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Abstract—In the landscape of 5G networks, efficient resource 

allocation stands as a critical factor in meeting the diverse 

demands of applications and users. This paper delves into 

optimizing resource allocation within 5G Multiple Input Multiple 

Output (MIMO) networks by leveraging Downlink/Uplink 

Decoupling (DUDe) techniques. MIMO technology, enabling the 

simultaneous transmission of multiple data streams, holds promise 

for boosting spectral efficiency. However, accommodating the 

dynamic and diverse user requirements poses a significant 

challenge in resource allocation. By employing advanced DUDe 

techniques, this research aims to dynamically allocate resources in 

5G MIMO networks, seeking to enhance throughput, minimize 

latency, and optimize user satisfaction. Through simulation-based 

analysis, this paper highlights the efficacy of the proposed 

approach in significantly improving network performance and 

resource utilization.  

Keywords—Downlink/Uplink Decoupling (DUDe), 5G 
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I. INTRODUCTION 

The advent of fifth generation (5G) communication 
networks signifies a transformative leap in connectivity, 
promising revolutionary advancements across industries and 
daily life. Among the pivotal challenges in maximizing the 
potential of 5G networks is the efficient allocation of resources, 
particularly within the domain of Multiple Input Multiple 
Output (MIMO) technology. MIMO's capability to facilitate the 
concurrent transmission of multiple data streams through 
multiple antennas presents an enticing avenue for augmenting 
spectral efficiency and accommodating the burgeoning demand 
for high data rates. 

However, the intricate landscape of 5G networks, coupled 
with the ever evolving and heterogeneous user requirements, 
poses a formidable hurdle in optimizing resource allocation. 
Traditional methodologies often falter in dynamically adapting 
to these diverse demands, necessitating innovative approaches 
to bolster resource utilization while ensuring optimal network 
performance and user experience. 

This paper embarks on a distinctive trajectory by promoting 
the application of Downlink/Uplink Decoupling (DUDe) 

techniques for resource allocation within 5G MIMO networks. 
In traditional cellular systems, the assignment of User 
Equipment (UE) to the Base Stations (BSs) is based on the DL 
Signal to Noise Ratio (SNR) of the UE (and both Downlink 
(DL)-Uplink (UL) are connected to the same BS), while in the 
case of DUDe the assignment of UEs UL and DL to the Base 
Station (BS) is based both on the UL SNR and DL SNR of the 
UE (and UL and DL can be connected in difference BSs). DUDe 
offers enhancing resource allocation efficiency and network 
resource utilization. For additional information refer to [1]. 

The unique proposition lies in the decoupling of downlink 
and uplink resources, aiming to dynamically allocate resources 
to maximize throughput, minimize latency, and elevate user 
satisfaction levels. Ultimately, this research contributes to the 
ongoing discourse in the domain of 5G network enhancement by 
shedding light on the transformative capabilities of MIMO 
technology in refining resource allocation strategies using 
DeepMIMO [2], a data generator for mmWave/massive MIMO 
channels, resulting in an upgraded simulation tool that offers 
more accurate and realistic representations of 5G network 
challenges. By providing empirical insights into the 
effectiveness of DeepMIMO-enhanced resource allocation, this 
study aspires to catalyze the development of more efficient and 
adaptive 5G network infrastructures [3], [4], [5], [6].  

Unlike previous works that primarily focus on traditional 
resource allocation algorithms, our study leverages DUDe 
techniques to dynamically adapt to changing network conditions 
and user demands. This innovation allows for more flexible and 
adaptive resource allocation strategies, enabling the network to 
efficiently utilize available resources while meeting the diverse 
requirements of different users. To the best of our knowledge, 
the only similar research is presented in [7], with the difference 
being that our research focuses on bandwidth allocation among 
BS, whereas the work in [7] aims at optimizing the spectrum 
efficiency of the BS. 

