MANAGING USERS AND SERVICES USING AN LDAP BASED WEB-
APPLICATION

C. Bouras'? V.-J. Khan!

A. Limperis1 C. Sintoris'?

! Computer Technology Institute-CTI, Riga Feraiou 61, 26221 Patras, Greece
2 Department of Computer Engineering and Informatics, University of Patras, 26500 Rion, Patras, Greece
3 Department of Electrical and Computer Engineering, University of Patras, 26500 Rion, Patras, Greece
E-mail: bouras@ecti.gr

ABSTRACT

This paper describes the design and implementation of an
open and adaptive environment for managing LDAP
databases. Our work was mainly focused on the
administrative needs of the Greek Schools Network. Albeit
we applied considerable effort in order to construct an
application that would not be bound on limitations arisen by
the specific characteristics of the Greek Schools Network.
Such limitations are the directory technology used and the
directory schema applied. The result of this effort is a design
which is extensible, adaptive to a great variety of LDAP
structures and which provides the necessary flexibility to
perform even the most demanding administrative tasks.

KEY WORDS
LDAP, php, web-application, DIT, schema

1. INTRODUCTION

Managing a large number of users, who should have access
on a variety of services over a wide area, can become a
difficult task. In our case, the Greek School Network (from
now on referred to as GSN [1]), with some 10,000 users, it is
even more difficult, since there is no central managing
authority. The GSN connects all schools and educational
administration units in Greece with each other and provides
them access to internet. The networking infrastructure is used
in order to provide internet connectivity to school labs or
email accounts to teachers and educational personnel.

The GSN is split into a small number of responsibility areas
over which a different authority has control. On the other
hand, efforts were made to keep the network’s structure
uniform, in order to allow tasks such as maintenance and
upgrading to be more easily performed. The users of the GSN
should have access to services like email, web space and
dialup. Passing all the services through an LDAP database
provides a clean and relatively easy to manage solution. All
relevant data is kept in one place and changes to the profiles
of the users don’t harm consistency. The problem that arises
is how to effectively manage the LDAP database itself, since
many different types of users should have access on it.

Anonymous users should be able to apply for an account,
users should be able to change some of their data and various
levels of administrators should have a different level of
access on the LDAP database and all that through a user
friendly interface.

Our first attempt, the User Management Environment (from
now on referred to as UME), already provided a solution. The
UME was a web based LDAP administration application
which met exactly the needs of the GSN. It was running
stable for over a year, servicing administrative tasks like
creating, modifying, deleting and searching for user accounts.
The UME’s strength proved to be its weakness, since it was
coded just to fit the needs of the GSN. Extensions and
alternations of the GSN’s structure, even minimal ones,
require the recoding of parts of the UME. In order to
overcome just the extensibility limitations of the UME, we
began around June 2001 to design and implement a new web
based environment. Our goal was to create an environment
which would have as less requirements as possible on
existing structures.

The amount and variety of the users as well as that of the
services provided to them by the GSN, pointed to an
implementation that would not be bound to narrow
specifications. Services already provided to the users of the
GSN are constantly evolving and new services will have to
be added as new user demands are arising. In order to cope
with the ever changing nature of the GSN, we chose to design
a solution that could adapt to post-defined demands. By
aiming to meet those requirements, we succeeded in
designing a medium that is not only suitable for the GSN, but
can also satisfy a very wide and diverse set of directory
related tasks.

Before starting designing our own solution, we surveyed a
number of existing LDAP interfaces. Our target was to find
one which we could easily alter in order to fit our demands,
without having to invest inappropriate amounts of time and
effort. Although many of the projects were quite mature,
none of them actually met our demands. Below we are
reviewing some the applications that already exist.

1. LDAP Admin [2]

LDAP Admin is a mere web interface of Microsoft’s
Outlook Express Address Book, which can work along
with the specific product. It is very limited though,
because it manages only the address book and nothing
else.

2. LDAP Explorer [3]
It is a simple web-client for LDAP Directory servers
developed with PHP, but it does not have any advanced
features.

