
Extension to Middleware for IoT Devices, with
Applications in Smart Cities

Christos Bouras1,2, Vaggelis Kapoulas1,2, Vasileios Kokkinos1,2, Dimitris
Leonardos3, Costas Pipilas3, and Nikolaos Papachristos3

1 Computer Technology Institute and Press “Diophantus”, Patras, Greece,
{bouras,kapoulas,kokkinos}@cti.gr

2 Department of Computer Engineering and Informatics, University of Patras,
Patras, Greece,

3 ECONAIS, Patras, Greece,
{dleonardos,cpipilas,nikolas}@wubby.io

Abstract. This work proposes extensions to Wubby (a device-level soft-
ware platform for IoT devices, a technology developed by Econais A.E.)
to support wireless modules for mobile networks (4G / LTE-A, and also
supporting the forthcoming 5G). The proposed extension leverages the
use of such modules, as it allows easy programming and existing code
re-use. It thus adds a compatibility layer across the different modules as
it a common set of classes for the wireless modules. The system can be
used to support the networking aspects of a variety of IoT applications,
including applications for Smart Cities, using a variety of IoT devices.
This work suggests such a case focusing on air quality monitoring.

Key words: Wireless Modules, Middleware, Python, Internet of Things,
IoT

1 Introduction

The ever increasing interest in the Internet of Things (IoT) and its immense
growth over the last years [1], [2], [3], has led to the implementation of various
computing devices of very small size (intended to be incorporated into various
‘smart’ objects), as well as numerous modules intended to enhance the function-
ality of these devices.

An important type of these kind of modules is the one for wireless network
connectivity modules. With the technological progress in wireless communication
already be in its 4th generation (4G / LTE-A) of cellular networks and directed
towards the 5th generation (5G) of wireless networking, respective wireless net-
working modules are implemented for objects of the IoT (in addition to these for
Wi-Fi, etc.) [4]. An important feature of the wireless modules is their diversity,
both in terms of the wireless technology used, and the way they are implemented
(design, chipsets, etc.).

Programming of these modules is usually done at a very low level, and this
is generally “tied” to the chipset used. So the programs, in general, are not



2 Christos Bouras et al.

transferable to other wireless modules. In addition, programming in low level
requires considerable expertise, which the companies that manufacture devices
for the IoT, do not have or do not want to acquire.

Companies using such modules to build devices for the IoT show a preference
for higher-level programming languages; one of their most important preference
being the Python programming language [5].

Currently, the IoT market is dominated by approaches where the devices
are “built” around one or more modules. The role of these modules is to add
intelligence and connectivity with previous-generation devices. As mentioned
however, in these approaches software is “tied” to the hardware and they require
the customer familiarity with each manufacturer’s software and libraries, making
the development of new products difficult. On the other hand, in cloud controlled
approaches the cloud service providers offer an infrastructure for storing and
managing information, together with software to link the data with a range of
services. To allow different devices to connect and make use of these services, the
cloud service providers give source code snippets or libraries to popular languages
(such as PHP, Python, Java, etc.), which are incorporated in the software of the
devices during the development process. Main drawback of the cloud controlled
approaches is that there are serious risks of data security and privacy [6], [7], [8].

This work proposes an extension to Wubby, an existing Python-based mid-
dleware, to also support wireless modules for mobile networks, that are used in
IoT devices. The middleware is upgraded to support wireless modules of various
cellular network technologies (e.g. 3G, 4G, etc.) and is ready to integrate the
forthcoming 5G modules. The extension exposes a consistent well-defined set of
common functions that capture the features and the use of the wireless mod-
ules, that are accessible through some common classes for networking. Thus the
extension hides from the (higher-level) programmer both the wireless module’s
implementation details and the underlying networking technology used. The re-
sulting system allows easy programming of these modules, leading to programs
that are reusable with different wireless networking modules.

The remainder of the paper is organised as follows: Section 2 presents the
proposed middleware, its architecture, and its interfaces/APIs; Section 3 presents
the features and characteristics of the middleware; Section 4 discusses one use
case / application; finally, Section 5 summarises the paper and outlines future
work.

2 The Middleware and the Proposed Extension

When we talk about IoT devices, we usually mean embedded electronics, a micro-
processor to provide intelligence used in conjunction with an RF chip or module
providing connectivity. In that context, when it comes to IoT development, for
the most part we are talking about Embedded Development. The products are
designed in the Device Makers or Design Houses labs and their software devel-
opment stays there, remains static and unable to change by someone else, other
than the manufacturer himself. The contribution of the development community



Extension to Middleware for IoT Devices, with Applications in Smart Cities 3

is minimum or zero, and this is because the products are closed, not following any
standards, and the development of embedded applications remains challenging.

