handle_overflow_cases(G, assigned_tasks, overflow, overflow_matrix)
 return overflow, overflow_matrix
Function to assign a task to a worker

function assign_task_to_worker(worker_id, task_id, G, assigned_tasks,
costs, pathlosses, task_ids):

 edge_data = G[worker_id][task_id]
 task_downstream = edge_data['downstream']
 task_snr = calculate_snr(edge_data['pathloss'])
 downstream_value_HZ = task_downstream / log(1 + pow(10, task_snr /

10), 2)
 if is_bandwidth_available(worker_id, task_id, downstream_value_HZ):
 update_bandwidth(worker_id, task_id, downstream_value_HZ)
 store_assignment_info(worker_id, task_id, G, assigned_tasks, costs,

pathlosses, task_ids)
 remove_assigned_task_edges(worker_id, task_id, G)
 else:
 handle_overflow_case(worker_id, task_id, G, assigned_tasks)
Function to handle overflow cases

function handle_overflow_case(worker_id, task_id, G, assigned_tasks):
 overflow += 1
 print(f"No available bandwidth for Worker {worker_id} and Task

{task_id}")
 overflow_matrix.append({'worker_id': worker_id,

'downstream_valueHZ': downstream_value_HZ})
 remove_assigned_task_edges(worker_id, task_id, G)
Function to print the final results

function print_results(costs, pathlosses, assigned_tasks, overflow,
overflow_matrix):

 num_users = len(costs)
 modified_pathlosses = [your_formula(pathloss, num_users) for pathloss in

pathlosses]
 total_pathloss = sum(modified_pathlosses)
 user_data = total_pathloss / num_users

III. SIMULATION ENVIRONMENT PARAMETERS

Our simulation environment is based on MATLAB and
DeepMIMO dataset. The DeepMIMO dataset generation
framework has two important features. A Ray-tracing scenario
and the parameters for this scenario [12], [13], [14].

A. DeepMIMO Features

First, the DeepMIMO channel is created based on precise
ray tracing data obtained from Remcom Wireless InSite [14].

Therefore, the DeepMIMO channel captures the dependence
on the surrounding geometry/material and transmitter/receiver
position. The DeepMIMO dataset generator focused on 5G,
generates channel matrices based on the Clustered Delay Line
(CDL) channel model defined in 3GPP 38.901 with site-
specific statistical distribution parameters obtained from the
accurate 3D ray-tracing simulator Remcom Wireless InSite.
The software used for the simulation was MATLAB, which
generated a channel model that takes into account user path
loss and a traffic model that simulates user behavior.

B. Scenario

To evaluate algorithms and accurately simulate real-world
scenarios, various parameters must be considered. These
parameters include the base station and its capacity, transmit
power, noise power, number of transmit antennas (TX) within
the base station, users and antenna gain, and the available
bandwidth that will be “handed over” to the user. The
resources required from different users, are also included in
the parameters. So, each user has their own downstream and
upstream requirements. The scenario used in this document is
the DeepMIMO O1 (Outdoor 1) scenario with an operating
frequency of 60 GHz. This scenario consists of 18 base
stations and 3 user grids with up to 1,184,923 users distributed
across the sitemap (181 users per row) to accurately represent
the real-world scenario. Figure 1 shows the scenario sitemap
used to create the dataset required for algorithm testing.

Fig. 1. DeepMIMO O1 scenario outdoors.

Using the parameters shown in Table 1. we calculated the
SNR for each user, the average throughput per user and taking
into account the downstream/upstream requirements of each
user (Table II) along with the bandwidth each base station can
give in total, we calculate their optimal allocation to base
stations and base station antennas.

TABLE I. SIMULATION PARAMETERS

TABLE II. USERS BANDWIDTH REQUIREMENTS

The antenna gain is 21 dBi so that the radiation pattern of
the antenna may be more efficiently directed or concentrated
in a specific direction. The formula for calculating noise
power is -174+10 * log10(bandwidth). To increase coverage
and serve more consumers, the base station adds 1000 Tx
antennas with 45dBm transmission power which is the
standard transmission power of a macro cell base station. Each
base station has a set user capacity of 1000 and a bandwidth
of 400Mhz, corresponding to a real-world scenario in which a
single base station supports a heterogeneous group of users
with varying signal intensities and requirements. Each user
will match with 1 antenna. NRB expresses the transmission
bandwidth configuration, in units of resource blocks.