3. web2ldap [4]
It is an LDAP web interface in Python. Although itisin a
mature state, its main disadvantages are that it does not
provide any functionalities apart from the basic LDAP
features such as search, rename, add, delete, etc. and its
user interface is oriented to experienced LDAP users.

4. Likken [5]
Likken is a JSP based LDAP client still in an early stage.
It offers only the basic functionality of viewing / editing
entries.

Most of the above applications provide just a web interface
which allows the performance of only basic tasks. Those
tasks are specifically attached to the LDAP philosophy,
meaning that a user of those applications is required to be
quite experienced in order to operate them. Instead, our
design aims in hiding the details of the LDAP architecture
allowing the user to operate in a per task manner.

2. GREEK SCHOOLS NETWORK

The GSN’s basic aim is to interconnect schooling facilities,
personnel and students with each other as well as to provide
them access to the internet. The structure of the GSN is
divided into three major sectors:
e Backbone network
As backbone network the GSN wuses infrastructure
provided by the Greek Research & Technology Network
[6] (GRNET), which composes the most developed
network in Greece.
e Distribution network
The distribution network is organized in two layers, the
first one consisting of 9 wide geographical areas and the
second one consisting of 51 smaller areas.
e Access network
The access network connects each school or
administrative office to its familiar prefectural node.

The entities of the GSN that have to be managed through the
LDAP database are: Root dn, Prefecture, School unit or
Administrative unit, Unit account, Teacher account, Student
Account, Personnel Account, Group of users.

The LDAP DIT used to store the above entities is a hybrid
between hierarchical and flat structure. The form of the

hierarchical —part is <unit>,
<country>. User and unit information is stored in a flat
manner under ou=people, <country>. Group
information can be stored everywhere in the DIT. There are
also some special purpose structures, such as the
<deleted> entry. That keeps track of recently deleted
accounts in order to prevent the use of recently deleted email
addresses, uids etc. The <new-entries> entry stores
information about recently added accounts in order to inform
administrators.

<prefecture>,

3. DESIGN ISSUES

Before deciding about which LDAP server we would use, we
tested and did large parts of the implementation both on
OpenLDAP [7],[13] and the iPlanet Directory Server
[8].[13]. About 50% of the implementation took place on
OpenLDAP, before switching to iPlanet. The decision about
the backend directory server was based mainly on licensing
aspects.

Apart from the existence and configuration of the backend
components, there are a number of additional steps needed to
be performed in order to get the system up and running. They
basically consist of a number of LDAP entries which define
data such as the types of objects that will be used, the types
of users that will have access to the system, the actions
allowed to be performed on the directory entries etc. All that
information is stored under ou=Config, cn=en, where
‘cn=en’ denotes the English language. The entities that exist
under ou=Config, cn=en, are cn=0Objects,
cn=matchtypes, cn=datatypes, cn=UserlLevels,
cn=SpecialActions and cn=Reports.

e cn=0Objects contains information about the entities
that are to be kept track of: Teachers, Students, Accounts
and Prefectures etc. Each entity contains information
about its parent object, meaning an entity of that type can
hang only under an entity whose type is the same as that
defined by the parent object (umdParentObject)
attribute. For example, the entry cn=teacher,
cn=0bjects, cn=en, ou=Config, <base dn>,
as shown in Figure 1, contains following attributes:

Attribute © |Va|ue

cn teacher

description Teacher

objectClass top

ohjectClass extensibleChject
umdForms Teacher_Anonymous:Anonymous
umdForms Teacher_RootAdmins
umdFarms Teacher_RootRoot
umdForms Teacher_UserlUsers
umdParentObjsct School
umdFParentChject AdminUnit

Figure 1 - The entry for cn=teacher, cn=0bjects, cn=en,
ou=Config

The umdForms attribute defines which form should be
used to view, modify or add an entity with the attribute
umdObject=teacher.

e cn=matchtypes describes the filters that can be used
in searches. As one can see in Figure 2, this is being
defined by the multivalue attribute umdvalue. The
information contained in that attribute has the form
“name of the matchtype <tab> defini-
tion”.