The proposed solution is literally changing this by drastically broadening
the audience of developers that can contribute, extending an existing offering to
address the emerging 5G market, specifically targeting Smart Cities applications.

The idea behind Wubby is that future solutions should be based on a Virtual
Machine that runs on a list of supported microcontrollers and provides a runtime
environment for python code execution. Wubby will be used as the root infras-
tructure, but the software stack will be enhanced with APIs and libraries focused
on the integration of 5G solutions, targeting applications in Smart Cities.

2.1 Wubby

Wubby (pronounced Wha-bee) [9] is a software platform that simplifies the devel-
opment of IoT devices by providing a programming environment that supports
Python code execution directly in the devices microcontroller. This introduces
several advantages: a) It allows a broader set of developers to contribute, giving
them the opportunity to design and develop new everyday objects based on a
popular programming language like Python. b) It speeds up the development
process c) It reduces development costs d) It results in smarter, interopera-
ble everyday objects Wubby separates hardware from software, abstracting the
hardware complexity, while at the same time allowing developers to contribute
by writing simple python scripts, rather than having to deploy the whole device
image.

2.2 Architecture

The architecture makes use of the existing Wubby development environment,
providing extensions in the Wubby VMs that focus on the use of mobile net-
working (i.e. 4G / LTE-A, and the forthcoming 5G) solutions. The high-level
architecture is shown in Figure 1.

The Wubby VM runs in the ‘smart’ object (actually in its microcontroller),
and abstracts the hardware (i.e. provides a hardware agnostic environment).

In order to support application creation the environment includes:

Wubby Cloud : provides all the services for application deployment and backend
device management

Wubby Client : allows a user to control and configure each device. This can be
either a smart phone app or web service.

Wubby IDE : platform independent development environment that allows easy
application development (debugging, code uploading, simulation, etc) with
Wubby.

Every Wubby enabled product is registered at the Wubby Cloud and is as-
signed to a default Wubby Application, a device-level application written in
Python that can be uploaded on the Wubby Cloud and run in any Wubby en-
abled device. Wubby Cloud acts as a market place for Wubby Applications in



4 Christos Bouras et al.

 

 
 

Fig. 1. High-level architecture of the system

the same way as iOS Apple Store and Google Play and the access to it is possible
from the Wubby Clients (Web or Android/iOS Apps). For this purpose, owners
of Wubby devices (end users) can register them in the Wubby Cloud in which
they can select one of the compatible applications to install in their devices.

2.3 The Proposed Extension

The proposed extension involved changes in the Wubby VM to support the
mobile (cellular) network wireless modules. These changes regard:

– supporting the relevant modules by installing and activating the necessary
drivers,

– implementing the python classes to communicate with the module / chip
set, and manage it. this is done by providing an implementation of the cor-
responding class for the specific module,

– implementing the additions/changes to the wlan class to support inquiring
link status for the mobile (cellular) network modules,

– installing the network stack for these mobile networking technologies, and
– implementing the additions/changes socket class in order to support net-

working over the newly supported modules.



Extension to Middleware for IoT Devices, with Applications in Smart Cities 5

3 Features of the Middleware

3.1 Features

The programming of the Smart Cities applications is based on scripts, which
run on top of a stack providing:

– Lexical analyzer
– Parser
– Compiler
– Code emitter: emits byte code or machine code
– Virtual machine: interprets bytecode

Some characteristics (already provided by Wubby) are:

– support for Python 3.4
– almost entire Py3 standard library
– subset of the CPython object model
– runs on bare metal (no Operating System) or on RTOS (freeRTOS is already

supported)
– supports multiple platforms (SoCs)
– RF independence
– small footprint (75-250KB flash, can run with 8KB RAM)
– supports optimizations to create native code for cortex and others (native

bitwise operations, dynamic type handling etc)
– Python has special commands that interface directly with assembly (specif-

ically, the ARM Thumb-2 instruction set)
– Python in Wubby targets any environment with ANSI C99 support (works

on 8-bit or even 1-bit microcontrollers, given enough code storage and RAM)
– Inline assembler
– is written in C99 ANSI C
– runtime helper functions, etc.

