
Clustering to Deal with the New User Problem

Christos Bouras
Computer Engineering and Informatics Department,

University of Patras and
Computer Technology Institute and Press “Diophantus”

Patras, Greece
bouras@cti.gr

Vassilis Tsogkas
Computer Engineering and Informatics Department,

University of Patras
Patras, Greece

tsogkas@ceid.upatras.gr

Abstract— Collaborative filtering (CF) techniques attempt to
alleviate information overload by identifying which items a
user will find interesting to browse. It focuses on identification
of other users with similar tastes and usage of their opinions in
order to recommend items. Commonly, however, CF suffers
from the so-called new user problem which occurs when a new
user is added to the system and there is not enough
information to make a good suggestion. The system has to
acquire some data about the new user in order to start making
personalized recommendations. In this paper, we present a
novel algorithm that combines previously acquired knowledge
from article and user clustering in order to quickly determine
the new user's interests. We attempt to address the new user
problem by providing a personalized strategy for prompting
the user with articles to rate. Our approach makes use of
hypernyms extracted from the WordNet database and proves
to be converging fast to the actual user interests based on
minimal user ratings which are provided during the
registration process.

Keywords New user problem; collaborative filtering;
clustering; W-kmeans; Personalized strategy

I. INTRODUCTION

Each day, more and more books, journal articles, web
pages, and movies are available online. While available
information is growing in volumes, we quickly become
overwhelmed and seek assistance in finding the most
interesting, valuable, or entertaining items on which we
should spend our scarce time. Historically, humans have
adapted well to pieces of information and have developed an
excellent filtering ability to make quick judgments.

The technologies that are commonly used to address the
previously mentioned information overload challenges are
basically three. Each one focuses primarily on a particular set
of tasks or questions: a) information retrieval (IR), which
focuses on tasks involving fulfilling ephemeral interest
queries, such as finding the articles related to president
Obama, b) information filtering (IF), which focuses on tasks
involving classifying streams of new content into categories,
such as finding any newly released articles regarding the
economic situation in Greece, or any newly released movies
without an English-language soundtrack or subtitles (to

reject), and c) collaborative filtering (CF), which focuses on
two important questions: which items (from a set or overall)
should be proposed to a user, and how appealing will these
particular items be for the user. Each of the above
technologies has a specific approach in producing an
effective recommender system.

Collaborative filtering is a methodology by which users
co-operate in order to determine what is interesting or useful
from a large set of items. The intuition behind this approach
is that since people prefer only to look at relevant, interesting
content, one way to filter out the irrelevant data is to
collaborate with other users and consider what they believe
to be relevant. The first collaborative filtering system was
Tapestry [1] which was an attempt to select informative
email messages from mailing lists. Grouplens [2] was
another CF system that was able to automatically select the
group of trusted users for the current one. MovieLens, being
the latest system from the GroupLens group, attempts to
make rating predictions and recommend movies based on
collaborative filtering. Nowadays, there are many more CF
systems online (Amazon, Google News, YouTube, Netflix,
etc.) most of which generate recommendations to the user,
based on those items that have the highest predicted rating
among those that the user has not yet rated. The previous
technique makes CF and recommender systems very similar.

A. The new user problem

A common problem that all CF filtering systems suffer
from is the cold start problem. It consists of a family of three
related problems: a) the new item problem, where a new item
is introduced to the community and since it has no rating, the
system cannot recommend it to any user, b) the new user
problem, where a new user enters the system and there are
no ratings made yet by her – hence there can be no generated
system predictions for her, and c) the new system problem,
where we have a new system for which there are no ratings
of any users. In this paper, we will be focusing on the new
user problem.

Previous approaches to the new user problem have
mostly focused on metadata and user-prompting. The
metadata about items can be used to generate
recommendations by content-based recommender systems

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.18

58

like in [3] or in a hybrid fashion with ratings-based system as
the ratings come into the system like in [4]. Filterbots [5] are
another approach in which pseudo-users and items are
algorithmically created in an attempt to provide base ratings
to the system such that no user or item would be left without
rating. These agents, as shown in [14], can potentially be
performing better when working in tandem with CF
techniques and in particular, the CF engine is what matters
the most in this combinatory scenario. Other methods that
utilize demographic data available to the system have also
been proposed, but gathering such data often conflicts with
privacy issues.

