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Abstract. In the ever-growing field of 5G technology, Massive Multiple Input 

Multiple Output (MIMO) systems hold the promise of substantial improvements 

in network capacity and efficiency. However, the demand for low latency, im-

posed by real-time Internet of Things (IoT) applications presents some significant 

obstacles. This study delves into novel approaches to reducing latency within 5G 

MIMO setups, focusing particularly on the integration of shortened Transmission 

Time Intervals (TTIs) and preemptive scheduling tactics. Through simulations 

involving a small-scale MIMO configuration servicing multiple IoT devices, this 

study thoroughly evaluates the effects of these methods on transmission latency. 

The desired result is to demonstrate that the adoption of reduced TTIs notably 

mitigates overall latency, thereby augmenting the efficacy of time-sensitive IoT 

tasks such as industrial automation and healthcare monitoring systems. This re-

search not only contributes to the theoretical progression of 5G communications 

but also furnishes practical insights for network operators and system designers 

trying to fine-tune 5G networks for evolving IoT environments. 
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1 Introduction 

The evolution of the fifth generation (5G) of wireless communication networks prom-

ises transformative changes across various sectors, including industrial automation, 

healthcare, and urban mobility. Central to these advancements is the deployment of 

Massive Multiple Input Multiple Output (MIMO) technologies, which are pivotal in 

achieving the high data rates, increased capacity, and reduced latency goals of 5G. As 

the Internet of Things (IoT) continues to expand, with billions of devices interconnected 

and communicating incessantly, the latency performance of these networks becomes 

critical. Real-time applications such as autonomous vehicle navigation, remote surgery, 

and automated production lines demand not only continuous connectivity but also ex-

tremely low latency to function effectively and safely. 
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Despite the substantial capabilities of 5G networks, meeting the ultra-low latency 

requirements for these critical applications remains challenging. Current 5G implemen-

tations prioritize bandwidth and throughput enhancements, often sidelining latency re-

duction. However, the unique demands of IoT applications, where timely data delivery 

is paramount, require a shift in focus towards minimizing latency. This paper aims to 

bridge this research gap by exploring how to further reduce latency to satisfy the strin-

gent requirements of real-time IoT environments. This study introduces innovative 

techniques aimed at reducing latency in 5G MIMO configurations, primarily through 

the optimization of Transmission Time Intervals (TTIs) and the adoption of preemptive 

scheduling strategies. Shortened TTIs can potentially decrease the time taken for a data 

packet to be transmitted across the network, thus reducing the overall communication 

delay. On the other hand, preemptive scheduling prioritizes data traffic that is more 

delay-sensitive, ensuring that critical information is processed and transmitted first, 

thereby mitigating the latency experienced by crucial IoT devices [1], [2], [3], [4]. 

By employing a simulation-based methodology, this research evaluates the impact 

of these proposed latency reduction techniques within a controlled 5G MIMO environ-

ment. The results are expected to contribute significantly to the existing knowledge by 

demonstrating practical ways to enhance the real-time capabilities of 5G networks tai-

lored for IoT applications. This not only supports theoretical advancements in telecom-

munications but also offers practical insights and recommendations for network opera-

tors and system designers striving to optimize the burgeoning IoT ecosystem within the 

5G framework. Also, several studies have explored the integration of 5G and IoT to 

address the demands of modern applications. For instance, paper [5] provides an exten-

sive review of how 5G technology will transform IoT applications. The paper discusses 

the limitations of 4G LTE in handling the demands of high device connectivity, data 

rates, and low latency, and argues that 5G is essential for future IoT developments. 

Furthermore, it covers key technologies such as 5G NR, MIMO, mmWave communi-

cation, and HetNets, as well as addressing security challenges and the potential of AR 

in 5G IoT systems. Paper [6] provides an overview of the 5G and IoT technologies, 

discussing their evolution and the challenges they face, such as power saving, signal 

absorption, refraction, and diffraction. The paper reviews D2D communication and 

LPWAN technologies like ZigBee, SigFox, WiFi, LoRa, and NB-IoT, highlighting the 

new capabilities enabled by 5G in IoT systems. While previous studies have primarily 

focused on bandwidth and throughput enhancements in 5G networks, this research 

shifts the focus towards latency optimization, a critical factor for the efficacy of time-

sensitive IoT tasks. The unique approach of integrating shortened TTIs and preemptive 

scheduling strategies has not been extensively explored in the context of 5G MIMO 

setups. 