Affribute [value

cth matchtypes

ohjeciClass umdyalueltem

ohjectClass top

urndvalue "Different from" "{1[%a= %"
umdialue "Does notinclude” (1% a="%y")"
umdyalue "Sounds like" "i%a~=%)"
umdialue "It " %a=)"

urndvalue "lncludes” (% E="%w""
umdiialue "Ends with" "% E="%"
umdialue "Starts with" "(%a=%"
umdialueDescription Matchtypes

Figure 2 - The entry for cn=matchtypes, cn=en,
ou=Config

e cn=datatypes is used in order to create the
appropriate search box for each type of entry. Figure
3 shows the contents of the datatype entry for the
entry type teacher. The
umdInterestingAttribute attribute contains
information about which attributes of an entry of the
type teacher are searchable and the labels that
should be displayed. Also, there are attributes that
define the search scope, the base dn and the filter of
the search.

Aftribute © [value

cth Teachers

displayMame Teacher

ohjectClass extensibleChject
ohjectClass top
umndinterestingAttribute "cn” "Full name"
umndinterestingAtiribute "givenname” "Mame"
umdinterestingAttribute "sn" "Surname"
umndinterestingAttribute "uid" "Userid"
umndinterestingAttribute "accountstatus" "Account status" values{active Active disabled Disabled)
urndialue user
urndyalueDescription Ohject categary
umdbasedn ou=people de=sch,do=gr
urndfilter "fumdOhject=teacher)"
umdscape SUBTREE

Figure 3 - The entry for cn=datatypes, cn=en,
ou=Config

e cn=UserLevels is used to define user levels. The
umdValue attribute is used to define user levels and
their names, separated by an “:”.

e cn=SpecialActions can be used to define some non
standard actions. For example, the custom action
“Activate”, defines through the umdvalue attribute
that the attribute accountStatus of an entry of the
type ‘user’ or ‘teacher’ should take the value active
after performing that action.

e cn=Reports is used in order to create printable reports
about the entries.

As one can easily derive from the preceding statements, the
whole concept has no limitative dependence on existing
directory schemas. The only attribute needed to be added to
an existing entry is one that defines the type of that entry.
Apart from that, in order to get the application working, one
also needs to configure the above options and to create the
appropriate forms. We will examine the forms concept later.

Group definitions essentially are entries which have their
umdObject attribute set to “Group”. The multivalued
attribute named member contains the dn of each member.
Also, each member entry carries a multivalued attribute
named memberof which contains the dn(s) of the group
entries the member belongs to.

For example the group ou=teachers,
ou=prefecture, <base dn> contains the attribute
‘member’ with the value “ou=teacherl, ou=people,
<base dn>”, which is the dn of a ‘teacher’ entry.
Likewise, the teacherl entry contains the attribute
memberof with the value “ou=teachers,
ou=prefecture, <base dn>". So group information
about teacherl is stored in two places.

Although it may seem that this approach creates overhead
when adding or removing members from groups, it allows the
efficient retrieval of grouping information: finding out the
members of a group or the groups a member belongs to
becomes a fast and easy task.

4. IMPLEMENTATION ISSUES

The basic concept of the application is the clear distinction
between two main functions: the browsing and the
performing of actions. These two parts are completely
distinct and they do not interfere with each other (Figure 4).
The browsing module does not depend at all on the actions
module, while the actions module only needs a dn, which it
gets from the browser or the search module, and the type of
action in order to operate. The user can browse through any
objects of the database and trigger actions on them at will.

The interface of the application consists of two frames, the
browser (or the search module) and the action screen. The
browser screen provides a collapsible tree-structured look on
the directory server’s entries, a group view of these entries
and a search facility. By selecting an entry from the browser
screen the action screen is activated and provides a set of
possible and, depending on the access level of the user,
allowed actions on the selected entry. These actions can be

summed up to a number of four: “view”, “modity”, “add”,
“delete”. Apart from them one can add more actions. For that
he would have to actually write code, since the logic of any
new action has to be defined. For example, in the case of the
GSN we have added an “activation”-action for newly
registered users. The “activation”-action changes the value of
an attribute of a user entry.

