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Abstract 
During the last years 2 Quality of Service architectures 
(IntServ and DiffServ) have been proposed and evaluated. 
The DiffServ architecture has proved its ascendancy and 
some services have already been proposed and deployed on 
IPv4 domains. But the usage of IPv6 protocol creates new 
challenges, as the QoS mechanisms that are currently 
supported for IPv6 in most implementations are fewer (or 
different) compared to IPv4 and in addition the whole 
network’s behaviour is different. So, as a result the QoS 
services should be designed and evaluated again. This paper 
describes a QoS service on an IPv6 domain that aims to 
service aggregates of real time traffic with minimum delay, 
jitter and packet loss. In addition, it contains results from the 
experiments in our IPv6 network that took advantage of the 
QoS mechanisms. This QoS service uses the Modular QoS 
CLI (MQC) mechanism and especially the Low Latency 
Queue feature (LLQ) in order to treat packets from real time 
applications. 

1 INTRODUCTION 
Internet traffic consists of flows generated by different 
applications, which all receive the same treatment from the 
network, as most networks today can only provide best-
effort service. This treatment causes many problems 
especially to real time applications (for example 
videoconferencing applications), because they are sensitive 
on parameters such as delay, packet loss or jitter. For this 
reason, the QoS techniques are necessary to provide service 
guarantees in today’s congested and increasingly used 
networks. The QoS guarantees can be measured using a 
number of specific metrics. These metrics are the bandwidth 
that a traffic class uses, the delay that the packets of each 
class experience, packet loss and jitter. During the last years 
several architectures have been proposed in order to provide 
QoS and some services have already been deployed. In 
addition, significant research activity has been done in this 

area, as there are several publications [1] [2] [3] [4]. One of 
the next goals in this area, and the topic that we examine in 
this paper is the investigation of the deployment of a QoS 
service on an IPv6 domain. The usage of the IPv6 protocol 
[5] is increasing and many domains have already been IPv6 
enabled. The investigation of the supported QoS 
mechanisms on IPv6 and the deployment of a QoS service, 
especially for real time applications, is our basic goal. The 
rest of the paper is organized as follows. Section 2 gives a 
brief description of the architectures for Quality of Service 
and concentrates on the DiffServ architecture that we use, 
presenting the main mechanisms and their operation. 
Section 3 describes the IPv6 testbed that we used for 
performing the experiments and explains the QoS 
techniques and traffic patterns that have been used for the 
experiments. Section 4 presents the experiments and the 
results from each one. Finally, section 5 describes the 
conclusions from those experiments and section 6 the future 
work that we intend to do on this area. 

2 THE QUALITY OF SERVICE 
TECHNIQUES 

During the last years 2 main architectures for Quality of 
Service, IntServ [6] and DiffServ [7] have been proposed. 
They follow different philosophy as they approach the topic 
of Quality of Service from different point of views. 
The IntServ architecture tries to provide absolute guarantees 
via resource reservations across the paths that the traffic 
class follows. The main protocol that works with this 
architecture is the Reservation Protocol (RSVP) [6]. 
However, its operation is quite complicated and it also 
inserts significant network overhead. On the other hand, 
DiffServ architecture is more flexible and efficient as it tries 
to provide Quality of Service via a different approach. It 
classifies all the network traffic into classes and tries to treat 
each class differently, according to the level of QoS 
guarantees that each class needs. In the DiffServ 
architecture, 2 different types (per hop behaviours [8]) have 
been proposed, the expedited forwarding [9] and the assured 
forwarding [10], and their difference is on the packet 



