
ARTICLE IN PRESS
Journal of Network and

Computer Applications 30 (2007) 563–585
1084-8045/$ -

doi:10.1016/j

�Correspo
Patras, Gree

E-mail ad
www.elsevier.com/locate/jnca
A web content manipulation technique based on
page Fragmentation

Bouras Christosa,b,�, Kounenis Giorgosa,b, Misedakis Ioannisa,b

aResearch Academic Computer Technology Institute, Riga Feraiou 61, 26221 Patras, Greece
bDepartment of Computer Engineering and Informatics, University of Patras, 26500 Rion, Patras, Greece

Received 28 September 2005; received in revised form 12 January 2006; accepted 24 January 2006
Abstract

Web portals today offer a variety of content and services to their users. This content can be split

into various categories and usually content semantically related is placed in the same area. In this

paper, a software technique is presented that allows the viewers of web sites to build their own

personalized portals, using specific areas of their preferred sites. This technique saves users’ time and

reduces the cost of browsing the web by minimizing the volume of data that has to be downloaded.

It is based on an algorithm, which fragments a web page in discrete fragments using the page’s

internal structure. Users utilize a web interface to define which parts of selected web pages they desire

to appear in their personalized portal. No additional software needs to be installed on the users’

personal computers, since this technique is designed to function centrally as a data source for a Web

Server. In addition, usage of this technique reduces user perceived latency during browsing sessions,

since less data must be transferred to users’ personal computers.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Web page fragmentation; Web data manipulation; Information search; Web scraping; Web page

transcoding

1. Introduction

Most web pages have a stable, static structure for the view (presentation) of their
content. This structure rarely changes, even if the content of the web page changes very
see front matter r 2006 Elsevier Ltd. All rights reserved.

.jnca.2006.01.005

nding author. Research Academic Computer Technology Institute, Riga Feraiou 61, GR 26221,

ce. Tel.: +302610 960375; fax: +30 2610 996314.

dress: bouras@cti.gr (B. Christos).

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2006.01.005
mailto:bouras@cti.gr

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585564
often. The layout of web pages remains the same, regardless of the frequency of the
content’s change (for example, personal sites of Internet’s users change rarely, while
portals’ content changes many times per day). In content-rich web sites (such as general
interest or news portals) this structure comprises of areas of content (usually text with
links) of common thematic areas (for instance, news about politics, economy, sports, etc.).
These areas are called ‘Web Page Components’ or ‘Web Page Fragments’, because those
web pages can be split entirely in such discrete areas.
Most users of the Web visit some specific web sites every time they are engaged in a

browsing session. They usually show interest for some specific parts of the home page. For
example, some users only visit the sports section, while others prefer to view news about
politics and economy. Their browsing habits are almost the same every time they use the
Web: they sequentially visit a list of preferred web sites (portals) and view specific areas of
these sites.
In this paper, we present a technique that could assist the users of the web in their

browsing sessions. In particular, the technique presented can be used for building a web
service that allows its users to construct ‘personal home pages’ containing areas from their
favorite sites. By using this service, a user could have in a single web page, all the areas of
the sites he/she prefers. The presented technique premises the usage of a software tool that
works centrally (as a data source for the web server), analyzes selected web pages and
fragments them in the thematic areas they are composed of. Updated sections of the web
pages are stored centrally and are used for the construction of the home pages of the users.
Every web page that is to be available to the users for building their personalized pages
must be first analyzed by the software tool, which extracts the page’s structure and defines
the areas (Web components (WC)) that compose the page. These WC are used for building
the users’ personalized pages. The functionality of this tool is transparent to the users,
since they only use a web interface. Users select from this web interface those areas of
the home page of the web portals they wish to include in their ‘personal home page’ and
the system automatically constructs their own home page using the latest version of the
content every time they wish to access it.
This technique offers several advantages to users. The most important is that they will

not need to browse all of the web sites that have some information of their interest. All this
content can be found gathered in their personal home page. In addition, the volume of the
data that has to be downloaded to the users’ personal computers is significantly reduced.
Given that most users are usually interested in only few of the available areas of portals, all
other areas (text and images) will not be downloaded to their PCs, since the technique is
server-based. This fact reduces the user perceived latency and the cost of their browsing
sessions. In addition, a modified extended version of this technique will allow users to view
fragments of their favorite portals in small screen devices.
This paper starts with a presentation of related work in Section 2 and an introduction

to the concept of WC in Section 3. In this section, a definition of the term ‘WC’ is
provided. In Section 4, an algorithm is presented, which is used for fragmenting a web page
and extracting the WC that compose it. In Section 5, the technique that has been
implemented for constructing personalized pages based on popular portals’ WC is
presented. Section 6 examines the performance of the proposed technique in terms of
avoided data transfers and also presents an evaluation of the training procedure. Finally,
in Section 7, our future work plans are presented and some conclusions are drawn in
Section 8.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 565
2. Related work

‘WC’ was introduced as a concept in Bouras and Konidaris, (2001). In Bouras and
Konidaris(2002, 2003) the concept of ‘WC’ is utilized for improving web performance and
reducing redundant data transfers and user perceived latency. The fragmentation
algorithm that is used in the system was presented in Bouras et al. (2004).

In Sugiura and Koseki (1997) a system named Internet Scrapbook is presented, which
aims to automatically create personalized pages using fragments from other web sites. The
users select a part of a web page and the system creates a matching pattern. To update a
personal page, the system extracts the target data from source pages and re-constructs the
personal page. In Internet Scrapbook, extracted data are determined by line patterns,
which are the previous/first/next lines of the portion that the user had selected on an
original source page. In addition to the line patterns, Scrapbook also uses HTML tag
patterns, which are the order of the tags in a source page. However, the system uses the line
patterns prior to the tag patterns. The tag patterns are only used when no candidate
portion can be found with the line patterns or when multiple candidates exist.

In (Ramaswamy et al. (2005)) a technique to fragment a web page is presented which
uses multiple instances of the same page and also multiple pages from the same web site.
However, the fragmentation aims at maximizing cache efficiency, whereas ours is aimed at
making a fragmentation that looks logical to the users.

The problem of providing specialized content to diverse devices like PDAs, mobile
phones or though voice interfaces is closely related to the problem of fragmenting a web
page. Web content providers can design device specific interfaces, but this solution is
expensive. Alternatively, transcoding proxies can be used, in order to transform the web
content as it exists on the server into a form capable of being displayed to each respective
device, a technique with unsatisfactory results. Finally, specialized wrappers can be used,
which can simulate human interaction with the web site and provide shortcuts to the
information needed, excluding display of unwanted material. Wrappers can be used in a
variety of ways. They can be provided by the ISP, by the content provider or they can be
used by the user himself. They can also be used by enterprises to provide device-dependent
views of services. The two main problems of the use of wrappers are scalability, which is
the ability to provide access to a large number of web sites, and robustness, which is the
wrapper’s ability to adjust to changes of the web pages on which it operates.

