Simplified Performance Models of the
Reordering Issue In Timestamp Ordering
Concurrency Control in Distributed Databases

by
Christos J. Bouras' and Paul G. Spirakis!Z-

1. Computer Technology Institute, Greece
and Department of Computer Science and Engineering
P.O. Box 1122, 261 10 Patras, Greece

2. Couranf Institute of Mathématical Sciences, U.S.A.

Abstract

One important problem in distributed database resecarch is that of Concurrency
Control. Although many timestamp-based algorithms have been proposed to protect
the distributed database from Incosistency during concurrent accesses, only a [ew
analytic models have been developed to compare their performance. This paper
concentrates on modelling the essential features of the conflicts between transactions
that arise due to the distributed environment which provides the reordering
phenomenon. As an example, we study the baslc and the conservative timestamp
ordering algorithm and determine the probability of restarts and other interesting
performance measures.

1. Introduction

Database concurrency control is concerned with the problems that arise when
several users access and update a database simultaneously. Concurrency control
techniques try to maintain the consistency of the database. Since the semantics of
transactions are embedded in application programs, it is not easy to design
concurrency control methods that take advantage of semantic knowledge. Most
techniques therefore try to preserve (syntactic) seriallzability among accesses. A
sequence of Interleaved transactions Is seriallzable il it produces the same effect
on the database as a serial execution of those same transactions. Since & serial
execution preserves consistency, a serializable execution also preserves consistency.

In a distributed system, one way to serialize accesses Is based on using unique
transactlon ldentifiers for determining the order of executlon of transactions. These
are called timestamps and numerous timestamp algorithms have been proposed, all
guaranteeing serlalizabllity (e.g. (8], (9], [12], [13], and a nlce survey of some of

these techniques can be found In [3]. The comparison of the performance of these
techniques 1$ a challenging issues due to the amount of detall that must be taken
Into account In realistic situations and also due to the mathematical dilficulties of
the analysis, which must consider the distortion of the relative order of events due
to the distributed environment. In paper [10] developed approximation techniques
to analyse timestamp-ordering In fully redundant databases but Ignored the
reordering Issue.

* Thils research was _partlally sponsored by the Minlstry of Education of
Greece, and by the EEC RACE project TELEMED.

719

This phenomenon was studied in (2], [5] and [6] but all these works assumed
total ordering. This assumption is not realistic In distributed databases. The partial

ordering which analyzed in [11] is more convenient for distributed databases. Papers

(7] and [14] developed a performance model of timestamp- ordering concurrency
control which takes many aspects of the problem into account. Our work is

motivated from works (7], [11] and [14]. We believe that our approach is simpler
and slightly more general.

This paper concentrates on the analysis of the conflicts between transactions
that arise In a distributed database. Its emphasis is on simplicity. We focus on the
few Important events that affect the conflict phenomenon and develop a
mathematical model to access thelr relative significance.

2. Basic architecture of distributed databases

A database |s a collection of shared data objects. In a database, certaln
relationships hold among its data objects. The set of these relationships for a
database |s called the consistency assertions of the database. A database s in .a
consistent state if the current values of its data objects satisfy all of its consistency
assertions. In such a system, a transaction Is a program with read, write and other
operations. A distributed database management system may be viewed as a
collection of nodes connected to a network. Each node consists of a computer
running either a Transaction Manager (TM) or a Data Manager (DM) or both. The
nodes communicate by sending messages over the network. The network Is assumed

to be completely reliable, le., If node A sends a message to node B, It is
guaranteed that B will recelve the message error-free. The architectute of the
system s shown In Fig. 1a. A Transaction Manager coordinates the execution of
the transaction. A Data Manager manages a local database. From the viewpoint of
8 single transaction, the system consists of a single TM and a number of DMs,
Fig. 1b. Neither TMs nor DMs Intercommunicate.

Trensacton

e DATA
LA™ DM j’

Transaction

Transaction
:\ ™ DM a/DATA

Transaction

Transachon !

e T a/DA..TA
L]

Transaction

Figure 1a. Architecture of the DDBMS model

720

- R

- DM } DATA

oa}— (o

Figure 1b. DDBMS model for a single transaction

There are several reasons why distributed databases are developed. Many
organizations are decentrallzed and a distributed database approach [its more
naturally the structure of the organization. Distributed databases are the natural
solution when several databases already exist in an organization and the necessity of
performing global applications arises. The recent development of small computers.
providing (at a lower cost) may of the capabllities which were previously provided
by large mainframes, constitutes the necessary hardware support for the
development of distributed information systems. The technology of distributed
databases Is based on two other technologies which have developed a sulliciently
solid foundatlon during the last years computer networks technology and databascs
technology.

-

3. Performance model

Our model of distributed database is a collection of K sites Interconnected by a
network. Network connections are assumed to be perfectly rellable. We assume that
the distributed database Is full data replication. This means that the number ol
copies Is equal to number of nodes and that at each site there is the same
database. The number of data objects at each site is equal to N.