forwarding behaviour. Expedited forwarding (EF) aims at 
providing QoS for the class by minimizing the jitter and is 
generally focused on providing stricter guarantees. This type 
tries to simulate the virtual leased lines and its policy profile 
should be very tight. Assured forwarding (AF) inserts at 
most 4 classes with at most 3 levels of dropping packets. 
Every time the traffic of each class exceeds the policy 
criteria then it is marked as lower level QoS class. 
The operation of the DiffServ architecture is based on 
several mechanisms. The first mechanism is the classifier 
that tries to classify the whole traffic into aggregates of 
flows (traffic classes), mainly using the field DSCP 
(Differentiated Service CodePoint [7]). This field exists in 
both the IPv4 and IPv6 packet headers. In IPv4 it was part 
of the field Type of Service (ToS) and in IPv6 that is our 
focus in this paper, it is part of the field Traffic Class. In 
addition, the IPv6 packet header also has the field Flow 
label (20 bits) but it is still experimental and its use has only 
been recently standardized [11]. 
The operation of services based on DiffServ architecture 
uses also several additional mechanisms that act on every 
aggregate of flows. These mechanisms are packet marking, 
metering and shaping. In addition, in order to provide QoS 
guarantees it is necessary to properly configure the queue 
management and the time routing/scheduling mechanism. 
The most common queue management approaches use the 
Priority Queue, Weighted Fair Queue or Modified Deficit 
Round Robin mechanisms [11][12]. 
Generally, the main problem that has been noticed is that 
not all of these mechanisms have been fully implemented to 
work for IPv6 domains yet. In particular, many vendors 
only provide Weighted Fair Queue or Priority Queue adding 
limitations to the administrators. In addition, various 
mechanisms for IPv6 networks (QoS, multicast etc) are not 
supported on the same version of router software, so the 
network administrators can not provide to their consumers 
advanced services simultaneously. Generally this fact is 
considered to be temporary and it is expected that will 
shortly be addressed as the usage of IPv6 increases. 

3 THE IMPLEMENTED QOS 
SERVICE ON IPV6 TESTBED 

In this paper we describe the implementation and testing of 
a QoS service on IPv6 networks. The service is based on the 
DiffServ architecture (expedited forwarding) and provides 
strict priorities to packets that are produced from real time 
applications. This service has been applied on a real IPv6 
network that has been created internally on CTI and is 
presented in Figure 1. The testbed is also interconnected and 
uses infrastructure that has been deployed for the IST 
Project 6NET [13] (a pan-European IPv6 network). The 
software version that this testbed uses is the CISCO IOS 
12.2(13) T [12]. 
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Figure 1. The 6NET’s network including CTI’s testbed

The QoS service that we implemented aims at providing 
prioritization for traffic coming from real time applications. 
Its operation is to classify the packets that belong to this 
application and use a “priority queue” for them. The rest of 
the traffic on the router will be treated as usual, with best–
effort service. 
The service has been implemented using the Class Based 
Weighted Fair Queuing mechanism [11]. This mechanism 
actually extends the classic Weighted Fair Queuing 
mechanism and can provide strict packet priority. The strict 
priority feature actually implements the Low Latency Queue 
mechanism, which is a method to en-queue packets on a 
“priority” queue in order to guarantee low latency and jitter. 
The service follows the classic guidelines of the DiffServ 
architecture. We have tried to make the experimental 
scenarios as realistic as possible by inserting background 
traffic in the network with the cross traffic method that is a 
mix of TCP and UDP traffic, generated by the Iperf [14] 
traffic generator. This traffic is classified with DSCP value 
0 (default) and is treated as best-effort. In addition we 
inserted foreground traffic that simulates an aggregate of 
real time traffic. This traffic is also a mix of artificially 
generated UDP traffic and RTP traffic [15] generated by an 
application based on the OpenH323 library [16], which has 
been ported to IPv6 [17], [18]. On the network devices, we 
have applied a marking mechanism in order to mark the 
background and foreground traffic. In particular we 
distinguish the background and foreground traffic with 
different access lists and mark them with DSCP values: 
default (000000) and the predefined expedited forwarding 
(101110) respectively [9], [11]. Next, the output interfaces 
of the network devices have been configured in order to 
send the packets that have been marked with DSCP 101110 
with strict priority.  
The first step in the experimental procedure was to 
performed many tests in order to investigate and report the 
operation of the QoS mechanism under different conditions 
(traffic load, congestion etc). As soon as the investigation 
was finished, we tried to test this QoS service with traffic 



generated by real time applications (OpenH323) and report 
the results.  
After this experimental procedure, the next stage was the 
implementation of a second testing scenario, where the 
network devices have been additionally configured in order 
to apply the Weighted Random Early Detection mechanism 
[11] for congestion avoidance on the background traffic. In 
this case the goal is to measure if the existence of WRED 
makes any impact on the QoS guarantees that the 
foreground packets experience. 