Wrappers are used by the system described in Freire et al., (2001). This system focuses on
the problem of identifying a particular part of a web page in different time points, besides
fragmenting a page and it is the most relevant to our own objectives among the systems we
found in our research. It uses the XPath query language to specify extraction expressions for
its flexibility and ease of use. In (Ramaswamy et al. (2005)) the WebVCR system is presented,
which records a user’s interaction with the web site, so that the next time the user wants the
same information, the interaction will automatically be performed by the system.

Several transcoding systems have been presented that aim to provide users of small-
screen devices, such as PDAs or WAP-phones, an alternative, enhanced way of browsing
the Web (see e.g. Bickmore and Schilit, 1997; Britton et al., 2001; Buyukkokten et al., 2001;
Chen et al., 2001, 2003; Hwang et al., 2001, 2003; Kaasinen et al., 2000). An interesting
feature of some of these systems is that they offer a way to create ‘summaries’ or ‘indexes’
of the full content of web pages. An annotation-based transcoding system (not fully
automatic) is presented in Hori et al. (2000).

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585566
In Liu et al. (2004) a system is proposed, which aims to create logical structures of web
pages using a software agent. To achieve this objective the WICCAP Data Model is
defined, which maps a pages physical structure to logical views. A visual tool is also
presented, which eases the construction of logical views.
A ‘Web surfing assistant’ is presented in Hwang and Lee (2003), which utilizes a similar

fragmentation technique as the one presented in this paper for splitting a web page in
semantic regions. Also, the work presented in Challenger et al. (2000) and Wills and
Mikhailov (2000) investigates fragmentation’s impact on Web performance. Several
interesting heuristics for fragmenting a web page have been presented in Butler et al.
(2001), Caverlee et al. (2004), Chen et al. (2001) and Yu et al. (2003) amongst others.
To conclude, we identified several research efforts similar to ours. Indeed, some

heuristics that have been proposed in the past could also be used to extend our technique.
However, almost none of them offered the functionality we wanted to implement in our
technique. In particular, the systems we found in the bibliography do not offer a way to
identify a portion of web page in different time points (with the exceptions of Freire et al.,
(2001) and Sugiura and Koseki (1997)).

3. Web components

While authoring a simple web page is easy, authoring a portal or a content-rich web
page is quite challenging. The problem lies in the fact that a content-rich web page contains
information, navigation links, images, text, etc making it impossible to simply add content
in a top-to-bottom approach (i.e., like writing a text file). There are various layout

techniques and practices that can be used to make the presentation of content appearing in
a web page more consistent to its semantic meaning and purpose. For example, one of the
first techniques that was used in the WWW that differentiated a web page from a simple
text file was the addition of a navigation bar in the header of the page or in the left side of
the page. Today’s popular sites use much more complex techniques and HTML code than
this to build functional and appealing layouts for their content. In every portal (or content-
rich web site in general) one can identify discrete content areas that contain text or links
that belong to the same thematic area. For example, these areas could contain news about
sports, economy, politics, etc. We call these areas ‘WC’ (or ‘Web Fragments’). Every web
page can be fragmented in such areas. The number of the discrete WC depends on the
complexity of the page layout and content differentiation. Usually, portals consist of 15–25
WC. You can see an example of this fragmentation of web pages in Fig. 1, where the first
page of the BBC web site is presented (www.bbc.co.uk), with its WC marked with bold
border.

4. Fragmentation algorithm

A browser renders a web page based on the HTML file that represents the page. This file
is nothing more than a text file with markup tags that instruct the browser how to render
the page. In addition, external files may exist (for example, files for CSS, javascript code,
images, etc.). However, only the HTML file must be handled to extract the WC that
compose a page.
The tags inside the HTML file are nested. This means that the code of the page can be

represented as a tree (HTML tree). The root of this tree is always the HTML tag, which

http://www.bbc.co.uk

ARTICLE IN PRESS

Fig. 1. BBC home page fragmented.

B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 567
has two children (HEAD and BODY). The building code of the Web page is inside the
BODY tag. Therefore, we can extract the parts of the page that represent the different WC
of the page just by extracting some particular nodes of the HTML tree.

The algorithm that fragments the web page must be able to determine which nodes of
the HTML tree represent WC. This is not a straightforward procedure. The main difficulty
is the ‘subjective’ nature of the procedure of identifying a WC. An area that one person
comprehends as an area with semantically similar content could be considered by another
person as too complex to be represented by a single WC. This problem could be solved by
considering every node of the HTML tree as a WC. For instance, we could consider an
image (contained in an IMG tag) or a paragraph of text (contained in a P tag) as separate,
discrete WC. The user could combine some of these components in order to construct his
own components. But this would make the service provided too complex and could also
lead to huge problems when the site content changes and the software mechanism would
have to recognize the new version (instance) of the selected components.

In order to overcome this problem, the implemented fragmentation algorithm was solely
based on the structure that the web site’s author uses to construct the web page. Most of
the web sites use tables for building their layout. This led to the decision to use the table
structure of a web page as the leading criterion for fragmenting the page in discrete
components. If we ignore all the tags (nodes) of the HTML tree except the TABLE tags,
the HTML tree is significantly reduced in complexity and depth. Some of the TABLE tags
of this tree are only used for layout purposes, while some others contain content. Then,
based on the amount of content (text) that corresponds to each node, the algorithm

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585568
chooses which nodes must be considered as building components of the web page. Each
node of this reduced tree contains a link to the corresponding node in the HTML tree.
The algorithm uses the reduced tree (index tree) to fragment the web page and afterwards
it can retrieve the actual content of each component by following the links to the HTML
tree.
The fragmentation algorithm is used for the analysis and fragmentation of the web page,

which includes two phases: training phase and update phase. Both in the training phase
and the update phase, a software mechanism (which implements the fragmentation
algorithm) downloads the web page, parses it and fragments it to WC. In the training
phase, the fragmentation algorithm calculates the areas that will be candidate WC, while in
the update phase the fragmentation algorithm updates the information that are stored
about the presentation of the selected WC. If the fragmentation algorithm finds a change
in the structure of the page or in the number of the WC during the update phase it tries to
resolve the issue by recalculating the WC of the page.
The steps of the fragmentation algorithm are presented in the procedure below:
Algorithm 1: Fragmentation Algorithm

Note: Steps are used both in the ‘Training’ and the ‘Update’ phase.

(1) Fetch the latest instance of the web page from its respective URL.

(2) Parse the web page and construct the HTML tree.

(3) Analyze the HTML tree and produce the index tree.

(4) Analyze the index tree and calculate which nodes must be marked as Web components.

Note: Steps 5 and 6 are used only in the ‘Update’ phase.