4. The essentlals of the conflict model

4a. Causes

It Is known from (3] and (4] that

(a) Two or more transactions may access the same data object and at least one of
the attempts to write, and

(b) Intersite transmisslon delays may cause requests orlglnating from dilferent
sites to arrive In reverse of thelr timestamps.

Any timestamp ordering algorithm must reorder these requests and process them In

timestamp order.

4b. The issue of pipelined delays

The requests originating from_the same site arc assumed to be pipelined l.e. they
will arrive at the same site in the order of their timestamps. This can be ensured
by communication network protocols. The pipelined transmission requirement
introduces resequencing delays. The distribution of such delays was analyzed, for
example, in (1], (2], (6] and [11), mostly by modelling the network connecting two

sites as an MIMloo or an Ml6lco or an MIMIk queueing system. Even in such a
case, the PDF of the pipelined transmission delay does not have a convenlent form.
In our analysis, the PDF of this delay iIs an_input parameter,

4c. Static Conflicts

It is obvious that causes (a), (b) of the conflict phenomenon are independent. Cause
(a) Is a prerequisite for conflict. Without it cause (b) would not matter. The
percentage of potential conflicts (static conflicts) due to cause (a) can be estimated
by combinatorial techniques based on assumptions about the creation of readsets
and writesets of transactions.

Let each transaction access M data objects (out of N), selected uniformly. Then the
probability of two transactions having at least one common data object Is

N-M
M

[

If we assume that M>>N, which is usually the case in practice, then the (1) glves

(1) ¢ =1-

2
M
O =
@) N
Furthermore, if the fraction of READ operations per transaction is a (0<a<l) and

the fraction of WRITE operations is b (0¢b<1) and the reads and writes are
uniformly spread out among the M data objects, then the percentage of static
conflicts (probability of static conflict) is

(28) f=Qab+b?)- -d. |
if Thomas's rule Is ignored and

(2b) f = (2ab) ©
otherwise.

4d. The phenomenon of order reserves

Cause (b) of conflicts, l.e. the possibility that requests originating from different
sites may arrive in reverse order of their timestamps, is mainly due to the
distributed nature of the database. A detailed modeling of thls phenqmenon would
have to take into account the time intervals shown in Fig. 2:

eyt

Transaction Timestamp Reads sent Writes sent
generation assigned
X v query processing J
| ' z
| A B C D

Figure 2: Time Ordering of events related to Local Transaction Processing

|

| |

i Times x,y (and z In most cases) are Insignificant compared to the network
| delays. Thus, a simplified look at the phenomenon of order reverses may assume
‘ all those times to be negligible. (An analysis with x=y=0 and z exponential ol known
|

mean was conducted in [7)).

Hence, the order-reverse is essentially Indicated In Fig. 3, for two
transactions, T, and 'I'J. \
. T, arnves
Transaction T;
' at site k
generated at site i dy
: &5 d‘]k
! ; Tj arrives at
| .
g . Tj generated at site k
| site
‘ Figure 3: Order reverse
If
| B = the time Interval between the generatlons of T, at site | and Tj at
site]
and i
| dy. dj = network delays (transmission plus plipelining) transactions T, T, to
site k
‘ then the order-reverse Is represented by the inequality:

Let Rk” = probabllity of the above Inequality happening (l.e. the percentage of
I cases of order-reverse).

The time difference a;; depends on the absolute times of generation of T, and
Tl' Let T, be the nth transaction generated at site 1 (since time zero) and Tj the
mth at site . Let the corresponding generation times be t; | and tm:
Then

(4) 8 = Ym - Yy

Order reverse can happen only when m=n. In such case 8 =4t and this may
be a short, fixed, interval.

Let Ayy(x) be the PDF of By, (with density uij(x)dxzprob(zyj € (X, x+dx)).
Let D}, (). Djk() and di, (), d]k() be the PDFs and pdfs of the r.v.'s d;., djk.
From the architecture of the system, d;;, djk are Independent r.v.'s. Then

le} = f prob(a| € (x,x+dx)) dx-prob(x+dk < dg)
0

where

prob{x+dy <dg | = f prob{d,c € {y.y+dy)]-dy-prot{dk >X+Y)
0

" - o
Ry =f ay (x)dx f dy (yy - (1-[)g{x+y])
0 0
The above yields that
) Ri=1- [a0t [dgm Dy
0 0

If we assume that transactions are generated at any site as Independent
Poisson processes of rate A, the same for each site and the network delay for each
transaction Is exponentially distributed of rate p, then

R::I- f lckdxf ucwd)f-(‘l-cmm)
0 0

After some algebra the above expression can be written:

A

k
© R1= 2000

The above probability under our assumptions is the same for each palr of
transactions at any site. From now on we will call it R.

oA
{e

5. Performance measures

5a. Basic Timestamp Ordering

The simplest timestamp ordering technique, basic timestamp ordering, employs only
transaction rejects and restarts in order to maintain serializability. Details can be

found in [3] and [4].