Recommender systems have also been used to help tackle
the new user problem. Some approaches, like [16], create
user categories where new users are quickly assigned by
using a set of pre-determined questions. These approaches
jump-start the system by using demographic or model based
attributes. Even though domain-limited, they can potentially
produce accurate results.

B. User prompting

Another method for dealing with the new user problem is
to explicitly ask the users to provide ratings for items (i.e.
news articles in our case). The scheme is pretty basic: when
the new user enters the system, she is presented with items to
rate, which are not really recommendations, but are rather
selected in order to gather as much information about her
profile as possible. As she continues providing ratings for the
selected items, the system decides whether to continue this
process improving the user’s profile or halt it. Large
questionnaires come with a cost though: users are easily
disturbed and might give up the process if it’s taking too
long or if they feel that the requested data conflict with their
privacy. When this process ends, the system, having a basic
knowledge of the user’s appetite, starts recommending items
and monitors her actions forming a feedback loop for profile
updates.

This prompting approach was introduced in [6] where the
ordering of items by the variance and entropy was
investigated. Methodologies regarding user prompting can be
divided into non-personalized and personalized [11]. Non-
personalized methodologies for user prompting include: a)
the popularity method, where items are ordered by the
number of ratings that they have been given by all users, b)
the entropy and its variations methods that rely on the fact
that certain items can yield more information about a user’s
likes than others, c) the greedy method, where the next item
is chosen from those that the user is able to rate, such that the
prediction error for her test set is minimized (clearly this
method could not be used in practice as it requires knowing
not only what each person is able to rate but also the actual
ratings), d) other people’s greedy and variations, where the
items that will be presented to the user are chosen from the
top-n lists of other users. Personalized methodologies on the
other hand take into consideration the responses that the user
has given to items already presented. Some non-personalized
methodologies are: a) naïve Bayes, where by knowing

whether a user is able to rate an item we can work out the
naïve Bayes probability of a user being able to rate the other
items, b) perturbed other people’s greedy and variations
which combine other people’s greedy with naïve Bayes.

In [7] the authors presented more methods for improving
the order of items attempting also personalized orderings.
Recently a new method for a non-personalized ordering of
items was presented in [8] and a personalized one in [9]. In
[10] the authors, using a prediction method which was a
variant of matrix factorization, showed that more accurate
predictions can be made when the user has provided minimal
ratings than when the system uses the metadata of the items
in order to generate predictions. There are two important
aspects for the user prompting approach: a) which items to
select and b) in which order to present them to the user.

There have been many approaches regarding the process
of selecting which items to present next to the user during
the prompting phase. Certain trade-offs should also be
considered, like the effort the user has to put into and the
satisfaction she will get by the registration process as a
whole. Moreover, the recommendation accuracy, i.e. how
well the recommendations presented to the user really are, is
of great significance. Taking the above into consideration,
there have roughly been 5 main strategies for selecting which
items to present to the user during the prompting phase:
random, popularity, pure entropy, balanced and personalized
[15].

In random strategies, the items that are to be presented
are chosen randomly with a uniform probability over the
universe of items. If the distribution of ratings is uniform,
they have the advantage of covering the entire universe of
items. In the popularity based strategies, the items are sorted
in descending order based on their number of ratings. Even
though easy to compute, these strategies overly promote
items that have been widely rated and may carry little
information. In pure entropy strategies the users are asked
about items which give the most information for each rating.
Generally, an item that has some people that disliked it and
some other who liked it may tell us more than an item which
everybody liked. In balanced strategies, a combination of the
popularity and entropy strategies is used. This can usually be
in the form of Popularity*entropy or Log
Popularity*Entropy. This approach, using Bayes theorem,
silently assumes that popularity and entropy are independent
which is not always correct. Lastly, in personalized strategies
the suggestions are adapted to the user preferences via a
feedback loop. Frequently, the item by item strategy is used
in which, at first, items are presented to the user by any other
strategy until a rating is picked up. Following that, a
recommender, based on some similarity measure, finds
similar items for user suggestions based on what the user
previously rated.

In our work we are focusing on a personalized
methodology for user prompting, similar to the item by item
strategy. Our approach exploits clustering, and in particular
our W-kmeans clustering algorithm [12], in order to select
which news articles to pick next for rating by the user. Our
work explores both item (i.e. article) and user clustering in
order to effectively select articles for rating and thus quickly

59

and reliably converge to the actual user’s preferences. We
also try to determine how well our approach deals with the
new user problem compared with the basic 5 strategies that
were previously described.

