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Abstract. According to Internet of Things (IoT) Analytics, soon, the online
devices in IoT networks will range from 25 up to 50 billion. Thus, it is expected
that IoT will require more effective and efficient analysis methods than ever before
with the use of Machine Learning (ML) powered by Fifth Generation (5G) net-
works. In this paper, we incorporate the K-means algorithm inside a 5G network
infrastructure to better associate devices with Base Stations (BSs). We use mul-
tiple datasets consisting of user distribution in our area of focus and propose a
Dynamic Resource Allocation (DRA) technique to learn their movement and pre-
dict the optimal position, RB usage and optimize their resource allocation. Users
can experience significantly higher data rates and extended coverage with min-
imized interference and in fact, the DRA mechanism can mitigate the need for
small cell infrastructure and prove a cost-effective solution, due to the resources
transferred within the network.

1 Introduction

Internet of Things (IoT) refers to a system of interconnected devices that possess the
ability to communicate (send/receive) data over the same shared network [1]. Based on
this architecture, many advanced applications have been created, like smart houses, smart
buildings and more. [oT applications are more and more utilized in today’s industry and
the majority of them focus on long-range communication, while at the same time, they
increase the data throughput and minimize power consumption as much as possible. Big
Data (BD) derives by IoT sensors and devices and is transferred to servers, which most
of the times, is located in Cloud Data Centers worldwide. As a result, the demands for
communication and infrastructure keep rising daily. Studies reveal that at least 25 billion
devices will be online by 2022 (without including laptops, tablets and smartphones). This
alarming increase also comes with an increase on the amount of data that is currently
being stored. All this information undoubtedly has to be monitored and analyzed, so
that we can keep learning from the available datasets and improve without any manual
intervention. Using this technique, IoT devices are becoming smarter and more efficient
day by day.
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To face these challenges, many models have been designed that focus on making
everything inside an IoT network more Cloud independent. This is where 5th Generation
(5G) networks come into play, offering massive connectivity and/or massive machine-
type communication (mMTC). Massive access alongside with Machine Learning (ML)
aims to achieve effective and secure communications for a large number of distributions
to IoT devices via SG and beyond networks. Massive access key features include low
power, massive connectivity, while on the other hand, ML must cope with a massively
increased complexity, reducing the number of measurements and facilitating robust deci-
sions, promoting self-organizing networks and future predictions. Those characteristics
are constantly proven to be promising for 5G networks [2]. At the same time, Heteroge-
neous Networks (HetNets) will also come into play by extending the existing macrocell
infrastructures. This will be achieved by installing small cells in specific locations inside
the macrocell (e.g. in areas near the macro cell borders) so as to provide improved
coverage and throughputs for all devices near cell borders, where interference levels sig-
nificantly experience spikes. At the same time, the use of ML and Artificial Intelligence
(AI) is deemed highly necessary for 5G networks, as their application cellular networks
is a subject that has recently gained significant interest [3].

Starting off with some of the most popular and efficient ML existing algorithms,
the Decision Tree algorithm is a supervised learning algorithm that is mainly utilized
in order to efficiently solve the problems of regression and classification, in contrast
with other supervised learning algorithms, by classifying the information based on a
certain variable [4]. The input variables and output variable correlate with each other
through Linear Regression as y = a 4 bx, where y is the output and x is the input. Linear
Regression strives towards finding out the coefficients a and b, based on supervised
learning [5, 6]. Furthermore, the K-Nearest Neighbors algorithm (KNN) recursively
loops through the existing information in order to find the K-nearest instances to the
new instance, or on the other hand, the number (denoted as k) of instances that are
closer to the new example. The output is either a regression problem or a common class
for classification and the aim is to reduce standard deviation at each cluster’s points
and takes advantage of the Bayes’ Theorem in order to calculate how likely is that
an event will eventually occur, supposing that another event also occurred [7]. Lastly,
the Random Forest algorithm involves numerous decision trees that operate together
and simultaneously. Each decision tree reveals a prediction for a class and the most
voted class becomes the prediction of the model [8—10]. Last but not least, the K-means
algorithm is an unsupervised ML method for the processing of learning data and starts
with a first group of randomly selected centroids, which are used for each cluster as
starting points, and then performs iterative calculations to optimize the location of the
centroid [11-13].