The probability that a transaction Is rejected If only two sites are present, s
clearly

r = prob{rejection probability in case of two sites) =
= prob{to have static conflict) - prob{out of order at one site at least} =

) A
: M J 2(A+p)

In the case of K TM sites, our performance model, for each transaction to be
rejected it Is enough to conflict and be in reverse order with at least one
transaction of another site, generated later than this transaction. This, the total
rejection probability Py, Is (assuming size independence)

(8) P, =1-(1-pX!

If Thoma's rule is ignored, thls probability is

Kl
2
& 1. Z)N A
(8a) P,=1 ’l (20b+b) M 2(l+u)‘
and
, Kl
N A
8b =f 1t N
otherwise.

5b. Conservative Timestamp Ordering

In this technique, a transaction which contains READ arriving at any site has to
wait until all transactions which contain WRITE to same data objects with it and
have smaller timestamps, arrive and be processed. Also, In the case which a
transaction which contalns WRITE arriving at any site has to walt until all
transactions which contain READ to same data objects with it and have smaller
timestamps arrive and are processed.
In the context of our simplified model, we have that the probability of waiting
each transaction, in any site is
9) P.=1 - (fpft

and the waiting time of each transaction In any site is
(10) W(.x) = max (di - [ay + dyx))

(glves that d, 2 dy +d}))

125

Under our assumptions about Polsson arrivals and exponential delays, we have that

Prob{d,k-(a,ﬁd“) =720} =

= Problz ¢ dik'(ail+djt) < z+dz) =

o

R = L HUzAXHY) A 2
= dz Ne” dx d S et
e f pe y (luc) 0410 e dz
0

0
Now, Prob(W(J,k) ¢ w} = Problfor all 1#] dy-(ay+d;) < w)

So, due Independence,

\ K1
(11 Prob(W<w) = — %7 — KI (1‘C 1M)
2p) ()
From the derived distribution of the waiting time of a transaction per site, we
may derive the distribution of the total waiting time of the transaction In the

database, since the total walting time Is the maximum, over all sites K of the
djt+W(j.k}. Also it is easy to derive the total number of waiting transactlons, using

Little's law. All these formulas are cumbersome but easy to derive.

6. Corollary & further work

Our simplified conflict model allows a tractable mathematical analysis of
timestamp-ordering concurrency control techniques, while, at the same time, the
model focuses on the essentlal factors of the conflict phenomenon. We conjecture
that the Polsson and exponential assumptions of the examples can be replaced by
testable operational conditions without altering the analytical results.

References

(1) Agrawal S., Ramaswamy R., "Analysis of the Resequencing Delay for
MIMloo systems”, ACM SIGMETRICS 1987, pp. 27-35.

(2) Baccelll F., Gelenbe E., Plateau B., "An end to end approach to the
resequencing problem”, JACM Vol. 31, No. 3, July 1984.

(3] Bemstein P., Goodman N., "Concurrency Control in Distributed Database
Systems", Computing Survey, Vol. 13, No. 2, June 1981.

726

(4]

(s)

(6]

(9]

(10]

(11]

(12]

(13]

(14]

Ceri S., Pelagatti G., "Distributed databases. Principles and
Systems”, McGraw-Hill, 1984.

Kamoun F., Ben Djerad M., Lelann G., "Qucueing Analysis of the
Ordering Issue in a Distributed Database Concuri-icy Control Mechanism:
A General Case”, Proceedings of the 3rd Internstional Conference on
Distributed Computing Systems, 1982 pp. 447-452

Kamoun F., Klelnrock L., Muntz R., "Queueing Analysis of the Ordering
Issue In a Distributed Database Concurrency Control Mechanism",
Proceedings of the 2nd International Conference on Distributed Computing
Systems 1981, pp. 13-23.

LI V., "Performance Models of Timestamp-Ordering Concurrency
Control Algorithms In Distributed Databases”, IEEE Transactions on
Computers, Vol. C-36, No. 9, September 1987, pp. 1041-1051.

Reed D., "Naming and Synchronization In a decentralized computer
systems”, Ph.D. dissertation, Dep. Elec. Eng. Comput. Scl., MIT, Sept.
1978.

Silberschatz A., "A multiversion concurrency control scheme
with no rollbacks”, in Proc. ACM Symp. Princlples Distributed Comput.,
Aug. 1982, pp. 216-223.

Singhal M., Agrawala A., "Performance Analysls of an Algorithm for
Concurrency Control In Replicated Database Systems”, ACM SIGMETRICS
1986, pp. 159-169.

Stafylopatls A., Gelenbe E., "Delay Analysls of Resequencing Systems
with partial Ordering”, PERFORMANCE 87, pp. 433-400.

Stearns R., Rosenkrantz D., "Distributed database concurrency control
using before values”, In Proc. SIGMOD Conf. Management Data, 1981,
pp. 74-83.

Thomas R., "A majority consensus approach to concurrency
control for multiple copy databases”, ACM Trans. Database Syst., vol. 4,
1979, pp. 180-209.

Wang C.. LI V. "Queuelng analysis of the conservative timestamp-

ordering concurrency control algorithm®, in Proc. IEEE Int
Comput. Symp., 1986, pp. 1450-1455.

T2

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf

