
Quality of Service Aspects in an IPv6 Domain

Ch. Bouras1,2 A. Gkamas1,2 D. Primpas1,2 K. Stamos1,2
1Research Academic Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece and

2Computer Engineering and Informatics Dept., Univ. of Patras, GR-26500 Patras, Greece
Tel:+30-(2)610-{960375, 960465, 996954, 960316 }
Fax:+30-(2)610-{996314, 960358, 960358, 960358}
e-mail: {bouras, gkamas, primpas, stamos}@cti.gr

Keywords: Quality of Service, IPv6, Open H323, real time
applications, jitter, packet loss

Abstract
During the last years 2 Quality of Service architectures
(IntServ and DiffServ) have been proposed and evaluated.
The DiffServ architecture has proved its ascendancy and
some services have already been proposed and deployed on
IPv4 domains. But the usage of IPv6 protocol creates new
challenges, as the QoS mechanisms that are currently
supported for IPv6 in most implementations are fewer (or
different) compared to IPv4 and in addition the whole
network’s behaviour is different. So, as a result the QoS
services should be designed and evaluated again. This paper
describes a QoS service on an IPv6 domain that aims to
service aggregates of real time traffic with minimum delay,
jitter and packet loss. In addition, it contains results from the
experiments in our IPv6 network that took advantage of the
QoS mechanisms. This QoS service uses the Modular QoS
CLI (MQC) mechanism and especially the Low Latency
Queue feature (LLQ) in order to treat packets from real time
applications.

1 INTRODUCTION
Internet traffic consists of flows generated by different
applications, which all receive the same treatment from the
network, as most networks today can only provide best-
effort service. This treatment causes many problems
especially to real time applications (for example
videoconferencing applications), because they are sensitive
on parameters such as delay, packet loss or jitter. For this
reason, the QoS techniques are necessary to provide service
guarantees in today’s congested and increasingly used
networks. The QoS guarantees can be measured using a
number of specific metrics. These metrics are the bandwidth
that a traffic class uses, the delay that the packets of each
class experience, packet loss and jitter. During the last years
several architectures have been proposed in order to provide
QoS and some services have already been deployed. In
addition, significant research activity has been done in this

area, as there are several publications [1] [2] [3] [4]. One of
the next goals in this area, and the topic that we examine in
this paper is the investigation of the deployment of a QoS
service on an IPv6 domain. The usage of the IPv6 protocol
[5] is increasing and many domains have already been IPv6
enabled. The investigation of the supported QoS
mechanisms on IPv6 and the deployment of a QoS service,
especially for real time applications, is our basic goal. The
rest of the paper is organized as follows. Section 2 gives a
brief description of the architectures for Quality of Service
and concentrates on the DiffServ architecture that we use,
presenting the main mechanisms and their operation.
Section 3 describes the IPv6 testbed that we used for
performing the experiments and explains the QoS
techniques and traffic patterns that have been used for the
experiments. Section 4 presents the experiments and the
results from each one. Finally, section 5 describes the
conclusions from those experiments and section 6 the future
work that we intend to do on this area.

2 THE QUALITY OF SERVICE
TECHNIQUES

During the last years 2 main architectures for Quality of
Service, IntServ [6] and DiffServ [7] have been proposed.
They follow different philosophy as they approach the topic
of Quality of Service from different point of views.
The IntServ architecture tries to provide absolute guarantees
via resource reservations across the paths that the traffic
class follows. The main protocol that works with this
architecture is the Reservation Protocol (RSVP) [6].
However, its operation is quite complicated and it also
inserts significant network overhead. On the other hand,
DiffServ architecture is more flexible and efficient as it tries
to provide Quality of Service via a different approach. It
classifies all the network traffic into classes and tries to treat
each class differently, according to the level of QoS
guarantees that each class needs. In the DiffServ
architecture, 2 different types (per hop behaviours [8]) have
been proposed, the expedited forwarding [9] and the assured
forwarding [10], and their difference is on the packet

forwarding behaviour. Expedited forwarding (EF) aims at
providing QoS for the class by minimizing the jitter and is
generally focused on providing stricter guarantees. This type
tries to simulate the virtual leased lines and its policy profile
should be very tight. Assured forwarding (AF) inserts at
most 4 classes with at most 3 levels of dropping packets.
Every time the traffic of each class exceeds the policy
criteria then it is marked as lower level QoS class.
The operation of the DiffServ architecture is based on
several mechanisms. The first mechanism is the classifier
that tries to classify the whole traffic into aggregates of
flows (traffic classes), mainly using the field DSCP
(Differentiated Service CodePoint [7]). This field exists in
both the IPv4 and IPv6 packet headers. In IPv4 it was part
of the field Type of Service (ToS) and in IPv6 that is our
focus in this paper, it is part of the field Traffic Class. In
addition, the IPv6 packet header also has the field Flow
label (20 bits) but it is still experimental and its use has only
been recently standardized [11].
The operation of services based on DiffServ architecture
uses also several additional mechanisms that act on every
aggregate of flows. These mechanisms are packet marking,
metering and shaping. In addition, in order to provide QoS
guarantees it is necessary to properly configure the queue
management and the time routing/scheduling mechanism.
The most common queue management approaches use the
Priority Queue, Weighted Fair Queue or Modified Deficit
Round Robin mechanisms [11][12].
Generally, the main problem that has been noticed is that
not all of these mechanisms have been fully implemented to
work for IPv6 domains yet. In particular, many vendors
only provide Weighted Fair Queue or Priority Queue adding
limitations to the administrators. In addition, various
mechanisms for IPv6 networks (QoS, multicast etc) are not
supported on the same version of router software, so the
network administrators can not provide to their consumers
advanced services simultaneously. Generally this fact is
considered to be temporary and it is expected that will
shortly be addressed as the usage of IPv6 increases.

3 THE IMPLEMENTED QOS
SERVICE ON IPV6 TESTBED

In this paper we describe the implementation and testing of
a QoS service on IPv6 networks. The service is based on the
DiffServ architecture (expedited forwarding) and provides
strict priorities to packets that are produced from real time
applications. This service has been applied on a real IPv6
network that has been created internally on CTI and is
presented in Figure 1. The testbed is also interconnected and
uses infrastructure that has been deployed for the IST
Project 6NET [13] (a pan-European IPv6 network). The
software version that this testbed uses is the CISCO IOS
12.2(13) T [12].

A TH EN S
C isco 7206

TH ESSA LO
N IK I

C isco 7206

N TU A
C isco 7206

3M bit ATM PVC

G igabit Ethernet

to M unich

A TH EN S
G SR 12016

PO S

6N ET

local C TI netw ork

C isco 3640

C TI-PA TR A
C isco 7206

1M b it ATM PVC

10M bs

Figure 1. The 6NET’s network including CTI’s testbed

The QoS service that we implemented aims at providing
prioritization for traffic coming from real time applications.
Its operation is to classify the packets that belong to this
application and use a “priority queue” for them. The rest of
the traffic on the router will be treated as usual, with best–
effort service.
The service has been implemented using the Class Based
Weighted Fair Queuing mechanism [11]. This mechanism
actually extends the classic Weighted Fair Queuing
mechanism and can provide strict packet priority. The strict
priority feature actually implements the Low Latency Queue
mechanism, which is a method to en-queue packets on a
“priority” queue in order to guarantee low latency and jitter.
The service follows the classic guidelines of the DiffServ
architecture. We have tried to make the experimental
scenarios as realistic as possible by inserting background
traffic in the network with the cross traffic method that is a
mix of TCP and UDP traffic, generated by the Iperf [14]
traffic generator. This traffic is classified with DSCP value
0 (default) and is treated as best-effort. In addition we
inserted foreground traffic that simulates an aggregate of
real time traffic. This traffic is also a mix of artificially
generated UDP traffic and RTP traffic [15] generated by an
application based on the OpenH323 library [16], which has
been ported to IPv6 [17], [18]. On the network devices, we
have applied a marking mechanism in order to mark the
background and foreground traffic. In particular we
distinguish the background and foreground traffic with
different access lists and mark them with DSCP values:
default (000000) and the predefined expedited forwarding
(101110) respectively [9], [11]. Next, the output interfaces
of the network devices have been configured in order to
send the packets that have been marked with DSCP 101110
with strict priority.
The first step in the experimental procedure was to
performed many tests in order to investigate and report the
operation of the QoS mechanism under different conditions
(traffic load, congestion etc). As soon as the investigation
was finished, we tried to test this QoS service with traffic

generated by real time applications (OpenH323) and report
the results.
After this experimental procedure, the next stage was the
implementation of a second testing scenario, where the
network devices have been additionally configured in order
to apply the Weighted Random Early Detection mechanism
[11] for congestion avoidance on the background traffic. In
this case the goal is to measure if the existence of WRED
makes any impact on the QoS guarantees that the
foreground packets experience.