4 EXPERIMENTAL PROCEDURE 
The experimental procedure that was followed for testing 
the QoS mechanisms and the whole service’s performance 
has been applied on CTI’s internal IPv6 testbed. This 
testbed uses infrastructure that has been deployed for IST 
6NET project extended with additional CTI routers. The 
basic testbed that we used consisted of 2 routers, one router 

of CISCO 7200 series (local 6NET router) and one router of 
CISCO 3600 series. This testbed is interconnected with 
CTI’s production network and can be shown in Figure 2 that 
presents it in detail. 
The measurement of the network’s metrics and the service’s 
performance was done using specific tools. The first one 
was the statistics of the Iperf traffic generator for the traffic 
that it was generating. These statistics were produced at the 
server instance of the Iperf traffic generator [14] and 
included the average throughput and the average jitter of the 
UDP traffic and the average throughput of the TCP traffic. 
Another tool was the RTCP statistics that the 
videoconference tool was providing and finally the results 
from the Ethereal Network Protocol Analyzer [19] that 
captured all the packets at the receiver and provided us 
graphic representations of their throughput. 
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Figure 2. The testbed 

 
Using this infrastructure, we performed many tests 
investigating the QoS mechanisms that are supported on 
IPv6. First of all, we tested the prioritization and 
classification mechanisms performing a large number of 
tests. Then, these tests became more complex and finally we 
applied all the mechanisms simultaneously to test the whole 
QoS service with real time data. 

4.1 Investigation of the Prioritization 
Mechanism 

The first tests aimed at investigating the operation of the 
classification and prioritization mechanisms. The 
classification mechanism was implemented using access 
lists and creating a policing class in the input interface of 
the router. According to the ipv6 access list that the packets 
belong to, the policy class assigns the DSCP values (ef 

(101110) for the foreground traffic and default (000000) for 
the background). Next, on the output interface of the router, 
we configured a second policy class that gives strict priority 
to the packets that have been marked with the DSCP value 
for EF. In order make sure that the configured mechanisms 
operate as expected, we have done a number of tests and 
their results are presented below. 
First, we disabled the above mechanisms and sent 
background and foreground traffic to the network that had 
the following characteristics: Both foreground and 
background traffic was created with Iperf traffic generator 
and used the UDP protocol with average rate 12Mbps and 
1.5 Mbps respectively. The backbone link is 10Mb/s and in 
this case we expected to have many dropped packets. 
Actually, the results were 22% packet drops for both 
foreground and background traffic. 



The next step was to re-enable the QoS mechanisms and 
investigate the network’s behaviour when it only has best 
effort traffic (UDP or both UDP and TCP). First, we 
performed tests using only UDP best-effort traffic, 
generated by the Iperf traffic generator. 
 

Table 1. Best -effort experiments (only UDP traffic) 

Inserted 
traffic 

(Mbps) 

Actual 
throughput 

(Mbps) 

Packet 
loss 

Average 
jitter (ms) 

    
8 7.98 0% 0.205 
9 8.89 0.99% 2.641 

10 8.82 12% 2.787 
11 8.74 20% 2.441 
12 8.66 27% 2.730 

 
Table 1 presents the experimental results, which show that 
the actual throughput that can fill the backbone links is 8.80 
Mbps. In addition, the packet loss and jitter increases when 
the network usage exceeds 8.80 Mbps. 
Next, those tests were repeated, according to the same 
scenarios, using both TCP and UDP traffic generated by the 
Iperf traffic generator. Similarly, Table 2 presents the 
results. At this point we should notice that while for UDP 
traffic the traffic generator tries to send the traffic at the 
specified rate, for TCP it simply follows the TCP algorithm, 
thereby gradually increasing bandwidth consumption as 

long as there is no congestion, and rapidly dropping the 
transmission rate if the TCP sender notices packet losses.  
 