(5) Check if there are differences in the structure of the index tree from the index tree of

the‘training’ phase or if there are differences in the number of the web components

selected. In case there are differences, recalculate the web components.

(6) Extract the Web Components from the HTML tree and store them.

1-4

Step 1 is fairly simple. The fragmentation algorithm requests the html file of the web
page from the respective URL and downloads it locally.
For the needs of step 2 we use a simple HTML parser. It takes as input the text of the

HTML file that was downloaded from the page’s web server (step 1) and builds the HTML
tree. All the necessary information for reconstructing the HTML file in its initial form are
stored in this structure. But the purpose of this transformation (flat text file to tree data
structure) is to have the data of the web page in a form that allows the use of algorithms
that work easily, effectively and efficiently. The fragmentation algorithm also starts a
background procedure, which downloads locally all the other files that are used for the
presentation of the web page (images, javascript files, CSS files, flash, etc.).
Step 3 of the fragmentation algorithm takes the HTML tree as input and constructs

another tree structure that is used in step 4 for recognizing which areas of the HTML file
(or nodes of the HTML tree) will be extracted as WC. This tree is also used as an index for
the HTML tree. Therefore, throughout this paper it is referred to as the ‘index tree’. It is
significantly smaller in size than the HTML tree since it only contains the TABLE nodes.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 569
The algorithm starts from the root of the HTML tree and recursively traverses all of it. For
every TABLE node it finds, a new node is added to the newly constructed index tree. This
way the produced index tree has the structure the HTML tree would have if all nodes
except TABLE nodes were removed. An ID is assigned to each node of the index tree,
which depends on the position of the node in the tree. In particular, the ID is a
representation of the path from the root of the index tree to this node. All nodes except
from the root have a number indicating their position relatively to the other nodes with the
same parent. Starting from the root, following the nodes on the path to a node and
combining their numbers an ID for each node is constructed. For instance, the ID of the
third child of the second child of the root is ‘2-3’. Each node of this new structure has a link
to its corresponding node in the HTML tree and also some information that will be of
later use. This information includes the length of the text of this node in the HTML file
(with and without the tags), the ID of the node, the number of images that are included
under this node and finally the number of links that can be found in the text (content) of
the node.

The actual decisions about how a web page will be fragmented are made in step 4.
The fragmentation algorithm uses the index tree that was produced in the previous step
of the fragmentation procedure. It starts by recursively parsing the index tree trying to
find nodes that meet some particular criteria. When a node meeting those criteria is
found, no children of this node are visited and the node is marked as a WC. This means
that the whole sub-tree beneath this node is considered as a single entity that can be used
by the users of the service for building their personalized page. The children of this
node are part of the component and cannot be used standalone, since the algorithm has
decided that their content is of minor importance (or too small) in order to be used as
a component. We have to note here that a node in the index tree that has been selected
as a WC cannot be used directly to get the actual content of the component. In order to
achieve this we have to follow a link from the node in the index tree to its respective node
in the HTML tree and from there acquire the HTML code of the component in text
format.

The criteria used to decide if a node of the index tree (i.e. a part of the HTML file) is
suitable for being used as a WC are related to the size of the content of this node and its
internal structure (i.e. the number of children and descendants of this node). In its current
form, the algorithm calculates the ‘size of the content’ of a node by calculating the length
of the pure text (i.e. without the tags) that is found inside the node (future plans include to
use the area occupied by the component in the web page instead of the length of the text).
If node p meets the following criterion then it is marked as a WC without even examining
its internal structure:

Average RatiopRatiopp 2nAverage Ratio (1)

or

1pRatiopnðNumber of content nodesÞp 2; (2)

Where

Ratiop ¼
Pure text length in the node p

Pure text length of the root node
(3)

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585570
and

Average Ratio ¼
1

Number of content nodes
(4)

Relation (1) (or its equivalent relation (2)) expresses the intuitive criterion that a WC
must be ‘medium’-sized, neither too small, neither too large in comparison with the whole
page size. Ratiop is calculated by dividing the pure text length included in node p by the
pure text length of the entire page, giving the percentage of the node’s content to the
content of the whole page. By the term ‘pure text’ we denote the text without the HTML
markup. This metric expresses the relative size of the WC (regarding the size of the whole
page). Average Ratio is the percentage of the text of the whole page that a node would
have if all nodes that contain content (i.e. nodes that contain text and are not used for
layout purposes) were equally sized. This metric is used to approximate the size of a
‘medium-sized’ component. It is defined as the inverse of the number of the content nodes
of the index tree. If the size of the content (text) of a node is greater than the average size
(i.e. the Average Ratio) or smaller than the double of the average size, then that node is
considered ‘medium-sized’ and is selected as a WC.
Relation (2) could be rewritten in a more abstract form as

l pRatiop n ðNumber of content nodesÞpu; (5)

where

0plpupumaxð¼ Number of content nodesÞ:

The values of l and u express the lower and upper bound for the length of a node’s text in
order to consider the node as ‘medium-sized’. Relation 5 means that if a node’s text length
is greater than or equal to l/umax and smaller than or equal to u/umax, then this node is
considered ‘medium-sized’ and is selected as a WC. By substituting l ¼ 1 and u ¼ 2 in (5)
we get the criterion expressed in (2). The values of l ¼ 1 and u ¼ 2 were arbitrarily chosen,
since they resulted in good fragmentation of web pages. In case we had set a value for l that
was smaller than 1, then the algorithm would select nodes with text length smaller than the
text length of the average node, which is already small. We chose u ¼ 2 after experimenting
with several web sites and examining the fragmentation’s results. However, future work
plans include further testing with more web sites in order to find the ‘ideal’ values for the
constants l and u.
The size of the content contained inside a TABLE tag is not the only criterion used for

fragmenting a web page (although it is the most important). The other major criterion that
is used for selecting a node as a WC is based on the structure of the index tree. We noticed
that areas that are intuitively perceived as WC are frequently composed of more then one
TABLE tags. From these TABLE tags, one contains the main body of the Component’s
content, while the rest are used for layout purposes or contain an insignificant amount of
content (for instance, a title of an article). Thus, when the fragmentation algorithm finds
one node of the index tree, which is not a leaf, and which contains less than four children

and less than five (in total) descendants (not including layout nodes) it selects this node as a
WC. The WC that have either been selected because of their content size or because of their
structure and contain more than one table tags (i.e. they are not leaf nodes in the index
tree) are called ‘complex WC’.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 571
When the fragmentation algorithm finishes the traversal of the index tree, it makes some
last refinements of the WC selections. More specifically, if it finds a WC that is the single
child of its father it selects the father as a WC. This is done because the father of the
previously selected component is probably a layout table tag or contains some content
related to its child node (such as a title or the author of an article).