Regarding our motivation, the city of Patras, as well as the majority of the cities of
today, has different connectional needs depending on the distribution of the users inside
the network. Our goal is to use the knowledge from this user distribution in any given day
and suggest the optimal positions for connectivity, as far as the small cells are concerned.
When using ML, we observe that K-means often converges to clearly suboptimal local
minima depending on the initial conditions possibly not giving the best results. The
way we deal with this problem, using the corresponding big dataset, is shown in the
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following sections of this paper. Furthermore, there exists the UE-BS association issue,
which relates to which is the optimal connection between a station and a network device.
A data object that deviates greatly from the rest is referred to as an outlier. They signify
measurement errors, poor data collection, or simply highlight variables that were not
taken into account when collecting the data. They can be the result of a measurement
or execution mistake. With the use of DRA also, we seek to minimize the number and
effects of the outliers.

Aiming to tackle the aforementioned challenges, in this work we will incorporate the
K-means unsupervised learning algorithm in a 5G geographical area, which will help
towards optimizing the association problem between a device and a Base Station (BS),
assuming their possible positions of the city structure. We will make use of multiple
datasets that consist of device spawning (their position and datetime randomly deviate
by a small margin) dividing it into 70% of training and 30% of testing dataset and
we will then use K-means algorithm, with K equals the number of BS, to learn the user
distribution in the network from these datasets and predict future optimal positions of the
small cells based on their movement. With the use of ML, we can observe that K-means
often converges to clearly suboptimal local minima depending on initial conditions and
for that reason, we will be using a large dataset on the users’ distribution (position with
deviation of some meters) for a relatively representative sample. Additionally, we will
also propose a Dynamic Resource Allocation (DRA) technique, where BSs that are low
in usage can lend extra resources to neighboring stations to help tackle user congestion.
Such an approach can mitigate the need for small cell infrastructure and prove a cost-
effective solution, due to the resources transferred within the network. No similar work
has been conducted for the specific analysis with the use of K-means.

The rest of this work is organized as follows: In the following section, we showcase
our system model on which we are going to examine the association algorithm alongside
with the ML mechanisms. In Sect. 3, we demonstrate our proposed mechanisms and
Sect. 4 includes the evaluation and comparison and report real experiments with our
findings. Section 5 discusses the conclusion and future work.

2 System Model

Starting with the energy consumption model, we consider that in this 5G network model,
all BSs do operate at maximum power. This will ultimately result in the highest available
throughputs for the network devices. Supposing that each macrocell holds a BS at its
center, let PlBS be the power consumed by the i BS, which is calculated as [14]:

PfS — Plgons . led + PfS (1)

where Pf“d corresponds to the outgoing radiated power from the BS, P{"* is the power
consumed because of the feeder/amplifier losses and PIBS related to the consumed BS-
related power.
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Regarding the UEs, supposing that PJU E is the consumed power for the network

device, when connected PJUE is calculated as [15]:
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where Pll."ss corresponds the power consumed (including system losses) for each of

the antennas the device is connected to, NJ‘."” depicts the different antennas the user is
rad,a
P;

equipped with, Ni?s relates to the set of antennas of a BS, P; ;""" is the radiated power

of the a®* antenna for the j”* user connected to the i BS and lastly, P;°" corresponds
to the energy required for the network user to associate with the BS.

Each UE has specific RB demands, depending on the BS it attempts to link/connect
to. The device with the lowest number of RBs will attempt to associate to a BS, if the BS
has enough RBs to satisfy the device itself. The device’s RB demands are proportional to
its data rates needs and inversely proportional to the bandwidth of the RB and the Signal-
to-Interference-plus-Noise Ratio (SINR) between the UE and the BS. The equation to
calculate the required amount of RBs for a device to link to a BS is computed as [16]:

—r th;
~Bgp -log, (1 + SINR; ;)

rji 1 3)
where [e] corresponds to the operator for the ceiling function, ¢h; relates to the UE
throughput demands, Bgp is the RB’s bandwidth and SINR; ; denotes the signal quality
between the device and the BS.

Regarding the Path Loss (PL) propagation model, in order to measure the signal
losses in the simulated network, we construct the distance-dependent path loss model
for the macrocell infrastructure (measured in dB) as follows [17]:

PLyacro = 128.1 4 37.6 - logy(d) @)

where d corresponds to the distance between the transmitter and the receiver (note that
this is measured in kilometers). Consequently, the channel gain can be calculated as:

Py

G=10 &)

In our simulation, we note that we consider the fact that all BSs have an antenna
height equal to 15m, as stated in the 5G NR technical specifications. Any additional wall
losses are excluded from our model formulation.