4 EXPERIMENTAL PROCEDURE
The experimental procedure that was followed for testing
the QoS mechanisms and the whole service’s performance
has been applied on CTI’s internal IPv6 testbed. This
testbed uses infrastructure that has been deployed for IST
6NET project extended with additional CTI routers. The
basic testbed that we used consisted of 2 routers, one router

of CISCO 7200 series (local 6NET router) and one router of
CISCO 3600 series. This testbed is interconnected with
CTI’s production network and can be shown in Figure 2 that
presents it in detail.
The measurement of the network’s metrics and the service’s
performance was done using specific tools. The first one
was the statistics of the Iperf traffic generator for the traffic
that it was generating. These statistics were produced at the
server instance of the Iperf traffic generator [14] and
included the average throughput and the average jitter of the
UDP traffic and the average throughput of the TCP traffic.
Another tool was the RTCP statistics that the
videoconference tool was providing and finally the results
from the Ethereal Network Protocol Analyzer [19] that
captured all the packets at the receiver and provided us
graphic representations of their throughput.

10Mb/s

PC - background
traffic receiver

PC - background
traffic generator

PC - foreground
traffic generator

COL-
ACT-
STA-

1 2 3 4 5 6 7 8 9101112
HS 1 HS2 OK1 OK 2 PS

CONSO LE Switch
Router CISCO 7206

CTI-PATRA

Router CISCO 3640

COL-
ACT-
STA-

1 2 34 5 6 7 8 9101112
HS1 HS2 OK1 OK 2 PS

CONS OLE Switch
CTI’s production

network

COL-
ACT-
STA-

1 2 34 5 6 7 8 9101112
HS1 HS2 O K 1 OK2 PS

CONSOL E Switch
PC - foreground
traffic receiver

QoS mechanisms have
been implemented on

CISCO 7206

Ingress interfaceoutgoing interface

Figure 2. The testbed

Using this infrastructure, we performed many tests
investigating the QoS mechanisms that are supported on
IPv6. First of all, we tested the prioritization and
classification mechanisms performing a large number of
tests. Then, these tests became more complex and finally we
applied all the mechanisms simultaneously to test the whole
QoS service with real time data.

4.1 Investigation of the Prioritization
Mechanism

The first tests aimed at investigating the operation of the
classification and prioritization mechanisms. The
classification mechanism was implemented using access
lists and creating a policing class in the input interface of
the router. According to the ipv6 access list that the packets
belong to, the policy class assigns the DSCP values (ef

(101110) for the foreground traffic and default (000000) for
the background). Next, on the output interface of the router,
we configured a second policy class that gives strict priority
to the packets that have been marked with the DSCP value
for EF. In order make sure that the configured mechanisms
operate as expected, we have done a number of tests and
their results are presented below.
First, we disabled the above mechanisms and sent
background and foreground traffic to the network that had
the following characteristics: Both foreground and
background traffic was created with Iperf traffic generator
and used the UDP protocol with average rate 12Mbps and
1.5 Mbps respectively. The backbone link is 10Mb/s and in
this case we expected to have many dropped packets.
Actually, the results were 22% packet drops for both
foreground and background traffic.

The next step was to re-enable the QoS mechanisms and
investigate the network’s behaviour when it only has best
effort traffic (UDP or both UDP and TCP). First, we
performed tests using only UDP best-effort traffic,
generated by the Iperf traffic generator.