The rest of the paper is structured as follows: Section 2
presents our system as a whole and the flow of information
within it. In Section 3 we present our personalized
algorithmic strategy for dealing with the new user problem.
In Section 4 we present our experimentation as well as its
results, while in Section 5 we outline the conclusions of this
work as well as some areas that are worth considering for
future research.

II. FLOW OF INFORMATION

Fig. 1 depicts the flow of information that is followed in
the suggested approach [13]. Initially, at its input stage, our
system fetches news articles generated by news portals from
around the Web. This is an offline procedure and once
articles as well as metadata information are fetched, they are
stored in the centralized database from where they are picked
up by the procedures that follow. A key process of the
system as a whole, probably as important as the clustering
algorithm that follows it, is text preprocessing on the fetched
article’s content, that results to the extraction of the
keywords each article consists of. Analyzed in [13], keyword
extraction handles the cleaning of articles, the extraction of
the nouns, the stemming as well as the stopword removal
process.

Keyword extraction then applies several heuristics to
come up with a weighting scheme that appropriately weights
the keywords of each article based on information about the
rest of the documents in our database. Pruning of words,
appearing with low frequency throughout the corpus, which

are unlikely to appear in more than a small number of
articles, comes next. Keyword extraction, utilizing the vector
space model, generates the term-frequency vector, describing
each article as a ‘bag of words’ (words – frequencies) to the
key information retrieval techniques that follow: article
categorization, summarization and clustering. We are
enhancing the efficiency of this ‘bag of words’ with the use
of an external database, WordNet. The above characteristics
of our system give its content-based nature. This enhanced
feature list feeds the k-means clustering procedure that
follows [12]. It is important to note, however, that the
clustering process is independent from the rest of the steps,
meaning that it can easily be replaced by any other clustering
approach.

Following the core IR tasks of our mechanism, the
personalization algorithm takes place. The personalization
module can easily adapt to subtle user preference changes.
Those changes, as expressed by the user’s browsing
behavior, are detected and continuously adjust her profile.
The algorithm uses a variety of user-related information in
order to filter the results presented to the user. Furthermore,
it takes into account in a weighted manner the information
originating from the previous levels regarding the
summarization/categorization and news/user clustering steps.

User profiles from multiple users and timeframes are
then clustered using the W-kmeans algorithm forming profile
clusters. W-kmeans is a novel approach that extends the
standard k-means algorithm by using the external knowledge
from WordNet hypernyms for enriching the “bag of words”
used prior to the clustering process. The W-kmeans
algorithm enhances the user profiles with hypernyms
deducted from the WordNet database, using a heuristic
manner.

Figure 1 Flow of Information

60

Those profile clusters are used at the recommendation
stage in order to enhance the system's usage experience by
providing more adapted results to users revisiting the site.
When a user comes back her clustered profile is recalled.
Articles matching her profile are extracted and are
considered for user recommendations.

The dashed component of Fig. 1 captures the high level
approach that is proposed in this work for dealing with the
new user problem. When a new user enters the system, she
enters a priming phase (user-prompting) in which a series of
articles are suggested to her as rating candidates. Our goal is
twofold: we want the total number of presented articles to be
minimized, while also allowing the system to gain as much
information as possible from the rated articles. Determining
which articles to select for the user prompting phase and in
which order are the main aspects that the current work
focuses on.

Initially, we suggest articles for user rating based on a
given strategy: even though one would expect that this
strategy would be of significance, this is not really the case
as shown in [15]. Thus, we simply select articles coming
from the most rated list that resides in the database. While
the suggested articles are not rated by the user, we continue
the suggestions based on this list. Once the user has rated one
article, we utilize our clustering data in order to find out and
suggest for subsequent rating, articles that a) belong to the
same article cluster as the rated one or b) are chosen by users
that have rated the selected article(s) likewise before. The
above procedure continues until enough user ratings are
gathered. Once this phase is complete, the user profile is
boot-strapped and the system goes into its normal
recommendation state.