3.2 Benefits

Wubby already offers several benefits, as it:

– reduces the overall development time, offering a much simpler programming
environment, language syntax and restrictions,

– provides a separation between software and hardware, thus making applica-
tions (scripts running on top of the middleware) re-usable among different
hardware platforms,

– reduces the after-sales support needs,
– dramatically broadens the developer audience that is able to contribute in

the development of such applications,
– adds intelligence at the device level, contributes in the efficiency of device-

cloud communications, reducing the amount of data that needs to be trans-
ferred, as a pre-processing phase is executed at the lowest level, and



6 Christos Bouras et al.

– supports networking using various WiFi and BTLE modules. With the pro-
posed extension, support will be added for networking using mobile (cellular
network wireless modules), which is of great importance for Smart Cities
applications.

4 Example Application: Air quality monitoring

This case study aims to give citizens a comprehensive view of the air quality,
using smart sensors and base stations established in different places (see, e.g.
[10, 11]). Wubby enabled devices, equipped with various air-quality embedded
sensors, which are small in size and exploit the features offered by mobile net-
works, are used to monitor the collected air quality data in real time, and upload
the data to remote servers for further analysis.

The first step in this scenario is the installation of a sensor network that
provides real-time measurements of carbon dioxide, temperature, pressure and
humidity. Each sensor can collect the data and transmit them over a low power
wide area network, exploiting the high speeds of modern cellular networks (e.g.
LTE, LTE-A, etc.) and further 5G features.

The above study could be designed to cover entire cities or hundreds of
square kilometers giving many capabilities for air quality monitoring for indoor
and outdoor conditions, independent of the location. The application provides
the end user with intelligence and better understanding of the environment that
one lives in.

5 Conclusions & Future Work

This works proposes an extension to the Wubby Python-based middleware for
IoT devices, to support wireless modules for mobile (cellular) networks. The
extension actually concerns the Wubby Virtual Machine, which is enhanced to
support 4G / LTE-A wireless modules. The extension integrates seamlessly with
the existing networking classes of Python, and allows existing applications to
work with the enhanced Wubby VM. Thus it promotes code reuse and extends
the scope and of existing applications to more networking domains.

Future work will focus on the support of specific 4G / LTE-A wireless modules
by the Wubby VM, as well as preliminary support for 5G wireless modules
(based of course on the availability of the expected development boards for the
respective modules).

References

1. Castillo, A., Thierer, A. D.: Projecting the Growth and Economic Impact of the
Internet of Things. Economic Perspectives. 1-10 (2015)

2. Verizon: State of the Market: Internet of Things 2016. 1-24 (2016)



Extension to Middleware for IoT Devices, with Applications in Smart Cities 7

3. Popescu, G. H.: The Economic Value of the Industrial Internet of Things. Journal
of Self-Governance and Management Economics. 3, 86-91 (2015)

4. Wang, S., Hou, Y., Gao, F., Ji, X.: A novel IoT access architecture for vehicle
monitoring system. In: 3rd IEEE World Forum on Internet of Things, pp. 639-642.
IEEE, Reston, VA, (2016)

5. Python, http://www.python.org
6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A

vision, architectural elements, and future directions. Elsevier Future Generation
Computer Systems. 29, 1645-1660 (2013)

7. Tao, F., Cheng, Y., Xu, L. D., Zhang, L., Li, B. H.: CCIoT-CMfg: Cloud Com-
puting and Internet of Things-Based Cloud Manufacturing Service System. IEEE
Transactions on Industrial Informatics. 10, 1435-1442 (2014)

8. Rao, B. B. P., Saluia, P., Sharma, N., Mittal, A., Sharma, S. V.: Cloud computing
for Internet of Things & sensing based applications. In: 6th International Conference
on Sensing Technology, pp. 374-380. IEEE, Kolkata (2012)

9. Wubby documentation, http://www.wubby.io/docs
10. Cho, H., Kyung, C-M., Baek, Y.: Energy-efficient and fast collection method for

smart sensor monitoring systems. In: International Conference on Advances in Com-
puting, Communications and Informatics, pp. 1440-1445. IEEE, Mysore (2013)

11. Postolache, O. A., Dias Pereira, J. M., Silva Girao, P. M. B.: Smart Sensors Network
for Air Quality Monitoring Applications. IEEE Transactions on Instrumentation and
Measurement. 58, 3253-3262 (2009)

http://www.python.org
http://www.wubby.io/docs

	Extension to Middleware for IoT Devices, with Applications in Smart Cities
	Christos Bouras, Vaggelis Kapoulas, Vasileios Kokkinos, Dimitris Leonardos, Costas Pipilas, Nikolaos Papachristos