Table 1. Best -effort experiments (only UDP traffic)

Inserted
traffic

(Mbps)

Actual
throughput

(Mbps)

Packet
loss

Average
jitter (ms)

8 7.98 0% 0.205
9 8.89 0.99% 2.641

10 8.82 12% 2.787
11 8.74 20% 2.441
12 8.66 27% 2.730

Table 1 presents the experimental results, which show that
the actual throughput that can fill the backbone links is 8.80
Mbps. In addition, the packet loss and jitter increases when
the network usage exceeds 8.80 Mbps.
Next, those tests were repeated, according to the same
scenarios, using both TCP and UDP traffic generated by the
Iperf traffic generator. Similarly, Table 2 presents the
results. At this point we should notice that while for UDP
traffic the traffic generator tries to send the traffic at the
specified rate, for TCP it simply follows the TCP algorithm,
thereby gradually increasing bandwidth consumption as

long as there is no congestion, and rapidly dropping the
transmission rate if the TCP sender notices packet losses.

Table 2. Best-effort (UDP and TCP traffic)

Inserted UDP
traffic (Mbps)

Throughput
UDP (Mbps)

Average TCP
Throughput

(Mbps)

3 2.99 2.74
4 3.99 2.49

According to the results, we concluded that for almost
8Mbps traffic rate and above, the network is fully
congested. In addition, when we tried with more realistic
traffic patterns (TCP and UDP traffic simultaneously) the
traffic generator seems to be able to meet our traffic
generation requirements. It produces the actual UDP traffic
that consumes its specified bandwidth and the remaining
bandwidth is used by TCP.
The next step was to test the classification and prioritization
mechanism by adding foreground traffic for different
background traffic loads and scenarios. This stage was
necessary in order to be convinced that the classification
and prioritization mechanisms work efficiently. For this
purpose, we performed a large number of experiments (with
different traffic loads) and some of them are described in
Table 3.

Table 3. Testing of classification and prioritization mechanism (UDP traffic)

Traffic load Actual throughput Packet loss Average Jitter
Background

(Mbps)
Foreground

(Kbps)
Background

(Mbps)
Foreground

(Kbps)
Background Foreground Background

(ms)
Foreground

(ms)

8 250 7.98 250 0.0011% 0% 3.191 4.404

9 250 8.58 244 7.6% 2.4% 2.864 4.333

10 250 8.57 239 14% 4.5% 1.357 4.830

12 250 8.49 246 29% 1.5% 2.678 4.449

As Table 3 presents, the prioritization mechanism seems to
work efficiently. On each testing scenario the packet loss
that the foreground experienced was significantly low, in
contrast with the background traffic that suffers quite
larger packet losses. Regarding the jitter metric, the table
shows that the foreground traffic has larger average jitter
(and in some cases, also the packet loss demonstrates
strange behaviour). This point is actually due to the fact
that the foreground traffic follows a longer path (Figure 2)
and the measurement is end to end and not for the common

path (between the 2 routers) for foreground and
background traffic. We have measured the average jitter
for packets that have been generated from the same source
as the foreground traffic, until the PC that inserts the
background traffic (this is the additional part of the path)
and the jitter is almost 4.3ms. Taking this result into
account, the jitter that the foreground traffic experiences
on the real testbed (between the routers) is low. This is
also a result that we expected as we have used the strict
priority command on the policy map and this command

uses the LLQ (Low Latency Queue) mechanism. This
mechanism uses low latency queues for the classified
packets that provide low delay and we therefore expect
significantly lower jitter. Figure 3 and Figure 4 present the
measurements for packet loss and jitter for the foreground
and background traffic.

packet loss

0

10

20

30

40

8 9 10 12

traffic load (Mb)

pa
ck

et
 lo

ss
 (%

)

foreground traffic background traffic

Figure 3. Packet loss for different traffic load

average jitter

0
1
2
3
4
5
6

8 9 10 12

traffic load (Mb)

av
er

ag
e

jit
te

r (
m

s)

foreground traffic background traffic

Figure 4. Average jitter for different traffic load

packet loss

0

5

10

15

0,5 1 1,5 2 2,5

traffic load (Mbps)

pa
ck

et
 lo

ss
 (%

)

foreground traffic

Figure 5. Strict priority’s behavior on upper bound

Afterwards, some extra experiments were performed with
the goal to investigate the behavior of the LLQ
mechanisms in conditions where the percentage of
bandwidth that foreground traffic can use, is exceeded. In
particular, as we had configured the policy map, the strict
priority could use only 20% of the total bandwidth, in
other words only 2Mbps. For this reason, we also
performed the experiments to record its behavior when it
approaches its upper bound. The results are presented in
Figure 5. According to the results, we can see that the
packet loss increases proportionally for traffic load equal

or larger than 1Mbps. This figure also presents one more
strange result, as theoretically the Class based Weighted
Fair Queuing mechanism was supposed to perform strict
policy and discard all packets when the rate exceeded the
upper bound (in our case 2Mbps). Instead, Figure 5 shows
that packets are still transmitted, but with bigger packet
loss.