The rest of this paper is organized as follows: In Section 2, we introduce the mathe-

matical model utilized in our simulation environment. Moving to Section 3, we delve 

into the algorithm analysis that forms the basis for constructing our experiment scenar-

ios. Section 4 outlines the simulation environment and methodology employed to assess 

the performance of the Algorithm. Following that, in Section 5, the simulation results 

are presented, and a comprehensive analysis of the findings is conducted. Lastly, Sec-

tion 6 concludes the paper and offers insights into potential avenues for future research. 



2 Mathematical Model 

In the process of optimizing 5G MIMO systems for real-time IoT applications, it is 

critical to address the network latency which directly impacts the efficacy and reliability 

of IoT devices. This mathematical model provides a structured framework for evaluat-

ing how modifications in network configurations and protocols affect the overall la-

tency. The model incorporates several components essential for understanding and op-

timizing the data transmission processes in a 5G MIMO environment. 

In the model of data transmission for a 5G MIMO system, each IoT device u receives 

data xu(t) from the base station at any given time t. The signal yu(t) received by the 

device is a sum of the contributions from multiple antennas at the base station, each 

affected by the channel characteristics hu,n between the nth antenna and the device, and 

the ambient noise ηu(t). This noise represents random fluctuations and interference 

from other sources that might affect the clarity and integrity of the received signal. The 

model simplistically assumes linear propagation without considering inter-user inter-

ference, which can often complicate transmission in dense network environments. This 

simplification allows for clearer analysis and understanding of fundamental signal be-

havior and transmission quality [7], [8], [9]. Assuming a simple linear model without 

considering inter-user interference, the received signal can be modeled as: 

𝑦𝑢(𝑡) = ∑ℎ𝑢,𝑛

𝑁

𝑛=1

𝑥𝑢(𝑡)𝜂𝑢(𝑡) (1) 

As for the latency model, the total latency experienced by a packet, denoted as Lu, 

is the sum of processing, queueing, and transmission latencies. Each component con-

tributes to the delay experienced by the end-user, and minimizing these delays is critical 

for enhancing user experience and system efficiency in IoT applications enabled by 5G 

technology. Efficient management of these latency components is essential for ensuring 

that the network can meet the stringent requirements of emerging IoT technologies and 

applications. Transmission latency encompasses the time required for a data packet to 

travel from the base station to an IoT device. This latency component is vital in real-

time applications where delays can affect the functionality and responsiveness of the 

system. Reducing transmission latency is crucial for applications requiring immediate 

feedback, such as autonomous driving or real-time monitoring systems. 

Processing latency refers to the time taken by network infrastructure, particularly the 

base station, to process data before it is transmitted. This involves encoding, modulation 

setting, and possibly encryption. Efficient processing is essential to maintain high 

throughput and system responsiveness, making it a critical factor in overall network 

performance. Optimizations in hardware and software at the base station can lead to 

significant reductions in processing latency. 

Queueing latency is the delay that occurs when data packets wait in a queue until 

they can be processed or transmitted. This component of latency is highly variable and 

depends on the traffic load, network management policies, and prioritization schemes. 

In 5G networks, where data from numerous devices must be managed simultaneously, 

effective scheduling strategies can significantly mitigate queueing delays, especially 



for high-priority traffic in IoT applications. Total latency experienced by a packet sent 

to user u is: 

𝐿𝑢 = 𝐿𝑝𝑟𝑜𝑐 + 𝐿𝑞𝑢𝑒𝑢𝑒 + 𝐿𝑡𝑟𝑎𝑛𝑠 (2) 

3 Algorithm Analysis 

In this section, a comprehensive algorithmic analysis of the code implemented for eval-

uating latency reduction techniques in 5G MIMO systems tailored for real-time IoT 

applications, is conducted. This analysis aims to clarify the efficiency, effectiveness, 

and potential optimizations of the algorithm employed in the simulation experiments. 