Moving on to the model concerning the user throughputs, let s;; be subcarrier
between the j# UE and the i BS. Regarding the overall set of subcarriers, we assume
that Sy j ; denotes the subcarriers summation between the j’h UE and the i BS. Follow-
ing the Orthogonal Frequency-Division Multiple Access (OFDMA) standard, the j# UE
associated with i BS has throughput equal to:

Rii= Y By-logy(1+SINR,;) ©

DL
SES; i
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where B_s denotes the subcarrier bandwidth and SINR; ; ; is the SINR between the BS
and UE on a subcarrier s. BLER is equal to 10~*. The SINR; ; ; is formulated as follows
(all calculations are over a subcarrier s) [14]:

Prad st ;
SINR; j i = rad )
No - Af + Z P -Gy j i

where P’ ad Jenotes the radiated power from the BS, Gy j; corresponds to the channel

gain between aj™ UE and an i BS, Ny is the white noise power spectral density, Af is
. -, )
the subcarrier spacing and Z Pr "l - Gy j ;' relates to the summation of every i th BS’s

radiated power (which causes interference in the neighboring cells), multiplied with the
channel gain between the interfering BS and the UE. Finally, in order to calculate SINR
in (dB), we use the following equation:

SINR4p) = 10 - IOgIO(SINRS’./J) ®)

3 Proposed Mechanisms

The K-means algorithm is an unsupervised ML technique for the processing of learning
data and begins with a first group of randomly chosen centroids, which are used as the
starting points for each cluster and then performs iterative calculations to optimize the
centroid positions. K-means is chosen through other clustering variances because of
its scalability and adaptability in large datasets as well as its guaranteed coverage. By
alternating between assigning data points to clusters based on current centroids, K-means
finds the best centroids selecting centroids (the center points of a cluster) based on the
current assignment of data points to clusters. This attempts to make the data points of the
intra-cluster as close as possible while at the same time, keeping the clusters as distinct
as possible. The clustering generated is a form of vector quantization that aims to divide
n observations into k clusters in which each observation belongs to non-overlapping
subgroups (clusters) in which each data point belongs to only one group with the nearest
mean (cluster centers or centroids), serving as the cluster prototype. This results in the
data space being partitioned into Voronoi cells. K-means clustering minimizes variances
within clusters using squared Euclidean distances, but not normal Euclidean distances,
whereas only the geometric median minimizes Euclidean distances (the mean optimizes
squared errors).

The proposed UE-BS association algorithm assumes pre-defined context information
for users. Aiming at maximizing the efficiency of the proposed model using ML while
respecting the pre-defined user data demands, the aforementioned problem transforms
into a minimization of required RBs. The proposed low-complexity UE-BS association
algorithm requires knowledge of the SINR, the system architecture, the available RBs,
the throughput demands for every user and the outcome of the K-means algorithm. To
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achieve efficiency maximization, we begin iterating from the device with the lowest RB
requirements. Repetitively, for each device, we will attempt to associate the device which
has the lowest demands towards the BS to which it has maximum signal quality, or in more
technical term, maximum SINR. If ML is enabled in the current simulation scenario,
then we attempt to take advantage of the distribution prediction K-means produced
with K equals the number of BS in the scenario using the resulting centroids as the
optimal positions of BS including the corresponding users that we suggest, otherwise
we continue without ML. Additionally, the best-case scenario is when both ML and DRA
are enabled, offering additional RBs to BSs that are in need because of multiple reasons
(device congestion, high interference, low coverage etc.). A DRA connection will always
be optimal for the device, because the UE-BS association will be optimal in terms of
signal coverage. Each UE-BS association is possible only if there exist remaining RBs,
otherwise, we decide to select the next best candidate. As for any remaining BSs, they
are discarded in this scenario.