Moreover, the implementation of DUDe not only facilitates 
the seamless integration of new users into the network, but also 
ensures uninterrupted service. The smoother distribution, not 
only guarantees available capacity for Base Stations (BS), but 
also prevents them from reaching their capacity limits, even 



when dealing with a substantial number of users. This approach 
not only enhances network capacity, but also contributes to a 
more robust and interference-resistant communication 
environment for users. The existing literature on enhancing 
resource allocation in Heterogeneous Network (HetNets) 
MIMO 5G networks encompasses a range of innovative 
approaches. The work in paper [8] discusses the integration of 
Py5cheSim, a Python-based 5G network simulator with 
DeepMIMO. This tool is significant for its advanced approach 
to network simulation and resource allocation. 

The authors of [9] examine the critical aspect of resource 
allocation, especially in the context of Massive-MIMO 
technology, which allows for the simultaneous scheduling of 
multiple users on the same frequency resource. Paper [9] 
highlights the importance of user grouping strategies to 
minimize interference and points out the limitations of such 
strategies within systems using a block diagonal precoder. Paper 
[10], focuses on optimizing Resource Allocation (RA) and 
Transmit Antenna Selection (TAS) in millimeter-wave massive 
MIMO communications. The paper introduces an approach that 
uses the Attention-Based Capsule Auto-Encoder (ACAE) 
architecture and the Battle Royale Optimization (BRO) 
technique to improve transmission reliability and channel 
capacity while minimizing hardware costs. Finally, it 
emphasizes on efficiency enhancements in 5G communications 
through advanced optimization techniques. 

Paper [11], delves into Cell-free Massive MIMO, a 
promising architecture for 5G networks that addresses resource 
allocation challenges in downlink networks. The paper presents 
an iterative algorithm that efficiently handles the optimization 
problem posed by coupled interference among User Equipment 
(UE), demonstrating the effectiveness of the algorithm in 
practical scenarios. Finally, paper [12] focuses on the need for 
high energy efficiency in future wireless networks to achieve 
net-zero greenhouse gas emissions. The paper proposes a power 
consumption model that considers the effects of carrier 
aggregation and spatial layering on 5G network power 
consumption, advocating for the optimization of active antennas 
and physical resource blocks to enhance energy efficiency. 

The rest of our paper is organized as follows: Section II, 
introduces the mathematical model utilized in our simulation 
environment. Section III, delves into the algorithm analysis that 
forms the basis for constructing our experiment scenarios. 
Section IV outlines the simulation setup and methodology 
employed to assess the performance of DUDe in our MIMO 5G 
HetNets. Section V, presents the simulation results and provides 
a comprehensive analysis of the findings. Lastly, Section VI 
presents our conclusions and offers insights into potential 
avenues for future research. 

II. MATHEMATICAL MODEL  

In this section, we provide a comprehensive overview of the 
mathematical model that we used in our experiments. Initially, 
to ascertain the minimum distance between UEs and various BS 
antennas, we employ the mathematical model outlined in TR 
38.901 Section 7.4.1 [13]. We must note that a thorough 
examination of the factors outlined below is not within the 
purview of this paper. 
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��� �BP ≤ �2D ≤ 10km (1) 
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(2) 
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Once the pathloss is determined through the 5G Matlab 
model, which includes the aforementioned functions and 
equations, we utilize the result of the nrpathloss function to 
calculate the SNR to determine the closest antenna for 
establishing connections. The SNR mathematical expression 
involves measuring both signal power and noise power at the 
same or equivalent points in the system and within the same 
bandwidth. The mathematical expression for SNR is as follows:  

SNR = Psignal/Pnoise (4) 

For scenarios involving bandwidth allocation, we compute 
the maximum bandwidth limit for UEs for each antenna using 
the Shannon-Hartley theorem [14]. This theorem, a cornerstone 
in information theory named after Claude Shannon and Ralph 
Hartley, establishes the maximum error-free information 
transmission rate over a communication channel with a given 
bandwidth, considering noise presence. It aids in optimizing 
communication system design by finding the balance between 
information transfer rate and error minimization. 

7 = 8����(1 + 9/:) (5) 

The channel capacity (C), measured in bits per second, 
represents the maximum achievable net bit rate without error-
correction codes. Bandwidth (B) denotes the passband 
bandwidth for a bandpass signal. The SNR, expressed as a linear 
power ratio, compares communication signal power to noise and 
interference power at the receiver. 