A simplistic pseudoalgorithm of the code used in the experiments follows in Algorithm 

1: 
Algorithm 1 Latency Reduction Pseudoalgorithm 

Step 1: Initialization 

Initialize the simulation parameters including the number of antennas at the base station, number of 

IoT devices, and the TTIs (both standard and reduced). 

Step 2: Data Generation 

Generate random data payloads for each IoT device within the range of 100 to 1000 units. 

Randomly assign each device a type, either as a sensor or a smartphone. 

Randomly generate interference levels for each device between 1 and 5. 

Randomly assign each device one of three traffic models: CBR, VBR, or bursty. 

Randomly assign each device to one of three network slices (high, medium, or low priority). 

Step 3: Initialize Latency Measurements 

Create arrays to store latency measurements for both standard and reduced TTIs for all users. 

Create matrices to store latency measurements for each slice for both standard and reduced TTIs. 

Initialize counters to keep track of the number of users in each slice. 

Step 4: Simulate Transmission with Standard TTI 

For each user, determine the slice to which they belong and update the respective user count. 

Calculate the number of resource blocks based on the device type. 

Simulate the transmission for each user using the standard TTI by: 

Calculating the processing delay. 

Calculating the transmission delay based on data size and resource blocks. 

Adding the interference delay. 

Adjusting the latency based on the slice priority. 

Adding the traffic model-specific delay. 

Store the calculated latency in the respective arrays and matrices for standard TTI. 

Step 5: Simulate Transmission with Reduced TTI 

For each user, determine the slice to which they belong. 

Calculate the number of resource blocks based on the device type. 

Simulate the transmission for each user using the reduced TTI by: 

Calculating the processing delay. 

Calculating the transmission delay based on data size and resource blocks. 



Adding the interference delay. 

Adjusting the latency based on the slice priority. 

Adding the traffic model-specific delay. 

Store the calculated latency in the respective arrays and matrices for reduced TTI. 

Step 6: Calculate Average Latencies 

Compute the average latency for all users for both standard and reduced TTIs. 

Compute the average latency for each network slice (high, medium, low priority) for both standard 

and reduced TTIs. 

Step 7: Display Results 

Print the average latency for all users for both standard and reduced TTIs. 

Print the average latency for each network slice for both standard and reduced TTIs. 

Step 8: Visualization 

Plot the latency distributions for standard and reduced TTIs. 

Plot the latency distributions for each traffic model (CBR, VBR, bursty). 

Plot the average latency for each network slice for both standard and reduced TTIs. 

Create scatter plots of latency versus data payload size for both standard and reduced TTIs. 

Create scatter plots of latency versus interference levels for both standard and reduced TTIs. 

Plot the Cumulative Distribution Function (CDF) of latencies for both standard and reduced TTIs. 

Create bar charts to show the latency per user for both standard and reduced TTIs. 

Generate box plots to display the distribution of latencies for both standard and reduced TTIs. 

The pseudoalgorithm is designed to simulate and evaluate latency reduction tech-

niques in a 5G MIMO network environment. The process is methodically structured to 

ensure a comprehensive analysis of various factors affecting latency in real-time IoT 

applications. The simulation begins by initializing several key parameters. The number 

of antennas at the base station is set to 8, and 10 IoT devices are included in the network. 

Two TTIs are defined: a standard TTI of 1.0 ms and a reduced TTI of 0.2 ms, aimed at 

targeting low-latency applications. 

Random data payloads are generated for each IoT device, with values ranging from 

100 to 1000 units. Devices are randomly categorized as either sensors or smartphones. 