4.2 Experimental testing for real time
applications

Finishing the above-described experimental stages, the
QoS mechanisms that can provide QoS guarantees have
been set up and evaluated. As we described earlier, the
mechanism used is the strict priority (which implements
the Low Latency Queues) and the reason why we used and
investigated the behaviour of this mechanism is because it
is extremely suitable for real-time applications that need
low delay, packet loss and jitter. Therefore, we tried to
simulate realistic conditions of traffic load and to measure
the performance of real-time applications that experience
the preferential treatment by those mechanisms. For
implementing the following testing scenarios we used an
application based on the OpenH323 library.

4.2.1 Testing scenario 1
Initially, the network was loaded with background traffic,
generated by the Iperf traffic generator. The selected traffic
is a mix of TCP and UDP traffic. At this point we should
note that we have started loading the network before
inserting the foreground traffic, in order for the TCP to
obtain a stable state. Next, the foreground traffic that was
generated by a videoconference (using the OpenPhone
application based on the OpenH323 library) was inserted.

foreground throughput

0
10000
20000
30000
40000
50000

tim
e

(s
)

16
5,

63
84

93
16

9,
50

49
77

17
3,

52
95

85
17

7,
88

22
1

18
2,

27
25

34

18
6,

86
56

04
19

1,
48

29
02

19
6,

44
01

81
20

2,
23

79
37

20
6,

20
88

09

21
1,

99
27

91
21

6,
90

17
38

22
1,

14
45

37
22

5,
09

37
07

22
9,

29
17

23
23

4,
03

21
67

24
0,

11
33

86

time (sec)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

) foreground throughput

Figure 6. Throughput of foreground traffic

This test was performed for more than 5 minutes and we
recorded the packets that were exchanged. The background
traffic was 5Mbps UDP traffic and also TCP traffic that
tried to occupy as much bandwidth as it could. Finally, the
results showed that the UDP background traffic had only a
few packets dropped. Similarly, the foreground traffic
(OpenH323) had zero packet loss and excellent quality,

which proves that the QoS mechanisms achieved their
goal. In addition, the TCP background traffic was
straggled by the strict priority mechanism. Figure 6 and
Figure 7 present the throughput of the foreground traffic as
well as the throughput of the TCP background traffic.
Looking at the figures, we can see that TCP initially sends
many packets and after approximately 40 seconds it
obtains its steady state. In addition, the foreground traffic
has an average throughput of almost 300Kbps and very
good video quality.

TCP throughput

0
200000
400000
600000
800000

1000000
1200000

tim
e(

se
c)

36
,9

76
85

3

43
,9

15
92

51
,6

72
30

7

59
,3

17
58

5

67
,0

75
17

7

75
,3

79
16

83
,3

03
72

9

91
,3

02
10

9

98
,8

37
34

2

10
7,

00
68

9

11
4,

80
61

4

12
3,

07
55

2

13
0,

62
52

9

13
8,

60
41

1

14
6,

79
28

1

time (sec)

th
ro

ug
hp

ut

(b
yt

es
/s

ec
)

TCP throughput

Figure 7. Throughput of TCP background traffic

4.2.2 Testing scenario 2
Similarly, a second test with the same characteristics and
traffic load was performed. The only difference was that
we also added at the foreground traffic extra UDP traffic
(300Kbps), created by the Iperf traffic generator. The
results were the same, as the foreground traffic had almost
zero packet loss (both UDP and RTP). In addition the RTP
traffic (OpenH323) had excellent video quality taking
advantage of the operation of the strict priority mechanism
(low latency queue). Figure 8 and Figure 9 present the
throughput of the foreground traffic and TCP background
traffic.

foreground throughput

0
20000
40000
60000
80000

100000
120000

tim
e

(s
)