IV. ALGORITHM COMPARISON

In this section, we evaluate several user allocation
techniques in MIMO 5G networks, as stated in Section II.
First, we assess Algorithm 1, which focuses on allocating
users to base stations based on sorting. We present simulated
results that show the implications of increasing user
connections on throughput, SNR, and network performance.
The Hungarian and Minimum Cost Flow algorithms are being
implemented to improve user allocation efficiency and to be
compared to prior methods. Our goal is to find the best user
allocation strategy for MIMO 5G networks.

A. Algorithm 1 – Sorting Algorithm

We run simulations for 181 to 2534 users by selecting the
part of the row closest to the active base station. We
specifically used the combination from lines 1090 to 1103 for
the simulation. Figure 2 and 3 illustrates the number of users
assigned to each base station and the bandwidth distribution
for each simulation of active users and Table III summarizes
the results. The 4th column (overflow) in figure 2 represents
the users that didn’t connect to a base station because they
were all full. It is important to mention that the use of this
algorithm has as result some of the users not being able to
connect and receive service due to the inefficient management
of network resources by the proposed algorithm. As the above
table shows in the last two scenarios with 2353 and 2534
users, users with total 126.35Mhz and 202.1Mhz cannot be
served by the network due to the non-optimal distribution of
the users to the base stations.

Fig. 2. User Allocation for Algorithm 1

Simulation Parameters Value

Base Station Bandwidth 400Mhz

Subcarrier Spacing 120 Khz

NRB 264

Active Subcarriers 64

User Gain 0

User Antenna 1

Antenna Gain 21 dBi

Tx Antennas 1000

Transmission Power 45 dBm

Services Downstream/Upstream in Mbps

Browsing/Email 5/2

HDTV 16/0.5

Video Streaming 25/1

Podcasts 2/0.5

VoIP 1/1

Fig. 3. Bandwidth Distribution for Algorithm 1

TABLE III. ALGORITHM 1 BANDWIDTH

B. Algorithm 2 – Hungarian Algorithm

 As with our previous simulations, we run experiments for
181, 362, 905, 1267, 2353 and 2534 users. This function
enabled experimental analysis and proved to be a major
advance in research. The Hungarian algorithm function
showed remarkable efficiency in solving the assignment
problem of assigning users to base stations. Through careful
optimization, this method achieved significant improvements
in average throughput per user and bandwidth allocation as
well as a better distribution of users through the base stations.
The results are particularly noticeable in Figure 4 and 5,
showing a more balanced and fair distribution of users and
bandwidth across base stations. Table V presents the results.
Using this algorithm, we have unassigned users only in the
2534 users scenario and the unassigned users are only 94
comparing with the previous algorithm which has 390
unassigned users. Moreover, using this algorithm we
bandwidth of the unassigned users is only 94Mhz compared
to 202.1Mhz of the previous algorithm.

Fig. 4. User Distribution for Hungarian Algorithm

Fig. 5. Bandwidth Distribution for Hungarian Algorithm

Fig. 6. User Distribution for Minimum Cost Flow Algorithm

TABLE IV. HUNGARIAN ALGORITHM BANDWIDTH

C. Algorithm 3 – Minimum Cost Flow Algorithm

Running our simulations with 181, 362, 905, 1267, 2353
and 2534 users the Minimum Cost Flow algorithm showed
great efficiency in maximizing the per-user throughput as well
as achieving a user distribution close to the one achieved with
the Hungarian algorithm. Figures 6, 7 show the user allocation
results and the bandwidth distribution for Minimum Cost
Flow. Table V summarizes the bandwidth results. Using this
algorithm, we have unassigned users only in the 2534 users
scenario and the unassigned users are 142. Comparing with
the previous algorithms, this algorithm is better than the first
algorithms but performs worse than the second algorithm.
Moreover, using this algorithm we bandwidth of the
unassigned users is only 75,97Mhz. Again, comparing with
the previous algorithms, this algorithm is better than the first
algorithms but performs worse than the second algorithm.