Additionally, each device is assigned a random interference level between 1 and 5, and 

one of three traffic models: Constant Bit Rate (CBR), Variable Bit Rate (VBR), or 

bursty traffic. To simulate network slicing, devices are randomly distributed across 

three slices with different priority levels: high, medium, and low. The latency measure-

ments are initialized in arrays to store the latency for both standard and reduced TTIs, 

as well as slice-specific latency measurements. Counters are also set up to track the 

number of users in each slice. The next phase involves simulating the transmission us-

ing the standard TTI. For each device, the network slice is determined, and the corre-

sponding slice user counter is incremented. The number of resource blocks is then cal-

culated based on the device type. The transmission latency is simulated by considering 

various factors such as data size, TTI, interference, resource blocks, slice priority, and 

traffic model. The resulting latency is stored in both the overall and slice-specific ar-

rays. A similar procedure is followed for the reduced TTI, where the transmission la-

tency for each device is simulated and stored in the respective arrays. After simulating 

the latencies, the average latency for both standard and reduced TTIs is calculated 

across all devices. Additionally, the average latency for each network slice is 



determined for both TTI configurations. These calculations provide insights into how 

reduced TTIs, network slicing, and traffic models impact overall latency. 

The results are then displayed, showing the average latencies for both TTI configu-

rations and for each network slice. This helps in understanding the effectiveness of re-

duced TTIs and network slicing in reducing latency. 

Finally, the results are visualized through various plots. Latency distributions for 

standard and reduced TTIs are plotted to show overall performance. The latency distri-

bution for different traffic models is illustrated through histograms, highlighting how 

different traffic patterns affect latency. A bar chart compares the average latency for 

each network slice, while scatter plots show the relationship between latency and data 

payload size, as well as latency and interference levels. A Cumulative Distribution 

Function (CDF) plot provides a probability distribution of latencies, and a bar chart 

shows the latency experienced by each user. Additionally, a box plot displays the dis-

tribution of latencies, including median, quartiles, and outliers. 

The MATLAB functions used in the simulation include simulate_transmission, 

which calculates the transmission latency based on various factors, get_re-

source_blocks, which determines the number of resource blocks for each device type, 

get_slice_priority, which adjusts latency based on network slice priority, and get_traf-

fic_model_delay, which adds delays specific to each traffic model. These functions 

collectively ensure a detailed and accurate simulation, providing valuable insights for 

optimizing real-time IoT applications in 5G MIMO networks. 

4 Simulation Environment 

The simulation concern a 5G MIMO network environment to evaluate the impact of 

various latency reduction techniques on real-time IoT applications. The simulation 

setup involves a base station equipped with 8 antennas serving 10 IoT devices. Each 

device is randomly assigned data payloads ranging from 100 to 1000 units, and their 

device types are categorized as either sensors or smartphones. 

To account for the diverse traffic demands in IoT environments, each device is ran-

domly assigned one of three traffic models: CBR, VBR, or bursty traffic. Additionally, 

the network is divided into three virtual slices, each representing a different priority 

level, to simulate network slicing. Users are randomly distributed across these slices to 

evaluate the effect of prioritization on latency. 

The primary objective of this simulation is to compare the performance of standard 

TTIs and reduced TTIs. Standard TTIs are set at 1.0 ms, while reduced TTIs are set at 

0.2 ms to target low-latency applications. The latency measurements consider pro-

cessing delays, transmission delays based on data size and resource blocks, interference 

delays, slice priorities, and traffic model-specific delays. 

In this setup, the following parameters are defined: the number of antennas at the 

base station is set to 8, and the number of IoT devices is 10. Each device is assigned 

data payloads randomly selected between 100 and 1000 units. Device types are as-

signed randomly as either sensors or smartphones, and interference levels vary between 

1 and 5. Traffic models are randomly assigned among CBR, VBR, and bursty. The 



network is divided into three slices with different priority levels to examine the impact 

of network slicing on latency. The summary of the parameters can be found in Table 1. 