When step 4 of the fragmentation algorithm finishes, the whole index tree has been
traversed and some nodes have been marked as WC. If the algorithm is in the update
phase, two more steps, which are described in the respective section of the paper, are
performed. For the training phase, an index tree with the selected WC suffices.

5. Transcoding technique

Next we will present the methodology for constructing personalized web pages based on
WC. There are three phases: Web pages’ analysis and fragmentation, components selection

(by the user) and personalized page synthesis for presentation to the user.

6. Web pages’ analysis and fragmentation

The first phase involves a software tool whose role is to continuously download and
analyze selected web pages and update the HTML code of each component and the meta-
information stored about it. This tool (‘WCs Creator’) is not installed on the users’
personal computers, but functions centrally, as a data source for the web server of the
service provider. It keeps a list of web pages defined by the service administrator. The WC
that are available for the creation of personalized pages are extracted from these sites.
These WC are not created dynamically upon users’ requests, but are extracted and stored
by this software mechanism. The building code of each WC is updated in frequent time
intervals. The reason behind this choice is performance: In the case that we had selected the
dynamic creation of WC upon users’ requests, the user should have to wait for a significant
amount of time, since all the web pages that constitute in the creation of his/her
personalized page would have to be downloaded on the server of this service, they would
have to be parsed and analyzed and after that, the personalized page of the user would be
created by the extracted components. This would also lead to huge waste of bandwidth
(every page that has a component in a user’s personalized page is downloaded in every
request) and server resources. Instead, by having the ‘WCs Creator’ continuously analyze
the web pages that are contained in its list of interesting sites, only the last step of the
procedure described above (creation of a web page from the HTML source of the selected
components) is performed upon a user’s request.

Web pages’ analysis and fragmentation is a multi-step procedure. This procedure
includes two main phases. The first one is the training phase, where each web page is
examined for a given period of time and areas that can be treated as WC are detected. In
this procedure, the training algorithm parses the web page many times, fragments it and
stores some data after each parsing. Later, when enough data have been gathered, the
algorithm analyzes them and calculates which areas of the page will be extracted as WC.
The training algorithm stores information about each WC that will be used as the identifier

of this component in the update phase, which follows the training phase.
When the training procedure of the system for a specific web page has been completed,

the update procedure begins. This procedure lasts for as long as this specific web page is

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585572
chosen to be available to the users. The update procedure fragments the web page and
based on the information collected from the training phase, updates the latest instances of
the WC that are stored in the system.
In the following sections, the training and the update phases are examined more

thoroughly.

7. Training phase

The training phase of a web page analysis must be performed before this page’s WC are
made available to the users. The WC of this specific page can be used for building
personalized pages, after the training phase has been successfully completed. Its role is to
analyze the web page and decide how the Web page will be fragmented and how its WC
will be selected during the update phase. In the end of the training phase for a specific web
page, the training algorithm’s output is the number of the WC of this page, and a unique

identifier for each one of these components. This unique identifier can be used for
identifying a WC in a web page instance that has changes in the page structure or changes
in the number of the WC. This training phase would not be required if changes never
happened in the web page’s structure and the relative size of its content areas. Although
changes of these kinds are rare, it is almost sure that they will happen. The training
phase allows the system to have pre-built knowledge about how to handle these changes.
In the training phase we try to find a unique identifier for each WC. During this phase
we use the ID of each WC as an identifier, which depends on the position of the WC inside
the index tree.
Although the goal of the training phase is to allow the creation of a mechanism that

could overcome problems caused by changes of the structure of web pages or in the
number of the WC, one basic assumption for its correct functioning is that changes like
these do not happen during the training procedure. If changes like the ones described above
happen during the training procedure, the algorithm must become too complicated in
order to overcome them. There are various ways for the solution of this problem. The most
simple is to reject the samples that present changes (this is done in the current
implementation). It is also possible to use both the structure and the content of the WC in
order to readjust the structure of the index trees, but this is a much more complicated
procedure.
A WC can be characterized by many factors: Its position inside the index-tree, its

relative position to the other WC, its ID inside the index tree, its content (in terms of text
or images), its content size (in terms of text length or number of images) and others.
However, it is quite difficult to find a criterion that can be used to uniquely identify a WC
from the others that are contained inside a Web page. We have to note here that this is
necessary for the proper functioning of the system, since users must be able to select which
components they wish to see in their personalized page and the system must be able to
recognize them from the list of the WC extracted from the fragmentation algorithm. The
training phase, which lasts from 1 day to several days, aims at providing a unique identifier
for every WC of a Web page.
Before continuing with the analysis of the training phase, one important fact must be

mentioned about the content of the WC. Depending on the web page we can classify WC
in three categories, using the criterion of the changes of their content: There are some
components whose content remains constant (for example, an area with links to categories

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 573
of news), there are some others whose entire content changes (for example, an area with
news headlines) and there is a third category of components where part of their content
changes, while the rest remains the same (for example, an area with news headlines that has
a ‘NEWS HEADLINES’ title on top). During training phase the constant part of the
components’ content is used for components of the first and third categories in order to
assign a unique identifier for them, while the relative position of the components is used for
components of the second category.

The training phase for a web page can be split in four sub-phases:
(1)
 Data gathering phase.

(2)
 Comparison of Content Vectors (CVs) of instances of the same WC and extraction of a

single Constant Content Vector (CCV) for each WC.

(3)
 Comparison of the Constant Content Vectors of all the WC of the web page and

extraction of the Identifier Content Vector (ICV) of each WC. The ICV of a WC
uniquely identifies it between all other WCs in the web page, with the exception of weak

ICVs of WC that are empty.

(4)
 Assignment of a signature for each WC of the page.
In the data gathering phase, the training algorithm uses the fragmentation algorithm in
order to gather information about the usual structure of the web page. In fixed time
intervals the fragmentation algorithm is activated and the index tree for the specific page
instance in that point of time is stored. The goal is to have enough specimens of the index
tree for a time interval in which all the content changes that happen regularly in the web
page have taken place. In the most popular news web sites or portals this time period is
24 h, while for sites that change less frequently this time interval can last more (it depends
on the frequency of the content’s change).