Mechanism 1. K-means Algorithm using input datasets

begin
specify number of clusters K and initialize k means
points randomly
guess some initial cluster centers
calculate the distance between each data point and
cluster centers
for every p i some value, i=1,...,k, do

categorize each item to its closest mean

update the mean’s coordinates (averages of the
items categorized in that mean so far)

assign points to nearest cluster center
C_i:{j Zd(X]rPl)Sd(X],Ul) ,1#1,3=1,...,n}
set the cluster centers to the mean
nu i=llc i|)yjcEixj for every I
end for

keep repeating until there is no change to the centroids
If no data point was reassigned then

Stop
end
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Mechanism 2. Association Algorithm using ML and DRA support

begin
K = number of BSs
for each j in n~, do
choose device candidate with min (7, . )
select best BS by finding max(sinvr
if ML is enabled then
for each BS do
for each device do
clusters[B8S;] = K-means of device on Bs,
end for
end for
end if
if the available RrB, are enough then
if ML is enabled then
associate device and BS based on the clusters
else

device,BS

associate device and BS
end if
if ML DRA is enabled
for each BS do
if any BS needs resources then
if neighboring BS has enough RBs
to serve then
offer 15% RBs
update remaining RBs
end 1if
end if
end for
else
update available RBs;
end if
else
select next best BS candidate by max ( SINRsc.ss)
end if
end for
end

4 Performance Evaluation

In this section, we discuss the 5G network simulation scenario, where the Python pro-
gramming language was used to construct the experiment analysis (datasets, K-means
implementation, system model, association algorithms etc.). We consider a two-level
ring topology in the geographical area of study, resulting in a total of 19 macrocells.
Considering the second level of surrounding macrocells is crucial towards measuring
the interference caused by neighboring cells, as it would be a mistake not to consider
the negative effects of signal interference from the neighboring cells. All macro BSs are
located in the center of the cell and are surrounded by small cell infrastructures that can
help towards better user coverage inside the network. We consider that all BSs operate at
full power, to provide the highest available throughputs to the devices inside the network.
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The geographical area of interest is depicted below in Fig. 1. The map depicted below
represents a larger area in the city of Patras and includes all available BSs (macrocell
and smallcell infrastructures, as well as the devices distribution alongside the area of
interest). To evaluate the ability of our mechanisms to efficiently predict user movement
inside the network, a dataset was created based on the devices’ location (with devia-
tion of some meters) enough times for the accuracy to be objective and representative,
including the (x,y) pair of the devices’ positions and their timestamp, for a fixed num-
ber of hours per day. The experiment ended after gathering enough information from a
whole month, which was entered in the dataset, which was then given as input to the
K-means algorithm. The ultimate goal of the approach is to manage to offer better user
coverage and data rates, after successfully predicting the changes in user demands each
day, based on the user distribution as gathered in the dataset. This means that for the case
of predicting resources that e.g. higher probability of devices being in the city center
from Monday through Friday (weekdays) and them being out of the urban area on the
weekends, the prediction would suggest allocating extra resources to the more crowded
areas (due to the extra bandwidth available). The probability distribution is based on
real-life scenarios (Fig. 2 and Table 1).
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Fig. 1. Snapshot of simulation scenario in Fig. 2. Optimal smallcell positions using user
patras movement

Figure 3 and Fig. 4 reveal the successful connections percentage, divided into macro-
cell and smallcell connections, for both the scenarios of weekly and weekend device
congestion. The very first thing we can easily notice is that as devices increase inside
the same geographical area, it is getting harder and harder for macrocells to serve all
devices in the network. This is due to the fact that all macrocell BSs have a pre-defined
amount of RBs devoted to them and as devices increase in the network, the more chances
there are that the RBs will diminish with a higher rate. This means that such devices
can attempt to connect to the additional surrounding layer of small cells, as envisioned
officially in 5G networks, where due to multiple factors (e.g. no RBs remaining, outside
of area coverage, high interference from neighboring BSs), it is preferable to connect to
low-emission and low energy consumption smallcells to be successfully covered in the
5G network.

Additionally, we observe that the applied ML techniques, with or without DRA, can
offer an increased amount of macrocells resulting in less smallcell connections because
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Table 1. Experiment parameters

Parameter Setting Parameter Setting
Macrocells 19 White noise density —174 dBm/Hz
Air Protocol 5G NR Macrocell Coverage 375 m

5G Frequency Range FR1 Small cell Coverage 50 m

RB Bandwidth 360 kHz BS Antenna Gain 15 dBi
Modulation Scheme 64QAM UE Antenna Gain 0 dBi
Bandwidth 100 MHz Macro BS P/ 40w

Carrier Frequency 3.5 GHz Small BS P{ “rgax 1'W

RBs 273 UE Pad | 02W
Subcarrier spacing 30 kHz

the proposed ML techniques gain knowledge from the input dataset from multiple pre-
vious instances of the geographical area gathered. Using the K-means (Mechanism 1),
they suggest the optimal connection based on the existing network. When the DRA
comes into play, we can see that the connections to macrocells maximize, whereas the
connections to smallcells minimize. This is because the DRA mechanism takes advan-
tage of the existing ML dataset and can accurately relocate resources from relatively
empty BSs to BSs that need them the most due to device congestion (see lines 19-30 in
Mechanism 2). This is an important achievement, because with this ML technique, we
can mitigate the need for acquiring and installing smallcell infrastructures by relying on
existing knowledge of the network’s datasets.