III. ALGORITHM ANALYSIS 

This section presents the analysis of the theoretical 
algorithm which we have evaluated through simulations 
supported by the DeepMIMO toolkit [2]. The algorithm starts 
by getting important information from the DeepMIMO dataset, 
including details about BS, UEs, and the communication 
channel. It then considers system parameters and does essential 
calculations, like figuring out Noise Power based on the 
system's bandwidth. Initial variables, such as Effective 
Isotropic Radiated Power (EIRP), user counters, and antenna 
parameters, are set up. 

Moving on, the algorithm calculates the distances between 
each BS and its UEs. At the same time, it calculates the path 
loss for each BS-UE pair, giving insights into signal strength. 
Next, the algorithm calculates SNR for both uplink and 
downlink, taking into account factors like transmit power, 
antenna gains, path loss, and noise power. These SNR values 
indicate the quality of the communication channels. UEs are 
then randomly assigned services, like Browsing/Email or 
HDTV, which are matched with corresponding downstream 
and upstream values, shaping each UE's communication 
requirements. The analytical specifics regarding both the 



downstream and upstream services of the UEs are outlined in 
the next section. 

A dynamic structure called 'dynamic_pathloss_BS_ue' is 
created to hold UE-specific information, including SNR, 
assigned services, and bandwidth requirements. UEs are sorted 
based on downlink SNR values in descending order for each 
BS. This sorting is crucial for later steps where choosing the 
best BS becomes important. Capacity-related variables for each 
BS are set up, creating the stage for dynamic capacity 
allocation. The overall system capacity, labeled as 'BScapacity,' 
is established as a reference point for understanding available 
resources. The algorithm then goes through UEs based on their 
sorted SNR values. For each UE, it finds the BS with the highest 
combined cost, considering SNR and available capacity. The 
algorithm checks if the selected BS has enough capacity to meet 
the UE's downstream requirements. If it does, capacity is 
allocated, and the information is updated. The allocated 
information is organized into an array called 
'success_throughput.' This array provides crucial details about 
UEs, BS, and the data rates achieved during communication. 
Briefly, the algorithm dynamically allocates communication 
resources, considering UE needs and channel conditions. The 
final 'success_throughput' array encapsulates valuable insights 
into this allocation process. 

When it comes to complexity, the algorithm's efficiency is 
mainly influenced by sorting and allocation steps, both having 
a complexity of O(N^2). The space complexity is affected by 
the data structures used to store path loss information, allocated 
resources, and the final results. 

Algorithm 1 Algorithm for resource allocation in our 5G MIMO network. 

# Step 1: Initialization 

Load DeepMIMO dataset 
Read parameters from 'parameters.m' 

Calculate Noise Power (Pn) 

Initialize variables (EIRP, UE counters, etc.) 

# Step 2: Distance and Path Loss Calculation 

For each BS: 

    For each UE: 
        Calculate Euclidean distance 

        Calculate path loss 

# Step 3: SNR Calculation 

For each BS: 

    For each UE: 
        Calculate downlink SNR 

        Calculate uplink SNR 

# Step 4: User Services Assignment 

For each UE: 

    Assign random services (e.g., Browsing/Email, HDTV, etc.) 

    Match services with downstream and upstream values 

# Step 5: Dynamic Path Loss Structure Initialization 

Create dynamic structure 'dynamic_pathloss_BS_ue' 

# Step 6: Sorting Users Based on SNR 

Sort UEs based on downlink SNR in descending order for each BS 

# Step 7: Capacity Initialization 

Initialize capacity-related variables for each BS 
Define overall system capacity ('BScapacity') 

# Step 8: Dynamic Capacity Allocation 

For each UE: 
    Find BS with highest combined cost 

    Check if selected BS has available capacity for UE's downstream 

requirement 
    If yes, allocate capacity and update information 

# Step 9: Result Structuring 

Structure allocated information into 'success_throughput' array 
Calculate achieved data rates for each UE 

# Step 10: Algorithm Output 

Output 'success_throughput' array 

# Step 11: Complexity Analysis 

Time complexity: O(N^2) for sorting and allocation 
Space complexity: Influenced by data structures (path loss, allocated 

information, results) 