When this predefined monitoring time period has passed, k specimens of the index tree
have been collected, where k ¼ Monitoring period=sampling interval

� �
. At this point the

training algorithm has acquired all the data it needs for its analysis.
In the second phase of the training procedure, the algorithm computes which part of

each WC stays constant during the monitoring period. For each WC of the index trees, the
fragmentation algorithm constructs a data structure that contains its content, i.e. every
word of the text inside the WC and the filenames of the image files contained in the
component. This data structure is named ‘CV’ and is a characteristic of each WC instance

(this means that the CV can be different for different instances of the same WC). The
representation of documents as term vectors is a very popular technique in information
retrieval. The CV is a pair of two vectors, one containing the terms inside each WC
instance and one containing the filenames of the image files inside the components. These
are symbolized as Tp and Ip, respectively:

Tp ¼ w wj is a word inside the pure text of WC p
� �

, (6)

Ip ¼ z zj is an image contained in the code of WC p
� �

, (7)

CVp ¼ ðTp; IpÞ. (8)

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585574
We assume that for the k specimens of the index trees the number of the WC that have
been selected in each fragmentation and the index tree’s structure remain the same. Using
the ID of each WC, the training algorithm acquires this WC’s instances and its CVs from
the collection of the index trees. Next, it compares the k CVs of each WC and keeps only
the content (text and image filenames) that exist in ALL the CV. At the end of this
procedure the algorithm has constructed a data structure that keeps the content of each
WC that remained constant during the whole training procedure. This structure is named
‘CCV’ and is a characteristic of a WC independent of its instances in different time points.
Eq. (9) expresses the construction of CCV in mathematical terms.

CCVp ¼
\k

t¼1

CVp;t, (9)

where CVp,t is the Content Vector of the tth instance of WC p.
Although step 2 of the training procedure produces a structure that could identify a WC

with great accuracy, there are some cases where the CCV of a WC is not enough. The CCV
of WCs is constructed considering only the content of this specific WC (in all instances of
this WC derived during the training period). But the goal of the training procedure is to
produce a unique identifier for all WCs of a Web page. Therefore, in step 3 of the training
procedure the CCVs of all the WCs are compared mutually. There are two modifications
that are made in the content of the CCVs: The first is that the text or images that exist in all
the CCVs are removed. The second action is that if the content of a CCV is contained
completely inside the content of another CCV, then the first WC and its ICV (which is
the output of step 3) are marked as weak. This means that its ICV (reduced CCV after
the removal of all the common content elements) cannot uniquely identify it and that
its relative position in the index tree should be used for identifying it. In the end of step 3
of the training procedure, each WC has a reduced CCV that uniquely identifies it in
the Web Page, with the exception of WCs that are marked as weak or that have CCVs that
are empty. These WCs get a unique identifier in step 4 of the training procedure. The
reduced CCVs that uniquely identify WCs after the completion of the 3rd step of
the training procedure are named ‘ICVs’ of their respective WCs. This procedure is shown
in Eq. (10).

ICVp ¼ CCVp �
\pmax

i¼1

CCVi, (10)

WCp is weak if 9 WCq : ICVp � ICVq. (11)

Step 4 is the final phase of the training procedure. Until this point, almost all the WCs
that are contained inside a Web page have been assigned an ICV that can be used as a
signature for them. Step 4 assigns this ICV as the signature of the WCs that have one. In
almost all the web pages, the vast majority of the WCs have an ICV that uniquely identifies
it in all page instances. This ICV is set as the signature of the WC. However, it is possible
that some components have an empty or weak ICV (an empty ICV is a also weak, since it
is a subset of all other ICVs). As explained before, this ICV cannot be used as a signature.
Therefore, in step 4 the training algorithm detects the WCs with weak or empty ICVs and

ARTICLE IN PRESS

Fig. 2. Index tree for www.in.gr.

Previous Component Next Component Position Text Size Number of Images

Fig. 3. Identifier for components with no constant content.

B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 575
assigns another kind of data structure, which is based in their relative position in the web
page and in the content size, as a signature for them. The way this signature is constructed
is explained with an example:

Fig. 2 shows the index tree graph of www.in.gr, a popular Greek portal. While almost all
of its WCs (which have been marked with bold in the index graph) have an ICV as a
signature, the leaf nodes, which are descendants of node with the ID 3-6, have been chosen
as WCs and all of them have empty ICVs. Therefore, the algorithm must assign a separate
signature to every one of them. The WCs with IDs 3-5-4 and 3-7-1-1 are the first
components before and after the series of the components with empty ICVs. These two
components are included in the signature data structure. In addition, the position of each
one of these components with empty ICVs inside their list is stored in the signature data
structure. These three fields denote the relative position of the components regarding the
other components in the index tree. Additionally, two more fields are used to store the text
size and the number of images included in each component. These are used in order to
identify a component in cases where the relative position is not enough (However, there are
cases where even these two additional fields are not enough. These are extreme and
complicated cases and we will make no further reference to them in this paper). Therefore,
the identifier data structure for components with no constant content or constant content
that cannot be used as identifier (empty or weak ICVs) has the structure shown in Fig. 3.
In this identifier the previous and the next component (1st and 2nd field) are marked
with their sequence number in the page index, which is the final output of the training
procedure. The page index is a matrix, which contains the ID and the signature of every
WC of the page.

http://www.in.gr
http://www.in.gr

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585576
8. Update phase

Following the training phase, an estimation can be made about what output to expect
from a later download and fragmentation of the web page. The full structure of the web
page is available, shown in any of the k index trees collected during the training phase
(note: the entirety of this information is not needed and only the last index tree is kept),
and also the page index which stores all the WC identifiers. The page index contains both
the ID of each WC, which is related to its position in the index tree, and its signature, which
diversifies it from all other WCs (as has been explained in the previous section, the ID of a
component is possible to change if there are changes in the page structure, while the
signature remains constant).
The role of the update phase is to update the stored data with the latest instances of the

WCs (HTML code, images, etc.). The time interval between each fetching and update of a
web page depends on how often its content changes. This time interval is fixed, but
in future versions it will vary depending on how often the algorithm finds the page
modified.
The whole procedure of the update phase has many similarities with the training phase.

It continuously fetches the web page, parses it and calculates (using the fragmentation
algorithm) the WCs of the web page. Following this, it stores the latest instances of the
WCs in the Web Server of the system, in order to be used by the users for their
personalized portal’s creation.
The fragmentation algorithm, as discussed in the respective section, produces in step 4

the index tree of the web page instance that was fetched and marks some nodes as WCs.
The training procedure uses a collection of the index trees of different instances of the same
page, in order to decide how the web page must be fragmented. We assumed that during
the training phase no changes happen in the page structure or in the number of the WCs
that was calculated by the fragmentation. In general though, despite being a rare situation,
changes may come about during the update phase. In this case the fragmentation
algorithm has to by pass the problems caused by the changes using the data gathered in the
training phase.
Step 5 of the fragmentation algorithm is used for this purpose (steps 5 and 6 are not

used in the training phase). It takes the output of step 4, i.e. the index tree and
the page index and checks if there are differences in the structure of the page or in
the number of the calculated WCs. Although it is possible to implement this check directly
on the index trees, it is done by checking for differences in the ID field between the
page index of the latest page instance and the page index that was produced in the
training procedure (the page index of page instances contains the WC’s CV in
the placeholder of the signature, since the signature is a characteristic of all instances
of a WC and a CV is a characteristic of each single instance). If no changes show up
(which is the rule for most cases) then the fragmentation algorithm continues with step 6.
Otherwise, a special procedure takes place, which aims at fixing the problems created by
the differences.
The algorithm, which corrects the calculation of the WCs, is presented in the following

paragraphs. It is the most complex algorithm implemented for this system, since many
situations may trigger it. Although it is probably impossible to create an algorithm that
could function flawlessly even at the most complex situations, the algorithm presented
below shows a very good behavior for most common cases.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 577
Algorithm 2: Fragmentation Correction Algorithm

 If (page index of the page latest instance page index) {

 If (WCcount in the page index from training== WCcount in the instance page index){

Check the signature scontained in the page index with the Content Vectors contained

in the instance page index

 If (signatures match) {

Extract (mark for extraction) the Web components based on their signatures

}

 else {

Extract all the Web components that their CVs match with signatures in the

page index. Extract all the rest WCs based on their order of appearance in

the page index.