Table 2. Best-effort (UDP and TCP traffic) 

Inserted UDP 
traffic (Mbps) 

Throughput 
UDP (Mbps) 

Average TCP 
Throughput 

(Mbps) 
   

3 2.99 2.74 
4 3.99 2.49 

 
According to the results, we concluded that for almost 
8Mbps traffic rate and above, the network is fully 
congested. In addition, when we tried with more realistic 
traffic patterns (TCP and UDP traffic simultaneously) the 
traffic generator seems to be able to meet our traffic 
generation requirements. It produces the actual UDP traffic 
that consumes its specified bandwidth and the remaining 
bandwidth is used by TCP. 
The next step was to test the classification and prioritization 
mechanism by adding foreground traffic for different 
background traffic loads and scenarios. This stage was 
necessary in order to be convinced that the classification 
and prioritization mechanisms work efficiently. For this 
purpose, we performed a large number of experiments (with 
different traffic loads) and some of them are described in 
Table 3. 
 

 
Table 3. Testing of classification and prioritization mechanism (UDP traffic) 

Traffic load Actual throughput Packet loss Average Jitter 
Background 

(Mbps) 
Foreground 

(Kbps) 
Background 

(Mbps) 
Foreground 

(Kbps) 
Background Foreground  Background 

(ms) 
Foreground 

(ms) 
        

8 250 7.98 250 0.0011% 0% 3.191 4.404 

9 250 8.58 244 7.6% 2.4% 2.864 4.333 

10 250 8.57 239 14% 4.5% 1.357 4.830 

12 250 8.49 246 29% 1.5% 2.678 4.449 

 
 
As Table 3 presents, the prioritization mechanism seems to 
work efficiently. On each testing scenario the packet loss 
that the foreground experienced was significantly low, in 
contrast with the background traffic that suffers quite 
larger packet losses. Regarding the jitter metric, the table 
shows that the foreground traffic has larger average jitter 
(and in some cases, also the packet loss demonstrates 
strange behaviour). This point is actually due to the fact 
that the foreground traffic follows a longer path (Figure 2) 
and the measurement is end to end and not for the common 

path (between the 2 routers) for foreground and 
background traffic. We have measured the average jitter 
for packets that have been generated from the same source 
as the foreground traffic, until the PC that inserts the 
background traffic (this is the additional part of the path) 
and the jitter is almost 4.3ms. Taking this result into 
account, the jitter that the foreground traffic experiences 
on the real testbed (between the routers) is low. This is 
also a result that we expected as we have used the strict 
priority command on the policy map and this command 



uses the LLQ (Low Latency Queue) mechanism. This 
mechanism uses low latency queues for the classified 
packets that provide low delay and we therefore expect 
significantly lower jitter. Figure 3 and Figure 4 present the 
measurements for packet loss and jitter for the foreground 
and background traffic. 
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Figure 3. Packet loss for different traffic load 
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Figure 4. Average jitter for different traffic load 
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Figure 5. Strict priority’s behavior on upper bound 

Afterwards, some extra experiments were performed with 
the goal to investigate the behavior of the LLQ 
mechanisms in conditions where the percentage of 
bandwidth that foreground traffic can use, is exceeded. In 
particular, as we had configured the policy map, the strict 
priority could use only 20% of the total bandwidth, in 
other words only 2Mbps. For this reason, we also 
performed the experiments to record its behavior when it 
approaches its upper bound. The results are presented in 
Figure 5. According to the results, we can see that the 
packet loss increases proportionally for traffic load equal 

or larger than 1Mbps. This figure also presents one more 
strange result, as theoretically the Class based Weighted 
Fair Queuing mechanism was supposed to perform strict 
policy and discard all packets when the rate exceeded the 
upper bound (in our case 2Mbps). Instead, Figure 5 shows 
that packets are still transmitted, but with bigger packet 
loss. 