Activate

Figure 4. Main Architecture

Based on the information received from the browser module,
the action module launches the appropriate action. For the
actions “View”, “Modity” and “Add” an appropriate form is
loaded. For the “Delete” action the form consists of a simple
confirmation dialog. The forms are chosen using the dn of the
object received from the browser module. There are distinct
forms for distinct entry types only, not for distinct actions.
That means that for adding, viewing or modifying an entry of
the type “teacher” a different view of the same form is
launched.

In order to have that adapting system of forms to perform the
available actions, we implemented a form builder which
provides forms in a manner of entry type/user type.

There is only one form definition for each entry type/user
type pair. All actions on these pairs are performed using a
different view on the same form. This is possible by using
some flag values on the form definition. For example, if the
attribute “user 1id” should be viewable but not modifiable,
the flag viewable user id is set to 1, while the flag
editable user idissettoO0.

Bulk actions are actions that can simultaneously be
performed for a large number of entries. Using this facility
one can perform an action on multiple entries. Using the
results of a search, one can delete or activate (which is a
custom action) multiple entries.

Bulk adding can be performed in a different manner. The user
first has to choose the type of object he wishes to add, then

either upload a tab delimited file or enter the data manually in
a text area field.

Security is implemented using access lists (ACL’s) that are
defined on the directory server’s side. On the side of the
application, by checking for group membership, the user is
given a different view of the directory. For example, the
administrators of a prefecture will see the area of the sub tree
that is underneath the prefecture entry and nothing else. Of
course, using the above procedure, a more detailed access
policy can be defined.

5. FUNCTIONALITY

Whenever we trigger an LDAP-search to the directory adding
the filter: " (objectClass=*)" [9] we are sure that the
directory server will return all the entries that it has stored.

Starting off from the root of the directory, we trigger an one
level LDAP search and so we are in the position to create the
first branch of the browser tree from the results returned by
the search function.

The links that represent the nodes and leafs of the tree display
an attribute, which describes in a user friendly way the
specific entry of the directory, e.g. the description attribute
(description), or the canonical name (cn), or the user id
(uid). This attribute is chosen by the browser module in the
following way: The module creates a list of interesting
attributes by reading the ‘umdInterestingAttribute’
attribute, as defined in the object type definition of the entry
(Figure 3), and displays the first of them found. If an attribute
is unavailable, it proceeds to the next etc. If none is found,
then the dn is displayed.

General Info

f

root o @ O

Erowser Tabs Search

Search Tab

Specify
another
Branch of tree

Searchin: Maonades Pan Schal Diktyoy

Monsdes Pan Schol Diktyou->

—

Search for

For: Iﬁ

IInEIudas 'I
Search

Figure 5: Search feature

Search functionality is provided using a drop down menu
with which the user denotes the kind of object he is searching
for e.g. teacher, student, prefecture, school etc (Figure 5).

In the next step he has the option to fill-in one or more of
several fields (Figure 6), which are created dynamically,
depending on his choice in the previous step. This is being
done by reading the cn=<umdObject>,
cn=datatypes configuration entry, which describes which
attributes are searchable for each object type (Figure 3). For
example, entries of the type teacher are searchable by using
the “uid” or the “cn” or the “sn” field or any combination
of those.

Foe [Toncer =

Object
Full Name F-1|'—
reT

& | Surname
Name * Harsa

Usarkdad_ied
e =
ree
Account Status T |
[Prcbozan =
Saerch |

Figure 6: Step two - filling search parameters in a field

<

‘starts with”,
ends with”, “is”, “is not”, “sounds

Also, he can use matching filters, like
“contains”, ©
like” etc (Figure 7). These matching filters are again
defined in a configuration entry, under cn=matchtypes.

(Figure 2)

For: ITBacher 'I
Fulll—
name
SumameI

Namel
Useriditest_uid
A:cuunt'ﬁ
status
Includes ¥

Search I

Figure 7: Use matching filters

After this step, the application creates the proper filter and
conducts an LDAP search with a sub-tree scope. In order to
prevent overhead by bad filters which cause an excessive
return of entries, there is an upper limit of returned results.

Actions on directory entries are performed through forms.
These forms are launched depending on the entry type and
the user type.