}

 } else {

If (index tree structure from training matches with the instance index tree) {

Extract Web components based on their IDs

}

 } else {

Counter++;

(1)

(2)

(3)

(3)

(3)

(2)

(2)

(1)

Run the fragmentation algorithm with its parameters set to produce larger

(and less) Web Components

}else{

Run the fragmentation algorithm with its parameters set to produce smaller

(and more) Web Components

}(5)

Get the initial fragmentation (with the default value of the uparameter). Extract all

the Web Components that can be extracted based on their Content Vectors. Extract

all the remaining Web Components based on their order of appearance and their

content size (closest match).

}(4)

}(1)

(4) } else {

(5) If (WCcount in the instance > WCcount from training){

(4) If (Counter<4){

We have to note here that the algorithm presented above uses the Content Vectors of the
WC instances for the comparisons with the signatures of the selected WCs from the
training phase. However, it gets more complicated if the page contains components with
no constant content or weak ICVs. We assigned a different kind of signature for these
components during the training phase (Fig. 3). The Content Vector of a WC instance
cannot be used for comparing it with a Component with such a signature. Whenever such a

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585578
situation occurs, the algorithm compares all the components that have an ICV as a
signature and after this comparison has been done it tries to calculate the rest based on
their relative position and their content size.
Another issue is how to make the comparison between the CV of WCs instances and the

signatures (ICVs) of WCs contained in the page index. Remember that the ICV is subset of
the CCV of a WC, which is calculated by comparing several instances of the same WC
and removing the content that does not exist in all the instances. It also uniquely identifies
a WC, i.e. there are no two WCs (WC) with CV that are supersets of the same ICV.
The fragmentation correction algorithm uses this property of the ICVs for the compa-
risons it has to make. Specifically, it checks an ICV against all the CVs of the WC
instances. The first matching instance, is the WC it tries to detect. There is one extreme case
where this check can produce more than one results. It occurs if in an instance of a WC, the
content that is changed contains all the content of the ICV of another component.
However, this situation is extremely rare and no special measures to deal with it are
considered.
When the fragmentation correction algorithm finishes (step 5 of the fragmentation

algorithm) all WC instances have been marked for extraction. Then, in step 6 they are
extracted and materialized in the Web Server. The index tree is traversed and for each
marked node the algorithm follows the link to the respective node in the HTML tree and
retrieves the HTML code of the WC. Afterwards, it makes some transformations to the
HTML code and stores the derived code in the Web Server. This code is used for
presenting the WC to the users. Each WC is identified in the Web Server by its sequence
number in the page index of its respective page and the web page’s name.

9. Personalized Portal Creation

Web page analysis and fragmentation aims at always having the latest instances of the
WCs that comprise the web pages that are offered to the user for his/her personalized page
creation. The software that implements the fragmentation technique stores the HTML
code, the images, the javascript files and all the other related files in the hard disk of the
web server that provides the service to the users. It also stores a modified version of each
fragmented web page that is used for showing to the users the WCs that comprise it.
The next phase is interaction with the user. It aims at creating a list of the WCs that a

user wants to include in his/her personalized page or altering this list by adding or
removing components. Using a special web interface to interact with the system, the user is
asked to select one of the sites that have been analyzed by the system. When the user makes
a choice, he is transferred to a page where all the WCs of the selected site are shown in their
initial position inside this site’s first page, marked with a red border. When the user hovers
his/her mouse pointer over the area occupied by a component, a button appears over
this component asking the user to store this WC in his/her list. If the user selects to
store the WC, then this component is recorded in his/her profile as a new entry in the
selected components list. The user can now continue selecting other components. The
components that have already been selected are marked with a yellow border. When the
mouse pointer is hovering over them a button appears calling the user to remove them
from the selected components list. When the user finishes with the selected web page,
he/she can be transferred back in the first page where he/she is asked again to select one of
the available sites.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 579
The outcome of the described procedure is the creation of a list of the desired WCs for a
user in the system database. This list is used when a user accesses his/her personalized web
page.

10. Personalized Page Synthesis

Personalized page synthesis is executed by a script in the web server of the service
provider. This script checks the database for the user’s record and retrieves the list of the
selected WCs. It then retrieves the source code of each selected WC from the filesystem of
the web server and uses it for constructing the user’s personalized page.

The first time a user enters his/her personalized page, all WCs are presented sequentially,
top to bottom inside the page. However, the WCs are placed inside layers, which can be
moved by the user using his/her mouse (there is a tab in the upper left corner of each layer
for this purpose). Each WC’s position is stored in the database when the user releases the
mouse button. The next time the user enters his/her personalized page the WCs are placed
in the same position that they were left. A special button that appears in the top (header) of
the page along with the user’s name, allows him/her to enter the ‘positioning mode’ again.

We have to note here that during the personalized page synthesis a special procedure
must be followed for WCs that originate from pages using CSS. In this procedure, the CSS
files of the originating pages are appended in the CSS file of the personalized page. When
the page synthesis finishes, the CSS file that is created contains all the styles that are
defined inside the CSS files of the originating pages of the components. In addition, during
the extraction of the WCs in the update phase of the web page analysis and fragmentation,
a transformation is performed in the source code of the WCs and the CSS files. In
particular, all the styles are named based on the page they originate from. A style name ‘X’
which is used in the ‘Y’ page is named in the final CSS file of the personalized page as:
‘Y_X’. This way no conflicts occur between styles with the same name that come from
different pages. A similar procedure is performed for javascript files.

An example of a personal page is seen in Fig. 4. In this page there are three WCs
selected, one from www.e-go.gr and two from www.abcnews.com.

11. Evaluation

In order to evaluate the training/update procedure we executed the respective algorithms
with three news web sites. These web sites were: www.cnn.com, www.abcnews.com and
www.cbsnews.com. The time interval between each parsing and analysis of the pages was
50min. We allowed 10 parsings of each web page (we have to note here that for real use the
number of parsings should be more and the monitoring period should be longer). The
results are shown in Figs. 5 and 6, from which some interesting conclusions can be drawn:

It is clear that the assumption that no changes happen in the number of the WCs during
the training procedure does not always hold. This can be seen in the graphs (in Fig. 5) for
CBS News and CNN. However, we can see that there are only two and one fetches,
respectively (out of 10) that differ from the majority. Therefore, rejecting these samples
does not cause significant problems and loss of information.