IV. SIMULATIONS ENVIRONMENT  

In this section, we aim to provide a comprehensive insight 
into the intricacies of our simulated network structure and its 
associated parameters. It is essential to highlight that both the 
topology and the dataset guiding our simulation setup were 
sourced from the DeepMIMO platform. This platform serves as 
a valuable resource, offering the necessary infrastructure to 
shape and execute our experiments effectively. More 
specifically we have a HetNet 5G MIMO network setup as seen 
in Fig. 1. This setup is about an urban setting where the main 
street, stretching horizontally, spans 600 meters in length and 
40 meters in width and a vertical counterpart spanning 440 
meters in length and 40 meters in width. Similar to the main 
street, buildings line both sides, contributing to the city's 
architectural tapestry. Along the main street, uniformity 
prevails as all buildings share bases with dimensions of 30 
meters by 60 meters. On the other hand, the second street 
exhibits a distinct architectural style, with buildings standing on 
bases measuring 60 meters by 60 meters. 

Additionally, we have installed a total of 18 BSs named BS1 
through BS18, all standing at a height of 6 meters. Now, if we 
stroll down the main street, we will encounter 12 of these 
stations—BS1 to BS12—with 6 stationed on each side. 
Regarding the spacing arrangement, there is a 52-meter gap 
between the BS on one side of the street and those on the 
opposite side. Breaking it down further, there is a 100-meter 
separation between clusters—BS1, BS3, and BS5; BS2, BS4, 
and BS6; BS7, BS9, and BS11; BS8, BS10, and BS12.Adding 
a bit more flair, there is a tighter 62-meter spacing between BS6 
and BS8, as well as between BSN5 and BS7.  

 

Fig. 1. General topology of simulated network. 

Moreover, in the second street, BS13 to BS18 are holding 
their ground. Each side of the street hosts 3 BS, and there is a 
roomy 150-meter gap between BS13, BS15, and BS17, as well 
as between BS14, BS16, and BS18. Delving deeper into the 
specifics, we find a 52-meter separation between adjacent 
stations—BS13 and BS14, BS15 and BS16, and BS17 and 
BS18. So, with these dimensions and placements, the network 
is all set to weave its connectivity magic throughout the urban 
landscape. 

Additionally, we have three distinct User Grids (UG) – 
UG1, UG2, and UG3 in which up to 1,184,923 UEs can be 
accommodated. Adding a touch of strategic placement, the first 
UE in each grid claims the distinction of having the lowest (x, 
y) coordinates. Uniformity reigns in the height department, with 
all UE grids maintaining a consistent 2-meter elevation.  



UG1 takes center stage, stretching horizontally along the 
main street for 550 meters with a width of 35 meters. Its lineup 
kicks off 15 meters after the street's beginning and gracefully 
concludes just before the endpoint. Across 2751 rows, each 
housing 181 UEs with identical y-coordinates, UG1 fosters a 
sense of community with a 20 cm spacing between UEs, 
boasting a total of 497,931 UEs. UG2, on the other hand, seizes 
attention on the southern side of the cross street. Spanning rows 
2752 to 3852, a total of 1101 rows host 181 UEs each, 
maintaining a 20 cm gap between neighbors. UG2's vibrant 
community consists of 199,281 UEs. In UG3 which conclude 
rows 3853 to 5203, serve as the prime real estate, 
accommodating 1351 rows with 361 UEs per row. Slightly 
cozier with a 10 cm spacing between UEs, UG3 is home to 
487,711 UEs, fostering a closer network camaraderie. 

Eventually for our experiments, we have designated specific 
areas for our implementation. Fig. 2 illustrates the chosen 
locations: User Grid 3 will utilize ΒS17 and from User Grid 1 
will rely on BS4, BS3, BS5 and BS6, BS7. The BS transmit 
power is configured at 45 dBm, accompanied by a gain set at 
21 dBi. To explore various user scenarios, we will conduct three 
setups involving 180, 360, and 724 UEs, all while maintaining 
a consistent UE power of 20 dBm. Also, you can find a 
summary of these network parameters in Table I. Finally, in 
bandwidth allocation scenarios, we create a random number of 
UE and assign each UE to one of the services outlined in Table 
II, where the downstream and upstream demands per service 
are presented.  