4.2 Experimental testing for real time 
applications 

Finishing the above-described experimental stages, the 
QoS mechanisms that can provide QoS guarantees have 
been set up and evaluated. As we described earlier, the 
mechanism used is the strict priority (which implements 
the Low Latency Queues) and the reason why we used and 
investigated the behaviour of this mechanism is because it 
is extremely suitable for real-time applications that need 
low delay, packet loss and jitter. Therefore, we tried to 
simulate realistic conditions of traffic load and to measure 
the performance of real-time applications that experience 
the preferential treatment by those mechanisms. For 
implementing the following testing scenarios we used an 
application based on the OpenH323 library. 

4.2.1 Testing scenario 1 
Initially, the network was loaded with background traffic, 
generated by the Iperf traffic generator. The selected traffic 
is a mix of TCP and UDP traffic. At this point we should 
note that we have started loading the network before 
inserting the foreground traffic, in order for the TCP to 
obtain a stable state. Next, the foreground traffic that was 
generated by a videoconference (using the OpenPhone 
application based on the OpenH323 library) was inserted. 
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Figure 6. Throughput of foreground traffic 

This test was performed for more than 5 minutes and we 
recorded the packets that were exchanged. The background 
traffic was 5Mbps UDP traffic and also TCP traffic that 
tried to occupy as much bandwidth as it could. Finally, the 
results showed that the UDP background traffic had only a 
few packets dropped. Similarly, the foreground traffic 
(OpenH323) had zero packet loss and excellent quality, 



which proves that the QoS mechanisms achieved their 
goal. In addition, the TCP background traffic was 
straggled by the strict priority mechanism. Figure 6 and 
Figure 7 present the throughput of the foreground traffic as 
well as the throughput of the TCP background traffic. 
Looking at the figures, we can see that TCP initially sends 
many packets and after approximately 40 seconds it 
obtains its steady state. In addition, the foreground traffic 
has an average throughput of almost 300Kbps and very 
good video quality. 
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Figure 7. Throughput of TCP background traffic 

4.2.2 Testing scenario 2 
Similarly, a second test with the same characteristics and 
traffic load was performed. The only difference was that 
we also added at the foreground traffic extra UDP traffic 
(300Kbps), created by the Iperf traffic generator. The 
results were the same, as the foreground traffic had almost 
zero packet loss (both UDP and RTP). In addition the RTP 
traffic (OpenH323) had excellent video quality taking 
advantage of the operation of the strict priority mechanism 
(low latency queue). Figure 8 and Figure 9 present the 
throughput of the foreground traffic and TCP background 
traffic. 
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Figure 8. Foreground throughput 
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Figure 9. TCP background throughput 

4.3 Investigation of WRED mechanism 
Our next goal was to investigate the operation of the 
WRED mechanism. The WRED mechanism is a popular 
mechanism for congestion avoidance that has been tested 
extensively in IPv4. During our tests we tried this 
mechanism on our IPv6 domain. Our goal is first of all to 
test the correct operation of this mechanism on IPv6 and 
secondly to investigate its impact on the performance of 
the foreground traffic. At this stage 2 separate testing 
scenarios that are described in the following sections were 
performed. 

4.3.1 Testing scenario 1 
Initially the WRED mechanism was set up in order to be 
applied on the background traffic using 30 and 50 packets 
in the queue as thresholds. In addition, the maximum 
queue size was 75 and the drop possibility was 10%. A test 
that we had also performed earlier was repeated with this 
new configuration, in order to compare the results. So, we 
inserted background traffic that was a mix of TCP and 
UDP (5Mbps) and foreground traffic a mix of UDP 
(700Kbps) and RTP (OpenH323-based application). The 
result was that the foreground traffic still only had a few 
packet losses and very good quality of video. On the other 
hand, the background traffic had several drops that were 
caused by the WRED mechanism (UDP background traffic 
had almost 2% packet loss). So, the foreground traffic does 
not seem to receive any impact from the operation of the 
WRED mechanism. The strict priority mechanism seems 
to work transparently. On the other hand, the background 
traffic has many packet losses, especially if we compare 
the result (2% losses of UDP) with the same experiment in 
the previous section without the WRED mechanism, where 
the result was less than 0.5%. So the WRED mechanism 
worked according to its specification and reduced the 
background traffic. The most significant observation arises 
when we look at the TCP throughput of the background 
traffic (Figure 10) and compare it with the corresponding 
throughput on the previous section. It is obvious that the 
throughput in this case is lower and that the WRED caused 
this reduction of TCP’s rate. This can be explained if we 
consider that the WRED mechanism “created” packet 
losses earlier, so TCP thought that the network was 
congested and reduced its rate. 
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Figure 10. TCP throughput when WRED has been applied 