Fig. 6 shows the size of the ICVs of the 25 WCs of ABC News. Nine WCs out of the 25
have weak ICVs. Five out of nine WCs with weak ICVs are also empty. However, almost
all of them are weak not due to changes in their content, but due to small size. This shows

http://www.e-go.gr
http://www.abcnews.com
http://www.cnn.com
http://www.abcnews.com
http://www.cbsnews.com

ARTICLE IN PRESS

Number of Web components

0
1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

10

ABCNEWS

CNN

CBSNEWS

Fig. 5. Number of Web Components for 10 parsings.

Fig. 4. Personal page.

B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585580

ARTICLE IN PRESS

0
5

10
15
20
25
30
35
40

1 2 3
4-

1
4-

2
4-

3
4-

4
4-

5
4-

6
4-

7
4-

8
4-

9
4-

10
4-

11
4-

12
4-

13
4-

14 5 6 7 8 9 10 11 12

ABC News Web Components

IC
V

IDs

Fig. 6. Web Components of ABCNEWS.

B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 581
that the whole technique could be enhanced (and simplified) by not allowing the
fragmentation algorithm to select small WCs (it could merge them with others or just
ignore them). Fig. 6 also shows that some sites (such as ABCNEWS) utilize a lot of images
for building their layout and these images contribute a lot to the content of the WCs. For
instance, Components with IDs 2 and 3 are almost completely composed of images. This
leads to the conclusion that images should also be considered in the heuristics of the
fragmentation algorithm.

Although the major goal of the technique described in this paper is to assist the Web
users in their browsing sessions by collecting in a single web page all the WCs that they
wish to see, it also has some performance advantages. Specifically, by using this technique
the user’s browser does not have to download all the content that comprise a web page
(HTML code, images, etc), but only data belonging to the specific WCs that are used in
the user’s personal page. These data consists of HTML code, images, flash files and
all other files that are used for presenting the WC in its originating page. Huge savings
in downloaded data can be achieved by the proposed technique if users only show
interest in small parts of web pages. Downloading less data also results in savings of the
available bandwidth for other user activities and leads to the reduction of user perceived
latency.

In order to demonstrate the amount of avoided data transfers to the users’ personal
computers by using this technique, some experiments were performed. Three popular sites
were selected (CNN, BBC and Yahoo) and the fragmentation technique was applied to
them. They were split in their respective WCs and the size of each component was
recorded. The size of the components was calculated by adding its HTML code size to the
size of the images included in it. Assuming that a user selects some WCs from each site and
rejects all others, only the data of these components will be transferred to his/her personal
computer. The rest of the data are not transferred since the fragmentation technique is
executed centrally as a data source to the web server and the personalized page of the user
is constructed in the web server of the service provider. For instance, if a site contains a
WC with advertisements (which are usually big files relatively to the other files of a web
page) and has not selected it for his/her personalized page, then all these data will not be
downloaded to his/her personal computer.

The results of the fragmentation for the web sites of CNN, BBC and Yahoo are shown
in Fig. 7. It shows the sizes of the WCs that comprise each page.

ARTICLE IN PRESS

CNN

0

5000

10000

15000

20000

25000

'1 '2-1 '2-2 '2-3 '2-4 '2-5 '2-6 '2-7 '2-8 '2-9 '3-1 '3-2 '3-3 '3-4 '3-5 '3-6 '3-7 '3-8 '3-9 '4 '5

BBC

0

2000

4000

6000

8000

10000

12000

14000

16000

'1 '2 '3 '4-1 '4-2 '4-3 '4-4 '4-5 '4-6 '4-7 '4-8 '4-9 '4-10 '4-11 '5 '6

YAHOO

0
500

1000
1500
2000
2500
3000
3500
4000

'1 '2 '3 '4-1-1 '4-1-2 '4-3 '4-4 '4-5 '4-6 '4-7 '4-11 '4-12 '4-13 '4-14 '4-15 '5-1 '5-2 '5-3 '5-4 '5-5 '5-6'4-1-3 '4-1-4 '4-2 '4-8 '4-9 '4-10 '5-7

Fig. 7. Web fragmentation of three popular sites.

B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585582
The percentage of downloaded data (D) and avoided data (A) over the whole page data
size, which denote the performance gain from the technique, can be calculated by the
formulas: D ¼

P
Sp;k

�P
Totalk andA ¼ 1�

P
Sp;k

�P
Totalk, where Sp,k denotes the

size of the pth component of the kth page and Totalk denotes the size of the whole page.
As an example of the performance gain of using the fragmentation technique, let’s

assume that a user selects to see in his/her personalized page only the news headlines and
the ‘general’ links from the three sites presented above. These are included in the following
Components: 2-1 and 3-2 for CNN, 4-1 and 4-3 for BBC and 4-7 and 4-13 for Yahoo (they
are marked with different color in Fig. 7). Substituting the respective values in the formulas
presented above we obtain a 78% gain for the user.
In conclusion, the result of these observations is that the fragmentation technique

besides the convenience of presenting to the users all desired information in a single page,
can also help towards the reduction of data transfers to their PCs and increase the
perceived ‘speed’ of the Internet connection during browsing sessions.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 583
12. Future work—enhancements

The technique presented in this paper can be further improved in many ways. Future
work plans include testing the software that implements this technique with some users and
gathering their feedback on bugs or improvements of the service. After evaluating users’
feedback and using our own remarks we will implement the suggested improvements for
the technique and the software.

Enhancements to the fragmentation algorithm are also included in our future work and
research plans. There are some cases where small leaf nodes are selected as WCs or some
areas of content are not included in any WC of a page. This is a consequence of only using
the TABLE tags for defining page structure. However, this is not the only option for the
algorithm. Index tree nodes can include all the children of a table tag such as TR or TD.
This will increase the size of the index trees, since many more nodes will be added, but will
offer greater flexibility, providing more options for the fragmentation. Some additional
features should also be implemented in the fragmentation algorithm, such as the ability to
combine different nodes to build the index tree. This will also reduce the problem of
selecting small nodes as WCs, since even nodes that are not descendants of a common
ancestor could be merged in a WC. In addition, we will investigate the possibility of
implementing a second fragmentation algorithm that is not based on the table structure of
HTML pages. This will allow the system to function with pages that do not contain table
tags, but are created using CSS styles positioning. We believe such an algorithm will
increase the usability of the proposed technique. However, computational complexity and
the resources needed to support such a service will be increased.

The training and update procedures can be also enhanced. We will examine situations
where the training or the update procedures fail and by inspecting the reasons of their
failure we will improve the algorithms. Some simulations will also be made with ‘mockup’
sites, created just for testing the operation of the whole system. This is required in order to
identify situations where the system fails because of changes that very rarely happen to real
web sites.

The synthesis algorithm, which merges the WCs that are of interest to the user, can be
improved by better handling of the javascript calls inside the WCs and the javascript code.
In the current implementation, SCRIPT tags are treated just as all other tags and this can
sometimes lead to problems.

Besides improving the proposed technique, which aims to provide a system for
constructing personalized portals with content from external sites, future work plans
include applying the ‘WCs’ concept for reducing redundant data transfers caused by the
transfer of slightly changed web pages and implementing a software system towards this
direction. This idea is explained in Bouras and Konidaris (2003). Although this application
of WCs seems different from the one explained in the current paper, much of our research
can be applied in a system that would reduce redundant data transfers by transferring only
some parts of web pages and not the whole of them.

13. Conclusions

In this paper, we presented the concept of ‘WCs’ and its application in designing and
implementing a software technique that can assist Web users in their browsing sessions, by
presenting to them in a single web page only the parts of web sites that are of interest to

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585584
them. Usage of this technique enhances their browsing experiences, since all information a
user usually accesses in a single browsing session is gathered to his/her personalized page.
Additionally, users save time, since they do not have to visit several sites to access the
desired information and they avoid redundant data transfers, also reducing browsing cost.
Reserved bandwidth also leads to a decrease of the user perceived latency. The first
implemented prototype shows that the concept of ‘WCs’ can be implemented, without
inducing heavy load on the web server. We believe that the final version of the software
system will be a viable product in the market and that many users will embrace it.
References

Bickmore T, Schilit W. Digestor: device-independent access to the World Wide Web. Comput Networks ISDN

Syst 1997;29(8):1075–82.

Bouras C, Konidaris A, Wcomponents: A Concept for improving personalization and reducing user perceived

latency on the World Wide Web. In: Proceedings of the second international conference on internet computing

(IC2001),vol.2, Las Vegas, Nv, USA, June 25–8th 2001. pp. 38–44.

Bouras C, Konidaris A. Performance Evaluation of a Hybrid Run-time Management Policy for Data Intensive

Web Sites. World Wide Web J Internet Web Inform Syst 2003;6(1):23–47.

Bouras C, Konidaris A, Estimating and Eliminating Redundant Data Transfers Over the Web: A Fragment Based

Approach. In: Proceedings of the third international conference on internet computing (IC2002), USA, 2002.

Bouras C, Kapoulas V, Misedakis I, A Web-page fragmentation technique for personalized browsing. In: 19th

ACM Symposium on applied computing-track on inernet data management, Nicosia, Cyprus, March 14–17,

2004, pp. 1146–7.

Britton KH, et al. Transcoding: extending E-Business to new environments. IBM Syst J 2001;40(1).

Buttler D, Liu L, Pu C, A Fully Automated Object Extraction system for the World Wide Web. In: Proceedings of

the 2001 international conference on distributed computing systems (IDCS ‘01).

Buyukkokten H, Garcia-Molina H, Paepcke A, Accordion summarization for End-Game Browsing on PDAs and

Cellular Phones. In Proceedings of the conference on human factors in computing systems, CHI’01, 2001.

Caverlee J, Butler D, Liu L, Probe, Cluster, and Discover: Focused Extraction of QA-Pagelets fom the Deep Web.

In: Proceedings of the 20th IEEE international conference on data engineeing (ICDE 004), March 30–April 2,

2004, Boston.

Challenger J, Iyengar A, Witting K, Ferstat C, Reed P, A publishing system for efficiently creating dynamic web

content. In: Proceedings of the IEEE conference on computer communications (INFOCOM’00), March 2000.

Chen J, Zhou B, Shi J, Zhang H, Fengwu Q. Function-Based Object Model Towards Web-site Adaptation.

In: Proceedings of the 10th WWW Conference. New york: ACM Press; 2001. p. 587–96.

Chen Y, Ma W, Zhang H, Detecting Web Page Structure for Adaptive Viewing on small Form Factor Devices.

In: Proceedings of WWW ‘03, May 20–24, 2003, Budapest, Hungary.

Freire J, Kumar B, Lieuwen D, WebViews: Accessing Personalized Web Content and Services. In: Proceedings of

the 10th international conference on World Wide Web, Hong Kong, 2001.

Hori M, Kondoh G, Ono K, Hirose S, Singhal S, Annotation-based web content transcoding. In: Proceedings of

the ninth international world wide web conference, Amsterdam, The Netherlands, May 2000.

Hwang E, Lee S, Web surfing assistant for improving web accessibility. In: international conference on internet

computing (IC’03), Las Vegas, NV, USA, June 23–26, 2003.

Hwang Y, Jung C, Kim J, Chung S, WebAlchemist: a web transcoding system for mobile web access in handheld

devices. In: Proceedings of ITCom, SPIE—The International Society for Optical Engineering, 2001. p. 37–46.

Hwang Y, Kim J, Seo E, Structure-aware web transcoding for mobile devices. IEEE Internet Comput

J September–October 2003.

Kaasinen E, Aantonen M, Kolari J, Melakoski S, Laakko T, two approaches to bringing Internet services to

WAP devices. In: Proceedings of the ninth International World Wide Web conference, 2000.

Liu Z, Keong Ng W, Lim E, Li F. Towards building logical views of websites. Data Knowledge Eng

2004;49(2):197–222.

Ramaswamy L, Iyengar A, Liu L, Douglis F. Automatic Fragment Detection in Dynamic Web Pages and Its

Impact on Caching. IEEE Trans Knowledge Data Eng 2005;17(6):859–74.

ARTICLE IN PRESS
B. Christos et al. / Journal of Network and Computer Applications 30 (2007) 563–585 585
Sugiura A, Koseki Y, Internet Scrapbook: creating personalized world wide web pages. CHI 97 Extended

Abstract, 1997. pp. 343–4.

Wills CE, Mikhailov M, Studying the impact of more complete server information on Web caching. In: fifth

International Web caching and Content delivery Workshop, Lisbon, Portugal, 22–24 May 2000.

Yu S, Cai D, Wen J, Ma W, Improving pseudo-relevance feedback in web information retrieval using web page

segmentation. In: Proceedings of WWW ‘03, May 20–24, 2003, Budapest, Hungary.

	A web content manipulation technique based on page Fragmentation
	Introduction
	Related work
	Web components
	Fragmentation algorithm
	Transcoding technique
	Web pages’ analysis and fragmentation
	Training phase
	Update phase
	Personalized Portal Creation
	Personalized Page Synthesis
	Evaluation
	Future work--enhancements
	Conclusions
	References