 

Fig. 2. Topology of first simulations. 

Also, we run another experiment where Fig. 3 illustrates the 
chosen locations: User Grid 3 will be connected to BS17, while 
User Grid 1 will utilize BS4, BS3, BS5, BS6, BS7, BS8, and 
BS15. This adjustment in network topology aims to investigate 
whether it influences the underlying assumptions we have 
made.  

 

Fig. 3. Topology of second simulations. 

To ensure equitable resource distribution across antennas 
while achieving optimal performance, we employ DUDe 
technology. Notably, our approach diverges from previous 
research by incorporating a MIMO system, where each BS is 
equipped with 2000 antennas. To highlight this point, every 
mentioned antenna corresponds to a UE. This setup allows UEs 
to connect to multiple antennas, enhancing system 
performance. Our objective is to demonstrate the efficacy of 
DUDe application in such a system, where UEs have multiple 
connection options, compared to alternative resource allocation 
technologies in telecommunications networks. Note also, that 
the operating frequency of the network in which simulations 
were implemented is at 140 GHz, the Number of 5G NR 
resource blocks is 60 and 5G Subcarrier spacing in kHz is 120. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Transmit 

power(dbm) 

45 dbm 

BS height 

(m) 

6 m 

BS/UE gain 

(dbi) 

21 dbi, 0 dbi 

Bandwidth 

(MHz) 

400 Mhz 

Number Of 

UEs 

180,360,724, 905 

Power Noise Pnoise= -74+10log(Bandwidth(hz)) 

TABLE II.  TYPE OF SERVICES 

Services Downstream Upsteam 

Browsing/Email 5 Mbps 2 Mbps 

HDTV 16 Mbps 0.5 Mbps 

Video Streaming 25 Mbps 1 Mbps 

Podcasts 2 Mbps 0.5 Mbps 

VoIP 1 Mbps 1 Mbps 

 

V. SIMULATION RESULTS 

In this section, we delve into our simulations and analyze 
the conclusions drawn from them, aiming to validate our initial 
research on the subject. To conduct these experiments, we have 
generated three separate datasheets, each corresponding to 
scenarios with 362, 543, 724 and 905 UEs. Also, in the scenario 
involving 905 UEs, we implement the alternative topology 
described earlier. These UEs are placed within the network 



topology we previously analyzed, leveraging the nrpathloss 
function in Matlab to ensure random yet evenly distributed 
placements. Specifically, we maintain a one-meter distance 
between each UE to prevent overlapping. 

In calculating the SNR, we consider several factors. These 
include the transmission power of the antenna and the UE, 
which is held constant at 20 dB for our experiments. 
Additionally, we account for antenna gain, which is 21dbi and 
0 dbi for UE. The distance between the antenna and the UE is 
also factored in. Finally, we incorporate noise into the 
calculation. By considering these elements, we ensure an 
accurate assessment of SNR, a crucial metric in determining the 
quality of wireless communication links. 

Our antennas possess a fixed bandwidth capacity of 400 
MHz. In all scenarios, UEs are assigned to antennas using a 
specific procedure. Initially, we calculate the SNR based on 
each UE's distance from the antennas. Subsequently, we assess 
whether the antenna has adequate resources (bandwidth 
capacity) to accommodate the UE's service. If so, we connect 
the UE to the optimal antenna; otherwise, we connect them to 
the nearest antenna based on SNR value. This method ensures 
every UE receives satisfactory service.  

Through graph analysis, we elucidated the nuanced 
performance characteristics of DUDe and DUCo technologies 
in a MIMO 5G network setting. By discerning trends and 
patterns from the graphical representations, we gained insights 
into the efficacy of these technologies in managing network 
resources and delivering optimal user experiences. These 
findings pave the way for informed decision-making in network 
design, deployment, and optimization in the burgeoning field of 
5G communications. Also, for a better understanding of our 
plots, it is worth mentioning that these are bar plots depicting 
the remaining bandwidth per BS for both DUDe and DUCo 
technologies. Each line in the graph represents a specific base 
station, while the height of the bar indicates the remaining 
bandwidth in Hertz (Hz). 