Users 181 362 905 1267 2353 2534

BW of

BS3

39.45

Mhz

80.15

Mhz

213.43

Mhz

288.13

Mhz

399.98

Mhz

399.98

Mhz

BW of

BS4

29.2

Mhz

52.01

Mhz

136.91

Mhz

195.61

Mhz

381.39

Mhz

398.03

Mhz

BW of

BS5

26.74

Mhz

 40.95

Mhz

100.56

Mhz

151.98

Mhz

250.9

Mhz

290.26

Mhz

Average

BS BW

31.78

Mhz

57.7 Mhz 150.3

Mhz

211.9

Mhz

344.09

Mhz

362.76

Mhz

Overflow

BW

0 Mhz 0 Mhz 0 Mhz 0 Mhz 126.35

Mhz

202.1

Mhz

Users 181 362 905 1267 2353 2534

BW of

BS3

45.9

Mhz

86.07

Mhz

203.67

Mhz

286.23

Mhz

399.98

Mhz

399.98

Mhz

BW of

BS4

40.45

Mhz

69.04

Mhz

195.87

Mhz

284.89

Mhz

399.98

Mhz

399.98

Mhz

BW of

BS5

4.56

Mhz
6.65 Mhz 21.9 Mhz

28.82

Mhz

320.62

Mhz

399.98

Mhz

Average

BS BW

30.30

Mhz

53.92

Mhz

140.48

Mhz

199.98

Mhz

373.53

Mhz

399.98

Mhz

Overflow

BW
0 Mhz 0 Mhz 0 Mhz 0 Mhz 0 Mhz

54.4

Mhz

Fig. 7. Bandwidth Distribution for Minimum Cost Flow Algorithm

TABLE V. MINIMUM-COST FLOW BANDWIDTH

The overall comparison between the three algorithms
shows us that in cases of 181, 362, 905, 1267 users, all three
algorithms exhibited a similar performance. However, as the
user count increased to 2353 and 2534, notable distinctions
emerged. The Minimum Cost Flow and Hungarian algorithms
demonstrated superior per-user throughput compared to the
simple allocation method. Additionally, the Hungarian
algorithm exhibited the least number of overflowed users,
emphasizing its capability to achieve a more even distribution
among base stations. This aligns with the algorithm's intrinsic
preference for equitable resource allocation. In contrast, the
Minimum Cost Flow algorithm, exhibited slightly more
overflowed users, as it prioritizes maximizing throughput for
each user and the total given bandwidth. Comparing the total
given bandwidth across the three algorithms, the Minimum
Cost Flow algorithm allocated the most, followed by the
Hungarian algorithm and then the simple allocation.

V. CONCLUSION & FUTURE WORK

In conclusion, the evaluation of resource allocation
algorithms, including the simple allocation, Hungarian, and
Minimum Cost Flow algorithms, has provided valuable
insights into their respective strengths and limitations. For
scenarios involving a large user base, all algorithms exhibited
comparable results in terms of the percentage of users
attaining their requested bandwidth. However, as the user
count decreased, the Hungarian, and Minimum Cost Flow
algorithms demonstrated superior per-user throughput, with
the Hungarian algorithm notably excelling in achieving a
more even distribution among base stations and minimizing
overflowed users. The Minimum Cost Flow algorithm
exhibited a slightly higher incidence of overflowed users due
to its emphasis on maximizing individual user throughput and
total given bandwidth. Overall, the findings underscore the
importance of aligning the choice of resource allocation

algorithm with the specific objectives and requirements of the
given scenario, as each algorithm's design priorities
significantly influence its performance outcomes. These
insights can be practically leveraged by system designers to
tailor their choice of resource allocation algorithm.
Concluding, incorporating machine learning algorithms to
address overflow issues presents a promising avenue for
future research and practical implementation, offering the
potential to further enhance the adaptability of resource
allocation systems in real-world settings.

ACKNOWLEDGMENT

This research has been co-financed by the Hellenic
Foundation for Research & Innovation (H.F.R.I) through the
H.F.R.I.’s Research Projects to Support Faculty Members &
Researchers (project code: 02440).

REFERENCES

[1] N. H. M. Adnan, I. M. Rafiqul and A. H. M. Z. Alam, "Massive MIMO
for Fifth Generation (5G): Opportunities and Challenges," 2016
International Conference on Computer and Communication
Engineering (ICCCE), Kuala Lumpur, 2016, pp. 47-52.

[2] Kuhn, Harold W. "The Hungarian method for the assignment problem."
Naval research logistics quarterly 2.1‐2 (1955): 83-97.