21
3,

96
85

11

22
1,

33
05

22
8,

48
02

14

23
5,

70
09

15

24
2,

49
29

35

24
9,

37
02

24

25
6,

25
69

89

26
3,

01
07

66

27
0,

05
17

08

27
6,

97
03

26

28
4,

11
77

04

29
2,

00
95

13

30
0,

63
47

42

30
8,

25
00

56

31
7,

00
76

06

32
5,

91
43

75

33
6,

70
20

93

time (sec)

th
ro

ug
hp

ut
 (b

yt
es

/s
ec

) foreground throughput

Figure 8. Foreground throughput

TCP throughput

0
200000
400000
600000
800000

tim
e

(s
)

26
,5

48
3

32
,8

44
9

39
,3

49
2

45
,6

46
4

51
,5

64
9

58
,6

73
5

65
,2

15
9

71
,1

60
1

77
,7

76
9

84
,4

76
5

90
,3

77
5

96
,9

21
4

10
2,

87
4

10
9,

92
4

11
5,

90
6

12
2,

14
0

12
8,

40
6

13
4,

32
1

14
0,

48
9

time (sec)

th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

TCP throughput

Figure 9. TCP background throughput

4.3 Investigation of WRED mechanism
Our next goal was to investigate the operation of the
WRED mechanism. The WRED mechanism is a popular
mechanism for congestion avoidance that has been tested
extensively in IPv4. During our tests we tried this
mechanism on our IPv6 domain. Our goal is first of all to
test the correct operation of this mechanism on IPv6 and
secondly to investigate its impact on the performance of
the foreground traffic. At this stage 2 separate testing
scenarios that are described in the following sections were
performed.

4.3.1 Testing scenario 1
Initially the WRED mechanism was set up in order to be
applied on the background traffic using 30 and 50 packets
in the queue as thresholds. In addition, the maximum
queue size was 75 and the drop possibility was 10%. A test
that we had also performed earlier was repeated with this
new configuration, in order to compare the results. So, we
inserted background traffic that was a mix of TCP and
UDP (5Mbps) and foreground traffic a mix of UDP
(700Kbps) and RTP (OpenH323-based application). The
result was that the foreground traffic still only had a few
packet losses and very good quality of video. On the other
hand, the background traffic had several drops that were
caused by the WRED mechanism (UDP background traffic
had almost 2% packet loss). So, the foreground traffic does
not seem to receive any impact from the operation of the
WRED mechanism. The strict priority mechanism seems
to work transparently. On the other hand, the background
traffic has many packet losses, especially if we compare
the result (2% losses of UDP) with the same experiment in
the previous section without the WRED mechanism, where
the result was less than 0.5%. So the WRED mechanism
worked according to its specification and reduced the
background traffic. The most significant observation arises
when we look at the TCP throughput of the background
traffic (Figure 10) and compare it with the corresponding
throughput on the previous section. It is obvious that the
throughput in this case is lower and that the WRED caused
this reduction of TCP’s rate. This can be explained if we
consider that the WRED mechanism “created” packet
losses earlier, so TCP thought that the network was
congested and reduced its rate.

TCP throughput

0
200000
400000
600000
800000

1000000
1200000

tim
e

(s
)

11
,9

46
79

8

23
,9

32
84

8

38
,4

29
93

1

52
,8

01
10

9

67
,6

25
17

1

82
,5

77
7

96
,9

54
38

4

11
2,

53
52

92

12
6,

88
01

99

14
1,

69
63

5

15
7,

39
20

82

17
1,

16
29

59

18
5,

19
34

3

19
8,

83
64

31

21
4,

46
75

92

22
9,

61
13

92

time (sec)

th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

TCP throughput

Figure 10. TCP throughput when WRED has been applied

4.3.2 Testing scenario 2
After the first experiment, the same scenario was repeated,
but this time we changed the thresholds of the WRED
mechanism. We tried to approach the max queue size and
configured the min and max thresholds to be 55 and 75
packets respectively. The drop possibility was also 10%.
We observed similar results regarding the foreground
traffic, as the packet losses were almost zero and the video
quality was very good. This time the background traffic
had better behaviour, as only 0.92% of UDP traffic packets
were lost. In addition, the TCP traffic had a bigger average
throughput (1.36 Mbps). So, at this experiment the queues
were allowed to be more filled and achieved a better
performance for the background traffic. But, regarding the
foreground traffic (for the QoS service that is tested) the
existence of the WRED mechanism does not have any
significant impact.