~ User Administration

Search under Prevers

‘ Preveza-

[Shon Prociors___=1 EE]
Add School

Add Administration Unit

g ez prevezss
20 a0 LvkEID P

Figure 8: Single Action

There are several actions that can be performed on a single
(Figure 8) or multiple (bulk actions) entries at a time. The
available actions are Add, Modity, View and Delete. These
actions depend on the value of the umdObject attribute of
the entry. That value defines which form will have to be used
on that particular entry.

The form builder part of our application can be used to create
appropriate forms for each user type — entry type pair. Each
form created can perform add, modify or view actions. View
actions just display a form which shows the elements marked
by the form builder as “viewable” in read only mode.
Modify actions do the same, except for the elements marked
as “editable”, which allow the user to change their
current values. Add actions are empty forms which are used
to create new entries. The elements that are defined as
“calculated” show only a “calculated” label. In all
of the three actions the elements defined as “hidden” are
never displayed.

The form builder consists of three steps:

1. Select the attributes
Either by parsing . schema files or by querying a version
3 LDAP server, the form builder reads object and
attribute definitions.

2. Contigure the attributes

In this step various options can be configured for the
attributes selected in the previous step. Such options
include labels, control types (input box, radio button,
checkbox etc.), control options, calculation formula etc.
When finished with the definition of these configuration
options the user can proceed to the visual arrangement of
the attributes on a canvas.

3. Arrange the configured attributes visually on a canvas.
This step allows the user to visually design the form. An
empty canvas appears on the middle of the screen, on
which the user can drag and drop the fields defined in
step 2.

During the whole process the user can move back and forth,
refining configuration options or clearing out mistakes.

Using a load dialog, the user can load a previously stored
form, reconfigure every option available and store it under a
different name.

By changing a configuration option of the application, the
whole interface can display itself in a different language,
provided of course that the appropriate language definitions
exist.

6. FUTURE WORK AND CONCLUSIONS

One can confidently say that our efforts to build an
environment for managing users and services over LDAP
succeeded in meeting the demands of an open and extensible
application as well as in filling a gap. Looking back, we
would surely revise some parts of the application in the way
that they were developed, but we consider the overall strategy
successful.

After reaching our goals, we started considering future
enhancements. It is in our intentions to design and implement
the following features:

¢ Rollback mechanism. This feature should provide
more than basic rollback functionality. A major part
should be implemented using backend procedures.

e LDAP Controls [10]. Some parts of the application
can be rewritten in order to make use of LDAP
Controls such as the Server-Side Sorting Control
[11] or the Virtual List View Control. Albeit, the
current release of the php LDAP libraries does not
allow the use of this features.

e Library enhancements. During some development
stages we encountered some limitation of the current
php LDAP interface implementation. If the features
we require will not be implemented in the near, we
intend to write some php extensions ourselves.

e Open Source. Finally, we intend to release the
environment to the Open Source community, as
soon as some minor modifications are completed.

REFERENCES

[1] The Greek School Network,
http://www.sch.gr/index_en.php

[2] LDAP Admin,
http://www.savoirfairelinux.com/download/ldapadmin.h
tml

[3] LDAP Explorer,
http://igloo.its.unimelb.edu.au/LDAPExplorer/

[4] web2ldap, http://web2ldap.de

[5] Likken, http:/www.likken.org

[6] Greek Research and Technology Network,
http://www.grnet.gr/index_en.html

[7] OpenLDAP Project, http://www.openldap.net

[8] iPlanet Directory Server, http://www.iplanet.com

[9] Timothy Howes, Mark Smith and Gordon Good,
Understanding and deploying LDAP directory Services
(Macmillan Network Architecture and Development
Series)

[10] LDAP SDK for C Programmer’s Guide (iPlanet™
Directory Server Resource Kit, June 2001)

[11] T. H. Loudcloud, A. Anatha, RFC 2891: LDAP Control
Extension for Server Side Sorting of Search Result
(August 2000)

[12] iPlanet Directory Server Documentation,
http://docs.iplanet.com/docs/manuals/directory.html

[13] OpenLDAP 2.0 Administrator's Guide,
http://www.openldap.org/doc/admin/