III. ALGORITHMIC APPROACH

In this section we will be describing the various
algorithmic steps that are followed in our approach.
Algorithm 1 presents the procedure that is used for gathering
ratings from a new user who is visiting and registering to the
system for the first time. Algorithm 2 outlines the steps used
to recover articles based on either article or user clustering
information. We don’t get into much detail on how each
function works, but the names should be self-explanatory.

Algorithm harvest_user_ratings
Input: NULL
Output: user_ratings[] //rated articles by the user
 rated_article = NULL // first rated article A1
 article_cluster = NULL
 articles_next [] = NULL
 rated_articles[] = NULL
 while (!rated_article)
 rated_article = rate(present_next_most_rated_article())
 //continue presenting from the L1 list until user has rated 1 article
 user_ratings[] += rated_article // Article A1 is rated with score S1
 article_cluster = find_article_cluster(rated_article)
 articles_next[] = find_most_rated_articles(article_cluster, M)
 // articles_next[] is now list L2 containing M items
 while (has_next(articles_next))

 rated_articles[] = rate(present_next_article(articles_next))
 if (!rated_articles[]) // user hasn’t rated any of the M articles from L1
 articles_next[]=find_most_rated_articles_from_user_clusters (rated_article,M)
 // articles_next[] is now list L3
 rated_articles[] = rate(articles_next[])
 user_ratings [] += rated_articles[]
 GOTO: T // Continue possible suggestions from user clustering
 else //user has rated some of the M articles
 user_ratings [] += rated_articles[]
T: while (user_ratings.size() < Rmin) // do we have enough ratings?
 articles_next[]=find_most_rated_articles_from_user_clusters (rated_articles,M)

 // articles_next[] is now list L4
 rated_articles[] = rate(articles_next[])
 user_ratings [] += rated_articles[]
 return user_ratings[]

Function rate
Input: articles[]
// Presents for rating the selected article(s) and returns the rating scores
// or null if the article wasn’t rated
 rated_articles[]=NULL
Output: rated_articles[]

Function find_article_cluster
Input: rated_article
// Recovers the cluster that the article belongs to
Output: article_cluster

Algorithm 1. Determining which articles to present to the user

Algorithm find_most_rated_articles
Input: cluster, M
// Recovers the M most rated articles that belong to this cluster
// Uses article clustering results from the database
// cluster can be either an article or a user cluster
Output: articles[M]

Algorithm find_most_rated_articles_from_user_clusters
Input: article / articles[], size M
// Recovers articles from the user clusters which contain users who have
// previously rated the specified article(s). Uses user clustering results
Output: rated_articles[]
 rated_articles[]=NULL
 clusters[]= find_user_clusters(article)
 //find clusters of users who have rated article(s)
 for each cluster in clusters[]
 rated_articles[]+=find_most_rated_articles (cluster, M)
 return rated_articles[]

Algorithm 2. Recovering articles based on article or user clusters

In our work, we use an item by item personalized
strategy, as the one described in [15], in order to select
articles as rating candidates for the new user. Initially, when
a user enters the prompting phase, we present her with
articles one by one from the most rated (popular) list of
articles that reside in the system’s database. Let’s call this
initial list: L1. The presentation of articles continues until an
article, say A1, is rated by the user with score S1. We use
this information in order to determine the cluster to which
this article belongs. Then, we can suggest for user rating M
of the most rated articles from this cluster, which are forming
article list L2. Note that L2 contains articles based on article
clustering information originating from the system’s

61

database. Choosing the correct value for M is a matter of
experimentation since there is a specific trade-off for it,
which we will try to briefly describe. Large M values give
many similar articles, i.e. from the specific article’s cluster,
so that a hit there, regarding the user’s preferences, will
probably harvest many user ratings. However if the rated
article A1 does not convey entirely the user’s appeals, many
articles that with high probability won’t get rated will be
presented without an easy way for her to backtrack. This can
have a negative effect on the system’s performance and will
probably also cause user frustration. On the other hand, small
values of M might lead to a similar negative impact via a
different path: a user would expect from the recommendation
system to catch up her preferences quickly and not backtrack
to articles she has no interest about. In a nutshell, we don’t
want to overload the user with articles from a single cluster,
but still, we want to determine relatively fast if articles
belonging to that cluster are really interesting to the user.
Additionally, we want to cover as broadly as we can the
related clusters that might capture user ratings, thus a small
to medium value for M should be more reasonable.