[3] Goldberg, Andrew V. "An efficient implementation of a scaling
minimum-cost flow algorithm." Journ. of algorithms 22.1 (1997): 1-29.

[4] M. Manini, C. Gueguen, R. Legouable and X. Lagrange, “Study of
MIMO Channel Matrices Correlation to Optimize Resource Allocation
Algorithms in Multi-Users 5G,” 2019 12th IFIP Wireless and Mobile
Networking Conference (WMNC), Paris, France, 2019, pp. 162-166,
doi: 10.23919/WMNC.2019.8881567

[5] K. Keshav, A. K. Pradhan, T. Srinivas and P. Venkataram, “Bandwidth
allocation for interactive multimedia in 5G Networks,” 2021 6th
International Conference on Communication and Electronics Systems
(ICCES), Coimbatre, India, 2021, pp. 840- 845, doi:
10.1109/ICCES51350.2021.9488978.

[6] S. Yoshioka, S. Suyama, T. Okuyama, J. Mashino and Y. Okumura,
“Digital beamforming algorithm for 5G low-SHF-band massive MIMO
with intersite coordination”, 2017 20th International Symposium on
Wireless Personal Multimedia Communications (WPMC), Bali,
Indonesia, 2017, pp. 470-475, doi: 10.1109/WPMC.2017.8301859

[7] S. Suyama, J. Mashino, Y. Kishiyama and Y. Okumura, “5G multi-
antenna technology and experimental trials,” 2016 IEEE International
Conference on Communication Systems (ICCS), Shenzhen, China,
2016, pp. 1-6, doi: 10.1109/ICCS.2016.7833602

[8] M. A. I. Sarder, F. Tajrian, M. Rafique, M. Anzum and A. B. Shams,
“Configuring Antenna System to Enhance the Downlink Performance
of High Velocity Users in 5G MU-MIMO Networks”, 2021
International Conference on Automation, Control and Mechatronics for
Industry 4.0 (ACMI), Rajshahi, Bangladesh, 2021, pp. 1-6, doi:
10.1109/ACMI53878.2021.9528218.

[9] K. N. R. S. V. Prasad, E. Hossain and V. K. Bhargava, "Energy
Efficiency in Massive MIMO-Based 5G Networks: Opportunities and
Challenges," in IEEE Wireless Communications, vol. 24, no. 3, pp. 86-
94, June 2017, doi: 10.1109/MWC.2016.1500374WC.

[10] C. Bouras, D. Diasakos, A. Gkamas, V. Kokkinos, P. Pouyioutas and
N. Prodromos, "Evaluation of User Allocation Techniques in Massive
MIMO 5G Networks," 2023 10th International Conference on Wireless
Networks and Mobile Communications (WINCOM), Istanbul,
Turkiye, 2023, pp. 1-6, doi: 10.1109/WINCOM59760.2023.10322955.

[11] Matchpairs function documentation in Matlab: [Online].Available:
https://www.mathworks.com/help/matlab/ref/matchpairs.html

[12] DeepMIMO Dataset. [Online]. Available: http://www.DeepMIMO.net

[13] A. Taha, M. Alrabeiah and A. Alkhateeb, "Deep Learning for Large
Intelligent Surfaces in Millimeter Wave and Massive MIMO Systems,"
2019 IEEE Global Communications Conference (GLOBECOM),
Waikoloa, HI, USA, 2019, pp. 1-6, doi:
10.1109/GLOBECOM38437.2019.9013256

[14] Remcom Wireless Insite. [Online]. Available:
https://www.remcom.com/wireless-insite-em-propagation-software

Users 181 362 905 1267 2353 2534

BW of

BS3

34.74

Mhz

88.64

Mhz

203.67

Mhz

286.23

Mhz

399.99

Mhz

399.97

Mhz

BW of

BS4

41.1

Mhz

82.95

Mhz

195.87

Mhz

284.89

Mhz

399.98

Mhz

399.96

Mhz

BW of

BS5

3.29

Mhz
5.46 Mhz 21.9 Mhz

28.82

Mhz

334.92

Mhz

399.96

Mhz

Average

BS BW

26.38

Mhz

59.02

Mhz

140.48

Mhz

199.98

Mhz

378.3

Mhz

399.96

Mhz

Overflow

BW
0 Mhz 0 Mhz 0 Mhz 0 Mhz 0 Mhz

75.97

Mhz