4.3.2 Testing scenario 2 
After the first experiment, the same scenario was repeated, 
but this time we changed the thresholds of the WRED 
mechanism. We tried to approach the max queue size and 
configured the min and max thresholds to be 55 and 75 
packets respectively. The drop possibility was also 10%. 
We observed similar results regarding the foreground 
traffic, as the packet losses were almost zero and the video 
quality was very good. This time the background traffic 
had better behaviour, as only 0.92% of UDP traffic packets 
were lost. In addition, the TCP traffic had a bigger average 
throughput (1.36 Mbps). So, at this experiment the queues 
were allowed to be more filled and achieved a better 
performance for the background traffic. But, regarding the 
foreground traffic (for the QoS service that is tested) the 
existence of the WRED mechanism does not have any 
significant impact. 
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Figure 11. TCP throughput with existence of WRED 

5 CONCLUSIONS 
In this paper, we presented a QoS service that we 
implemented on an IPv6 network and examined its 
correctness. The QoS mechanisms that were used were 
tested widely in order to make sure that they work well and 
additionally to investigate their performance. The QoS 
service was tested using simulated traffic (but as close to 

reality as possible) providing QoS to traffic that belongs to 
real-time applications. The main feature that was tested 
was the MQC (Class based Weighted Fair Queuing) and 
specifically the low latency queue feature that it is 
implemented with the priority command. The operation of 
this feature is to “implement” a queue that provides very 
low latency for traffic that belongs to the specified class. 
So it is obvious that theoretically this feature is ideal for 
real-time traffic that needs high priority. Finally, seeing all 
the above experiments and their conclusions, the QoS 
service that we tried to implement and test, using the above 
mechanisms, worked efficiently as it reduced the packet 
loss, the delay and the jitter of the real-time data, 
consequently increasing the receiving quality for the 
applications that produced these data. 
Additionally, some tests focused on the WRED 
mechanism that had been applied on the background traffic 
and aimed to investigate its effect on the QoS service. The 
results from those experiments indicate that there was not 
any significant impact on the foreground traffic from the 
existence of the WRED. On the other hand, the 
background traffic has been affected from the WRED 
mechanism and the impact is proportional to the values 
that the thresholds of the WRED mechanism had been 
configured at. 
Finally, all the tests that were performed and are described 
on this paper have been repeated at least twice, with 
exactly the same characteristics, and the results were 
always the same. The overall conclusion is that the QoS 
service, with the use of the specific mechanisms that were 
tested, can provide prioritization on an IPv6 domain to the 
specified traffic and therefore the real-time application 
(that produces the traffic) can operate efficiently and with 
high quality. 

6 FUTURE WORK 
All the tests that were performed also indicated some 
points that need further research and investigation. 
Therefore, our future plans include extending these 
experiments on bigger network topologies. We also plan to 
test some other mechanisms like policing at the ingress of 
the DiffServ domain. Generally, the policing mechanism is 
implemented using the token bucket algorithm and its role 
is to make sure that QoS guarantees are provided to traffic 
flows that obey the pre-agreed rules (the mean rate that 
they send packets, their maximum bursts etc). The policing 
mechanism is very crucial in order to provide QoS service 
to a domain, as its operation is closely related to the 
“implementation” of the SLAs [20]. The most interesting 
and open issue for research is the investigation of the way 
that the policy profile should be selected and configured 
for aggregate of flows of real time data in order to contract 
and follow the SLAs. Finally, we are also interested on 
testing additional QoS features that will possibly be 



introduced in later versions of CISCO IOS for IPv6 QoS or 
on different router platforms. 
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