Table 1. Simulation Parameters 

Parameter Value 

Number of Antennas (Base Station) 8 

Number of IoT Devices 10 

Standard TTI 1.0 ms 

Reduced TTI 0.2 ms 

Data Payloads Random values between 100 and 1000 units 

Device Types Randomly assigned as either sensors or smartphones 

Interference Levels Random values between 1 and 5 

Traffic Models Randomly assigned as CBR, VBR, or bursty 

Network Slices 3 slices (high, medium, and low priority) 

The simulation process begins with the generation of random data payloads, device 

types, and interference levels for each user. Each device is also assigned a specific traf-

fic model and a network slice. The latency for each device is then simulated using both 

standard and reduced TTIs. This involves calculating the total latency for each device, 

which includes processing delays, transmission delays based on data size and resource 

blocks, interference delays, slice priority adjustments, and traffic model-specific de-

lays. The average latency for both standard and reduced TTIs is calculated across all 

devices. Additionally, the average latency for each network slice (high, medium, low 

priority) is determined for both TTI configurations. These calculations provide insights 

into how reduced TTIs, network slicing, and traffic models impact overall latency. 

To visualize the results, several plots are generated. These include latency distribu-

tions for standard and reduced TTIs, latency distributions for different traffic models 

(CBR, VBR, bursty), and average latency for each network slice. Scatter plots of la-

tency versus data payload size and latency versus interference levels are also created. 

Furthermore, CDF plots of latencies, bar charts of latency per user, and box plots of 

latency distributions for standard and reduced TTIs are presented. 

The simulation utilizes MATLAB for numerical computation and visualization. Key 

MATLAB functions used in the simulation include simulate_transmission, which cal-

culates transmission latency based on various factors, get_resource_blocks, which de-

termines the number of resource blocks for each device type, get_slice_priority, which 

adjusts latency based on network slice priority, and get_traffic_model_delay, which 

adds delays specific to each traffic model. This comprehensive simulation environment 

setup and methodology ensures a detailed evaluation of latency reduction techniques in 

5G MIMO networks, providing valuable insights for optimizing real-time IoT applica-

tions. 

5 Simulation Results 

The simulation results provide a detailed analysis of latency reduction techniques in a 

5G MIMO network environment [10], focusing on the effects of standard and reduced 

TTIs, network slicing, and different traffic models on overall network performance.  



 

Fig. 1. Average Latency per Slice for Standard and Reduced TTI. 

The average latency per network slice for both standard and reduced TTIs is illus-

trated in Fig. 1. The results indicate that reduced TTIs significantly lower latency across 

all slice priorities. High-priority slices, benefiting from the highest resource allocation, 

demonstrate the lowest latency values. In contrast, medium-priority slices experience 

higher latency, particularly with standard TTIs, due to their balanced resource alloca-

tion. Low-priority slices, having the least resource allocation, exhibit the highest la-

tency but still show noticeable improvement with reduced TTIs. 

 

Fig. 2. Box Plot of Latency for Standard and Reduced TTI 

The box plot latency in Fig. 2 for standard and reduced TTIs presents a comprehen-

sive view of the latency distribution, including median values, quartiles, and outliers. 

The data reveals that reduced TTIs consistently achieve lower median latency and nar-

rower interquartile ranges compared to standard TTIs. This indicates not only a reduc-

tion in average latency but also a decrease in latency variability, which is crucial for 

maintaining consistent network performance in real-time IoT applications. 

The CDF plot in Fig. 3 provides a probabilistic perspective on latency distribution. 

The CDF curves for both standard and reduced TTIs show that a higher proportion of 

data transmissions complete within shorter latency periods when using reduced TTIs. 

This further corroborates the efficacy of reduced TTIs in enhancing network respon-

siveness and reliability, as lower latency values are achieved more frequently. 



 

Fig. 3. Cumulative Distribution Function of Latency 

 

Fig. 4. Latency Comparison between Standard and Reduced TTI. 

A direct comparison of latency experienced by each user under standard and reduced 

TTIs is depicted in Fig. 4. The results consistently demonstrate that reduced TTIs offer 

lower latency across all users. Variations in latency among users are observed, which 

can be attributed to differences in data payload sizes, interference levels, and assigned 

traffic models. Nonetheless, the overall trend highlights the superior performance of 

reduced TTIs in minimizing transmission delays. 

Fig. 5 shows the latency distribution for three traffic models: CBR, VBR, and bursty 

traffic. Bursty traffic, which sends data irregularly, has the highest latency and the most 

variation. This is due to its unpredictable data bursts causing delays. In contrast, CBR 

traffic, which sends data at a steady rate, has the lowest latency because it allows for 

more efficient use of network resources. VBR traffic, with its changing data rates, has 

latency levels between the other two models. The overlapping areas in the histogram 

suggest that while different traffic models can have similar latency values, each model 

generally follows its own latency pattern. These results underline the importance of 

considering traffic types when optimizing network performance, as each type affects 

latency differently and impacts the overall network efficiency and reliability 

The latency experienced in Fig. 6 by individual users for both standard and reduced 

TTIs is presented in a bar chart. The chart clearly illustrates that reduced TTIs consist-

ently reduce latency for all users, highlighting the uniform benefit of this technique 

across diverse network conditions. This visualization also helps identify any outliers or 



users who may experience unusually high latency, which could be investigated further 

to optimize network performance. 

 

Fig. 5. Latency Distribution per Traffic Model 

 

Fig. 6. Latency per User for Standard and Reduced TTI  

The scatter plot in Fig. 7 showing the relationship between latency and data payload 

size reveals that larger data payloads generally incur higher latency. This trend is ob-

served for both standard and reduced TTIs, though reduced TTIs still achieve lower 

latency overall. This relationship emphasizes the need for efficient data management 

and transmission strategies, especially for applications handling large volumes of data. 

The final scatter plot in Fig. 8 examines the impact of interference levels on latency. 

Higher interference levels correlate with increased latency, as expected. However, re-

duced TTIs consistently mitigate the impact of interference, resulting in lower latency 

across all interference levels. This finding highlights the resilience of reduced TTIs in 

maintaining network performance even under challenging conditions. 

The simulation results clearly demonstrate the advantages of reduced TTIs, network 

slicing, and traffic model considerations in optimizing latency for 5G MIMO networks. 

Reduced TTIs not only lower average latency but also enhance the consistency and 

reliability of network performance. Network slicing effectively prioritizes critical ap-

plications, while understanding traffic models helps tailor network strategies to specific 



use cases. These insights are pivotal for the development of efficient, real-time IoT 

applications in next-generation networks. 

 

Fig. 7. Latency vs. Data Payload Size 

 

Fig. 8. Latency vs. Data Payload Size 

6 Conclusion and Future Work 

This research has successfully demonstrated the efficacy of various latency reduction 

techniques in a 5G MIMO network environment, with a specific focus on real-time IoT 

applications. The simulation results indicate that reduced Transmission Time Intervals 

(s) significantly decrease latency across all network slices, making them highly effec-

tive for low-latency applications. High-priority slices, which receive more resources, 

benefit the most, showing the lowest latency values. This prioritization ensures that 

critical IoT applications, which require real-time responsiveness, maintain optimal per-

formance. The box plot and Cumulative Distribution Function (CDF) analyses further 

highlight the advantages of reduced TTIs, not only in lowering median latency but also 

in reducing latency variability.  

Moreover, the comparison of latency across different traffic models reveals that the 

type of traffic significantly affects latency. Constant Bit Rate (CBR) traffic achieves 

the lowest latency, while bursty traffic exhibits the highest. This insight underscores 

the importance of considering traffic patterns when designing and optimizing network 

strategies. Overall, the findings suggest that implementing reduced TTIs, network 



slicing, and tailored traffic models can vastly improve the performance of 5G MIMO 

networks, particularly for real-time IoT applications.  

While this study provides valuable insights into latency reduction techniques, sev-

eral avenues for future research remain open. Future research should incorporate more 

complex interference models to account for inter-user interference in dense network 

environments. Additionally, investigating how user mobility, including handovers be-

tween cells, affects latency will provide a more comprehensive understanding of real-

world network performance. Analyzing the trade-offs between latency performance and 

energy efficiency is crucial, especially for battery-powered IoT devices. Finally, inte-

grating and evaluating sophisticated scheduling algorithms, such as machine learning-

based predictive scheduling, and testing these techniques in real-world network envi-

ronments will provide practical insights and validate the simulation results under actual 

operating conditions.  
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