As our algorithm proceeds, if no rating is given on any of
those M articles of L2, we seek for the user clusters which
contain users who have previously rated the item Ai with
score Si. Using these user clusters we can form an article list,
say L3, which consists of M * number of clusters of the most
rated articles. Again we choose to keep M articles from each
of these user clusters and as before the same tradeoffs apply
on the value of M. The L3 list, containing user clustering
information is subsequently suggested to the user and any
possible article ratings that are gathered from the user are
used to recreate the L3 list in a similar fashion. This process
forms a loop until the total number of ratings reaches our
defined threshold, say Rmin.

On the contrary, if the user has rated at least one of the M
articles of the L2 list, we seek for the user cluster(s) that
contain most of the previously rated articles and again, we
select the (M * number of clusters) of the most rated articles
(list L4). Although resembling each other, the L3 and L4
lists are not the same: the difference is that L3 is based
entirely on user clustering while L4 is instantiated via article
clustering first and enhanced later on via user clustering
using collaborative knowledge that resides in the system’s
database. We have selected this article/user clustering
combination based on our previous experimental results [12].
The aforementioned approach continues until at least Rmim
user ratings are gathered.

Once the needed user ratings are harvested, the
registration process ends and the user can now browse
through the personalized recommendations that the system
provides. As explained in Section 2, the personalization
improves the quality of the user-suggested articles based on
the continuous feedback that the user provides via his
choices.

IV. EXPERIMENTS AND RESULTS

For our experimental procedure we built a dataset using a
snapshot of our system’s database, PeRSSonal [13]. The

reason that we didn’t select to work with other datasets (like
NetFlix or MovieLens), is due to the clustering capabilities
of our system: W-kmeans is enabled and already applied on
our dataset. During our evaluation, we firstly eliminated
users who had fewer than 50 recorded ratings. This left us
with 60 users who had rated 2,055 articles with over 10,000
ratings. Using a cutoff of 50 ratings is significant: we want to
prevent users who haven’t used extensively our system from
affecting the evaluation process. In general, we need many
ratings for each user in order to have a good sample of
articles that they were able to rate which effectively
constitutes their preferences. Since a “new” user in the
experimentation that follows is practically each one of the 60
users we previously mentioned, for each run we withheld all
of the user’s ratings from the system. As we presented
articles based on each of the strategies that we are
evaluating, users “rated” the articles they have “viewed”, i.e.
the ones for which we had ratings in the database. This
means that if an article that is presented to the user was
found as rated or viewed in our database we consider it as a
successful proposal for user rating. Regarding the particular
scores, the rating score found in the database is used as the
rating score she would give during the prompting phase. If
the article was found in the viewed list, we consider this with
the highest rating score, i.e. 5. For our first and second
experimentation set, we stopped presenting articles once we
got the required number of ratings, which for our
experimentation was set to be Rmin = 20.

For our first experiment, we tried to determine the best
value of the parameter M described in Section 3. That is: the
best amount of articles we should present to the user, which
belong to a certain cluster (either article or user cluster) after
one or more article ratings are harvested from the user. In
order to perform this evaluation, we deployed one of the
most widely used evaluation metrics for predicting
performance of recommender systems, which is the Mean
Absolute Error (MAE). We use the MAE, for expressing the
average absolute deviation between the predicted and the
actual user ratings. MAE can be computed using formula (1).

|'|
|),('),(|'),('

R
iuriurRiur

MAE
��

� � (1)

where]5,1[i) r(u, � is the actual rating (recorded in the
database) of user u for article i and]5,1[i) (u,r' � the
predicted / recommended preference for user u of articles
belonging to the space of proposed articles, R’. For this
experiment we used an increasing number of values for M on
each run, starting at M=1 and ending at M=50. The results
are presented in Fig. 2.

62

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 10 20 30 40 50 60

M
AE

M: selected articles belonging to a certain cluster

Figure 2 MAE scores for various numbers of M

From the graph of Fig. 2 we can pinpoint that the best
value of the parameter M in terms of MAE is M=5. From a
natural point of view this means that selecting 5 articles from
the articles or user clusters is best for forming the M2, M3 or
M4 lists. Executions with lower M values suffered from few
article suggestions coming from article and user clusters,
something that was leading to low performance and longer
user prompting times. We expect that on an online
experiment with many users, the performance would have
been even worse, counting in also the user frustration which
is to be expected when the prompting phase takes too long.