throughput

0
200000
400000
600000
800000

1000000
1200000

tim
e

(s
)

15
,4

54
25

5

26
,3

19
96

7

39
,5

82
91

4

50
,2

46
19

5

63
,2

10
58

4

78
,5

67
22

8

93
,1

31
55

2

10
8,

07
57

04

12
1,

42
09

28

13
6,

27
30

41

15
1,

01
66

97

16
4,

38
53

22

17
9,

27
81

58

19
3,

65
92

96

20
8,

67
80

11

22
3,

47
56

09

time (sec)

th
ro

ug
hp

ut
 (b

yt
es

/s
ec

) throughput

Figure 11. TCP throughput with existence of WRED

5 CONCLUSIONS
In this paper, we presented a QoS service that we
implemented on an IPv6 network and examined its
correctness. The QoS mechanisms that were used were
tested widely in order to make sure that they work well and
additionally to investigate their performance. The QoS
service was tested using simulated traffic (but as close to

reality as possible) providing QoS to traffic that belongs to
real-time applications. The main feature that was tested
was the MQC (Class based Weighted Fair Queuing) and
specifically the low latency queue feature that it is
implemented with the priority command. The operation of
this feature is to “implement” a queue that provides very
low latency for traffic that belongs to the specified class.
So it is obvious that theoretically this feature is ideal for
real-time traffic that needs high priority. Finally, seeing all
the above experiments and their conclusions, the QoS
service that we tried to implement and test, using the above
mechanisms, worked efficiently as it reduced the packet
loss, the delay and the jitter of the real-time data,
consequently increasing the receiving quality for the
applications that produced these data.
Additionally, some tests focused on the WRED
mechanism that had been applied on the background traffic
and aimed to investigate its effect on the QoS service. The
results from those experiments indicate that there was not
any significant impact on the foreground traffic from the
existence of the WRED. On the other hand, the
background traffic has been affected from the WRED
mechanism and the impact is proportional to the values
that the thresholds of the WRED mechanism had been
configured at.
Finally, all the tests that were performed and are described
on this paper have been repeated at least twice, with
exactly the same characteristics, and the results were
always the same. The overall conclusion is that the QoS
service, with the use of the specific mechanisms that were
tested, can provide prioritization on an IPv6 domain to the
specified traffic and therefore the real-time application
(that produces the traffic) can operate efficiently and with
high quality.

6 FUTURE WORK
All the tests that were performed also indicated some
points that need further research and investigation.
Therefore, our future plans include extending these
experiments on bigger network topologies. We also plan to
test some other mechanisms like policing at the ingress of
the DiffServ domain. Generally, the policing mechanism is
implemented using the token bucket algorithm and its role
is to make sure that QoS guarantees are provided to traffic
flows that obey the pre-agreed rules (the mean rate that
they send packets, their maximum bursts etc). The policing
mechanism is very crucial in order to provide QoS service
to a domain, as its operation is closely related to the
“implementation” of the SLAs [20]. The most interesting
and open issue for research is the investigation of the way
that the policy profile should be selected and configured
for aggregate of flows of real time data in order to contract
and follow the SLAs. Finally, we are also interested on
testing additional QoS features that will possibly be

introduced in later versions of CISCO IOS for IPv6 QoS or
on different router platforms.

7 REFERENCES
[1] C Bouras, M. Campanella, M. Przybylski and A.

Sevasti, 2003, “QoS and SLA Aspects Across
Multiple Management Domains: The SEQUIN
Approach”, Future Generation Computer Systems 19
pp. 313-326

[2] J Kielthy, R. Frisby and M O Foghlu, 2003, “An
Initial Investigation into QoS Provisioning in a
DiffServ Domain” Telecommunication System
Software Group

[3] C. Bouras, D. Primpas, A. Sevasti and A. Varnavas,
2002, “Enhancing the DiffServ Architecture of a
Simulation Environment”, 6th IEEE International
Workshop on Distributed Simulation and Real Time
Applications, Fort Worth, Texas, USA, October 11–13

[4] S. Vegesna, “IP Quality of Service: the Complete
Resource for Understanding and Deploying IP Quality
of Service for Cisco Networks”, Cisco Press, 2001