By visually comparing the blue (DUDe) and orange 
(DUCo) bars, we can see how these technologies affect 
bandwidth availability at different base stations. 

 

Fig. 4. Bandwidth Consumption for 362 UEs. 

Firstly, in case of 362 UE the diagram above in Fig. 4, 
consistently reveals that DUDe technology consistently uses 
less bandwidth per antenna compared to coupling technology in 
this specific 5G MIMO setup. This implies that decoupling 
technology is generally better at making the most out of 
available bandwidth in this scenario. The fact that this 
efficiency pattern is consistent across all antennas suggests that 
it is not just a random occurrence but a systematic advantage of 

decoupling technology. These findings could be leveraged to 
support the argument that DUDe is the best option for 
effectively managing bandwidth in 5G networks. 

Moving to Fig. 5 (543 UEs), while decoupled technology 
still generally maintains a lead in remaining bandwidth, the 
margin between decoupling and coupling is less pronounced 
compared to the scenario with more UEs. This suggests that as 
the number of UEs decreases, the performance gap between 
decoupled and coupled technology tends to narrow. 

 

Fig. 5. Bandwidth Consumption for 543 UEs. 

 
Fig. 6. Bandwidth Consumption for 724 UEs. 

In Fig. 6 (724 UEs), the focus shifts to mean bandwidth 
consumption rather than remaining bandwidth. Here, decoupled 
technology continues to demonstrate lower average bandwidth 
consumption compared to coupled technology. Remarkably, 
even with fewer UEs, the disparity between decoupling and 
coupling technologies remains noticeable, indicating that 
decoupling technology may maintain its bandwidth efficiency 
advantage. 

Also, by examining Fig. 7, we discovered that altering the 
network topology does not impact our original hypothesis. 
DUDe technology consistently demonstrates superior 
allocation efficiency among BSs compared to DUCo. This 
results in improved service for both existing and new BSs, 
affirming DUDe's effectiveness in optimizing network 
performance. 

Across all scenarios, DUDe technology consistently 
outperforms DUCo technology in terms of bandwidth 
efficiency. This is evident from either having more remaining 
bandwidth or less mean bandwidth consumption in all the 
charts. The difference in performance between decoupling and 
coupling technology appears to be influenced by the number of 
UEs. With a higher UE count (724 vs. 543 vs. 362), the 
advantage of decoupling technology becomes more 
pronounced. Despite the overall trend favoring DUDe 
technology, the performance across BS indices is not uniform. 
This suggests that certain antennas may inherently perform 
better or worse, regardless of the DUDe or DUCo technology 
employed. 



 

Fig. 7. Bandwidth Consumption for 905 UEs. 

VI. CONCLUSION AND FUTURE WORK 

Our experiments demonstrate the efficacy of DUDe in 
managing the massive data demands in MIMO systems while 
ensuring efficient utilization of the available spectrum. The 
comparative analysis of decoupling versus coupling technology 
across various antenna indices with a varying number of UEs 
has revealed that decoupling consistently provides superior 
bandwidth efficiency. This is particularly significant in the 
context of 724, 543, and 362 UEs scenarios where the 
remaining bandwidth and mean bandwidth consumption per 
antenna have been substantially improved with decoupling. 
These findings underscore the potential of DUDe to enhance 
the capacity and reliability of next-generation wireless 
networks. 

Moving forward, several avenues appear promising for 
extending this research. The scalability of DUDe techniques 
warrants further exploration, particularly in ultra-dense 
network environments where UE equipment numbers can 
substantially exceed the scales considered in this study. 
Additionally, integrating machine learning algorithms to 
predict and adapt to dynamic network demands in real-time 
could further optimize resource allocation. Further 
investigation into the interplay between different antenna 
technologies and DUDe techniques could yield additional 
insights, potentially guiding the development of more 
sophisticated antenna designs tailored to this approach. Lastly, 
field trials in live network environments would be invaluable in 
validating the performance of DUDe under practical operating 
conditions and diverse user behavior patterns. Also, we aim to 
explore resource allocation optimization in 5G MIMO DUDe 
heterogeneous networks using the Hungarian and minimum 
cost flow algorithms which we have already investigated in 5G 
MIMO (non- DUDe) Networks [15], [16]. 
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