Evidently, values for M > 10 also suffered from poor
performance. This can be explained by the fact that when we
are using too many articles from article and user clusters, the
users have a hard time backtracking out of a cluster if they
need to when going through the prompting phase. For our
subsequent experiments, we are using M=5.

For our second experiment, we used each of the user
prompting strategies described in Section 1: entropy,
random, popularity, balanced, personalized item by item, as
well as our proposed clustering-based strategy, in order to
select which articles to present to the new user. Once the
prompting phase completed for each strategy, we counted the
number of articles that the user had to view until the Rmin =
20 ratings were harvested. We need to stress out that the
fewer the articles that we had to present to the user, the
better, given the fact that we are saving user effort. Also note
that for the personalized item by item strategy, we used the
popularity based approach for presenting the initial articles
until a rating is accomplished by the user. This is similar to
the proposed clustering-based methodology that we follow,
except of course that we are also exploiting the clustering
information. After that, we found out which articles are close
to the rated one by utilizing the cosine similarity as a
measure. The articles’ similarity is calculated by using each
article’s keywords as explained in [13]. The similar articles
are next used as suggestions for users to rate.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

Ar
tic

le
s P

re
se

nt
ed

Users

Entropy
Random
Popular
Pop*Entr
Item-Item
Clustering

Figure 3 Required number of articles per strategy during the prompting phase

63

From the graphs depicted in Fig. 3, we can observe that our
clustering-based article selection approach clearly outperforms
all other strategies. We see that the random strategy required an
average of 135 articles to be presented to the user before 20
ratings were harvested. This result is expected due to the
random nature of this strategy and the fact that the user ratings
cannot be considered as uniform throughout the dataset: each
user is expected to have rated articles that only appealed to her
and only for particular domains. The same number (for the
amount of articles) was 115 in the case of the entropy-based
strategy and 70 for the popularity-based strategy. The results
for the entropy strategy, though surprising, have a plausible
explanation: this strategy promotes less popular articles.
However, there is a straight correlation between popular
articles and the chance that a new user would like a popular
article. Thus by choosing less popular articles at most of the
times, this strategy suffers from bad performance. The results
were better for the balanced popularity*entropy strategy with
55 articles on average. The personalized item by item strategy,
even though very promising with an average of 41 articles,
couldn’t match the average of 37.5 articles that our approach
scored.

For our third experiment, we tried to determine the
prediction accuracy of the proposed approach compared to the
previously mentioned strategies. Again, we made use of the
MAE metric. For determining the MAE scores of each strategy,
we presented for user rating a total of 30, 50, 70 and 90 articles
in 4 subsequent runs for each of the 6 strategies. The results,
presented in Fig. 4, show the MAE variations of the different
strategies as a function of the presented articles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

30

50

70

90

MAE

Ar
tic

le
s P

re
se

nt
ed Clustering

Item-Item
Pop*Entr
Popular
Random
Entropy

Figure 4 MAE scores for each of the prompting strategies for various number
of presented articles

We can observe a MAE improvement as the number of
presented articles increases, something that has a significant
effect especially for the proposed clustering-based article
selection strategy: as more and more articles are rated by the
user, our approach can pick up better candidates for user rating
by utilizing article and user clustering data from the database.
Indeed the proposed approach gives the lowest MAE scores for
each of the experiment’s executions. Another result we can
pick up from Fig. 3 is that the random strategy has the worst
prediction accuracy, validating our observations on the first
experimentation. We can also observe that the personalized

item by item strategy is again, as in the second experiment,
close to our proposed strategy.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a personalized strategy for
dealing with the new user problem via prompting, in the
domain of news articles. We implemented and evaluated an
algorithmic approach that makes use of article and user
clustering information in order to decide upon which articles to
present next for rating during the process of user registration.
Our approach has similarities to the personalized one by one
strategy, but the results have shown that it performs better than
any of the most commonly proposed strategies for the problem
of user prompting.

Our experimentation, based on offline system user ratings,
showed that by using M=5 articles from each article or user
cluster we get the lowest MAE scores. Using this result, we
later determined that our approach requires, on average, 37.5
articles to be suggested for user rating in order to acquire 20
ratings; an amount of articles that was considerably less than
any other techniques that similar systems use. Finally, we
compared the MAE scores of the proposed technique with each
of the entropy, random, popularity, balanced and personalized
item by item strategies. Each experiment, executed over
various amounts of articles has also shown that our
methodology outperforms all of the afore-mentioned strategies.