[5] S. Deering and R. Hinden, “Internet Protocol, Version
6 (IPv6) Specification” RFC 2460, December 1998

[6] Integrated Services (intserv) Working Group, Internet
Engineering Task Force (IETF),
http://www.ietf.org/html.charters/intserv-charter.html

[7] Differentiated Services (diffserv) Working Group,
Internet Engineering Task Force
(IETF),http://www.ietf.org/html.charters/OLD/diffserv
-charter.html

[8] K. Nichols and B. Carpenter, RFC 3086, “Definition
of Differentiated Services Per Domain Behaviors and
Rules for their Specification”, April 2001

[9] V. Jacobson, K. Nicholsm and K.Poduri, “An
Expedited Forwarding PHB”, RFC 2598, June 1999

[10] J. Heinanen, F Baker, W. Weiss and J Wroclawski
“Assured Forwarding PHB Group”, RFC 2597, June
1999

[11] J. Rajahalme, A. Conta, B. Carpenter and S. Deering,
RFC 3697, “IPv6 Flow Label Specification”, March
2004

[12] Cisco Systems, Inc. home page, http://www.cisco.com
[13] 6NET Project homepage, http://www.6net.org
[14] Iperf homepage, http://dast.nlanr.net/Projects/Iperf/
[15] H. Schulzrinne, S. Casner, R. Frederick and V.

Jacobson, “RTP: A Transport Protocol for Real-Time
Applications”, RFC 1889, January 1996

[16] The OpenH323 project, http://www.openh323.org and
http://sourceforge.net/projects/openh323

[17] S. Josset, C. Bouras, A. Gkamas and K. Stamos, 2003,
“Adding IPv6 Support to H323:
Gnomemeeting/OpenH323 Port”, 11th International

Conference on Software Telecommunications and
Computer Networks (SoftCOM 2003), Croatia, Italy,
October 7-10, pp. 458-462

[18] C. Bouras, A. Gkamas, D. Primpas and K. Stamos,
2004, “Performance Evaluation of an IPv6–capable
H323 Application” The 18th International Conference
on Advanced Networking and Applications (AINA
2004), Fukuoka, Japan, March 29-31, pp. 470-475

[19] Ethereal homepage, http://www.ethereal.com
[20] George Fankhauser, David Schweikert and Bernhard

Plattner, 1999, “Service Level Agreement Trading for
the Differentiated Services Architecture”, Tech. Rep.
59, TIK

Christos Bouras obtained his Diploma and PhD from the
Computer Science and Engineering Department of Patras
University (Greece). He is currently an Associate Professor
in the above department. Also he is a scientific advisor of
Research Unit 6 in Research Academic Computer
Technology Institute (CTI), Patras, Greece. His research
interests include Analysis of Performance of Networking
and Computer Systems, Computer Networks and
Protocols, Telematics and New Services, QoS and Pricing
for Networks and Services, e-Learning Networked Virtual
Environments and WWW Issues.

Apostolos Gkamas obtained his Diploma, Master Degree
and PhD from the Computer Engineering and Informatics
Department of Patras University (Greece). He is currently
an R&D Computer Engineer at the Research Unit 6 of the
Computer Technology Institute, Patras, Greece. His
research interests include Computer Networks, Telematics,
Distributed Systems, Multimedia and Hypermedia.

Dimitris Primpas obtained his Diploma and Master
Degree from the Computer Engineering and Informatics
Department of Patras University (Greece). He works in the
Research Unit 6 of Research Academic Computer
Technology Institute (CTI). His research interests include
Computer Networks, Telematics, Distributed Systems and
Quality of Service.

Kostas Stamos obtained his Diploma and Master Degree
from the Computer Engineering and Informatics
Department of Patras University. He has worked for the
Networking Technologies Sector of Research Academic
Computer Technology Institute (CTI) , Patras, Greece
from the end of 1999 until December 2000. Since July
2001 he works with Research Unit 6 of CTI.

	INTRODUCTION
	THE QUALITY OF SERVICE TECHNIQUES
	THE IMPLEMENTED QOS SERVICE ON IPV6 TESTBED
	EXPERIMENTAL PROCEDURE
	Investigation of the Prioritization Mechanism
	Experimental testing for real time applications
	Investigation of WRED mechanism

	CONCLUSIONS
	FUTURE WORK
	REFERENCES