In the figures above (Fig. 5 and Fig. 6), we observe the usage of the overall RBs
available to the network for the three different simulation scenarios (without ML, with
ML, and with ML combined with DRA). Studying the weekly and the weekend device
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Fig. 5. Weekdays overall RB usage (%) Fig. 6. Weekend overall RB usage (%)

congestion, we conclude that as the number of devices augments, more RBs are needed,
since the UE-BS association algorithm relies on the device’s RB demands (see (3) and
lines 13-33 in Mechanism 2). The more devices in our network, the more resources are
needed from the BSs. Since all BSs have a pre-defined number of RBs, the RB usage
increases proportionally to the device amount and according the ML techniques applied,
the RB usage augments. When DRA is applied, more RBs are being consumed, since
this mechanism tries to associate the current device with the best BS available according
to the ML output. If this option is not possible, resources will be relocated inside the
network infrastructure for the optimal association to be completed successfully (see
lines 19-30 in Mechanism 2). Thus, more and more RBs of the macrocells are needed,
despite the existence of a small cell infrastructure inside a network, which leads to the
ML technique with the DRA being a very cost-effective and efficient solution of the
UE-BS association problem inside 5G networks.

@

Weekend Data Rates (Mbps)
>

First 5 days Data Rates (Mbps)
3

a
IS

2

2

0 L1 L - L1

QP o\“ @R o\“ @ O o\\\ @ O o\“ o 09?\ o oe@‘ O oV 0@\ O O o O o
o“\ N ,,»0»\5 \,\\\\‘\,\\k\\‘\\,\i\\‘“\,\\‘\’\“\
@@»1@,\ ,L@\ @» o Qa\ U @;“ @ PO \h o o o RONIEC NN\ R @60 o o
Dewces (Scenario) Dewces (Scenario)

Fig. 7. Weekdays average data rates (Mbps)  Fig. 8. Weekend average data rates (Mbps)

Figures 7 and 8 show the weekly and weekend average data rates for the connected
devices in the network. We conclude that: a) more devices connected lead to lower
average data rates, regardless of whether ML techniques were used or not and b) upon
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applying DRA, the data rates maximize, compared to the previous two scenarios. The first
conclusion can be easily justified since more devices connect to the BSs with a predefined
amount of RBs allocated to them causing the resources to eventually diminish at a higher
rate. As a result, the number of unconnected devices is increased, due to insufficient BS
resources. Thus, there must be a compromise at the throughput demands coming from
all the devices so that a larger amount of them can be served. Regarding the second
conclusion, through DRA, all devices can efficiently be served while scanning the ML
dataset ensures that all devices are in fact served by the optimal BS in their area of
coverage, providing better signal quality (so, better SINR). Since their optimal BS will
be able to cover their RB demands, according to (6), the higher the RB demands and
the SINR signal quality, the higher the data rates eventually will end up being (see lines
19-30 in Mechanism 2).

5 Conclusion and Future Work

Studies show that in the future, the number of devices connected in IoT networks will
range from 25 up to 50 billion. As a result, IoT infrastructures will require more effec-
tive and efficient analysis methods than ever and ML techniques are envisioned to be the
solution, accompanied by the coming of 5G networks. In this work, we incorporated the
K-means unsupervised learning algorithm inside a 5G network infrastructure to better
associate devices with BSs. We used multiple datasets consisting of user distribution
(datetime included) in Patras and used K-means to learn the user movement and predict
the optimal position for the connection station. Additionally, we proposed a DRA tech-
nique, where BSs that are low in usage can lend extra resources to neighboring stations
to help tackle user congestion. Simulations revealed that by applying such ML mecha-
nisms inside 5G infrastructures, users can experience significantly higher data rates and
extended coverage with minimized interference. The DRA mechanism can mitigate the
need for small cell infrastructure and prove a cost-effective solution, due to the resources
transferred.
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