Even though the above results are encouraging, they cannot
be considered as conclusive, since they were done over an
offline snapshot of the system’s database based on already
recorder user ratings. Thus, for the future we are considering a
more large scale experimentation that will also include online
data by more users registering through our system. We would
also like to evaluate our approach with other databases too,
such as the NetFlix and MovieLens datasets. Furthermore, we
are working on enhancing our user prompting algorithm so that
it includes more personalized information that can be harvested
from the system. In particular, we are looking for an extension
that will include the categorization as well as the
summarization information which will enhance the
personalization factor of our algorithm.

ACKNOWLEDGMENT

This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Reference
Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through
the European Social Fund.

64

REFERENCES

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative
filtering to weave an information tapestry,” Communications of the
ACM, v.35 n.12, Dec. 1992, pp. 61-70.

[2] P Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: an open architecture for collaborative filtering of netnews,”
In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, October 22-26, 1994, Chapel Hill, North Carolina,
United States, pp. 175-186.

[3] M. Balabanovie and Y. Shoham. “Fab: Content-based collaborative
recommendation,” Communications of the ACM, 40, 1997, pp. 66-72.

[4] K. – Y. Jung, D. Park, and J. Lee, “Hybrid collaborative filtering and
content-based filtering for improved recommender system,”
Computational Science- ICCS 2004, pp. 295 – 302.

[5] S. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste, “Naïve
filterbots dor robust cold-start recommendations,” In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2006, pp. 699 – 705.

[6] A. Kohrs, and B. Merialdo, “Improving Collaborative Filtering for new-
users by Smart Object Selection,” In proceedings of International
Conference on Media Features, 2001.

[7] A. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new users
in recommender systems: an information theoretic approach,” ACM
SIGKDD Explorations Newsletter, 10(2), 2008, pp. 90-100.

[8] N. Golbandi, Y. Koren, and R. Lempel, “On bootstrapping recommender
systems,” In Proceedings of the 19th ACM International Conference of
Information and Knowledge Management, ACM, 2010, pp. 1805-1808.

[9] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive bootstrapping of
recommender systems using decision trees,” In Proceedings of the Forth

ACM International Conference on Web Search and Data Mining, 2011,
pp. 595-604.

[10] I. Pilaszy, and D. Tikk, “Recommending new movies: even a few
ratings are more valuable than metadata,” In Proceedings of the Third
ACM Conference on Recommender Systems, 2009, pp. 93-100.

[11] M. Crane, “The New User Problem in Collaborative Filtering,” Thesis
for the degree of Master of Science, Department of Computer Science,
University of Otago, 2011.

[12] C. Bouras, and V. Tsogkas, “Clustering User Preferences Using W-
kmeans,” In Seventh International Conference on Signal-Image
Technology and Internet-Based Systems (SITIS), 2011, pp. 75-82.

[13] C. Bouras, V. Poulopoulos, and V. Tsogkas, “PeRSSonal's core
functionality evaluation: Enhancing text labeling through personalized
summaries,” Data and Knowledge Engineering Journal, Elsevier
Science, Vol. 64, Issue 1, 2008, pp. 330 – 345.

[14] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J.
Herlocker, and J. Riedl, “Combining collaborative filtering with
personal agents for better recommendations,” In Proccedings of the 16th
international conference on Artificial intelligence and the 11th
Innovative applications of artificial intelligence conference innovative
applications of artificial intelligence, July 18-22, 1999, Orlando, Florida,
United States, pp.439-446.

[15] A. M. Rashid, A. Istvan, D. Cosley, S. K. Lam, S. M. McNee, J. A.
Konstan, and J. Riedl, “Getting to know you: learning new user
preferences in recommender systems,” In Proceedings of the 7th
international conference on Intelligent user interfaces, January 13-16,
2002, San Francisco, California, USA, pp. 127-134.

[16] H. Nguyen, and P. Haddawy, “The decision-theoretic video advisor,” In
AAAI-98. Workshop on Recommender Systems, Madison, WI, 1998,
pp. 77–80.

65

