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Abstract— Collaborative filtering (CF) techniques attempt to 
alleviate information overload by identifying which items a 
user will find interesting to browse. It focuses on identification 
of other users with similar tastes and usage of their opinions in 
order to recommend items. Commonly, however, CF suffers 
from the so-called new user problem which occurs when a new 
user is added to the system and there is not enough 
information to make a good suggestion. The system has to 
acquire some data about the new user in order to start making 
personalized recommendations. In this paper, we present a 
novel algorithm that combines previously acquired knowledge 
from article and user clustering in order to quickly determine 
the new user's interests. We attempt to address the new user 
problem by providing a personalized strategy for prompting 
the user with articles to rate. Our approach makes use of 
hypernyms extracted from the WordNet database and proves 
to be converging fast to the actual user interests based on 
minimal user ratings which are provided during the 
registration process. 

Keywords New user problem; collaborative filtering; 
clustering; W-kmeans; Personalized strategy

I. INTRODUCTION

Each day, more and more books, journal articles, web 
pages, and movies are available online. While available 
information is growing in volumes, we quickly become 
overwhelmed and seek assistance in finding the most 
interesting, valuable, or entertaining items on which we 
should spend our scarce time. Historically, humans have 
adapted well to pieces of information and have developed an 
excellent filtering ability to make quick judgments. 

The technologies that are commonly used to address the 
previously mentioned information overload challenges are 
basically three. Each one focuses primarily on a particular set 
of tasks or questions: a) information retrieval (IR), which 
focuses on tasks involving fulfilling ephemeral interest 
queries, such as finding the articles related to president 
Obama, b) information filtering (IF), which focuses on tasks 
involving classifying streams of new content into categories, 
such as finding any newly released articles regarding the 
economic situation in Greece, or any newly released movies 
without an English-language soundtrack or subtitles (to 

reject), and c) collaborative filtering (CF), which focuses on 
two important questions: which items (from a set or overall) 
should be proposed to a user, and how appealing will these 
particular items be for the user. Each of the above 
technologies has a specific approach in producing an 
effective recommender system.

Collaborative filtering is a methodology by which users 
co-operate in order to determine what is interesting or useful 
from a large set of items. The intuition behind this approach 
is that since people prefer only to look at relevant, interesting 
content, one way to filter out the irrelevant data is to 
collaborate with other users and consider what they believe 
to be relevant. The first collaborative filtering system was 
Tapestry [1] which was an attempt to select informative 
email messages from mailing lists. Grouplens [2] was 
another CF system that was able to automatically select the 
group of trusted users for the current one. MovieLens, being
the latest system from the GroupLens group, attempts to 
make rating predictions and recommend movies based on 
collaborative filtering. Nowadays, there are many more CF 
systems online (Amazon, Google News, YouTube, Netflix, 
etc.) most of which generate recommendations to the user, 
based on those items that have the highest predicted rating 
among those that the user has not yet rated. The previous 
technique makes CF and recommender systems very similar.

A. The new user problem

A common problem that all CF filtering systems suffer 
from is the cold start problem. It consists of a family of three 
related problems: a) the new item problem, where a new item 
is introduced to the community and since it has no rating, the 
system cannot recommend it to any user, b) the new user 
problem, where a new user enters the system and there are 
no ratings made yet by her – hence there can be no generated 
system predictions for her, and c) the new system problem, 
where we have a new system for which there are no ratings 
of any users. In this paper, we will be focusing on the new 
user problem.  

Previous approaches to the new user problem have 
mostly focused on metadata and user-prompting. The 
metadata about items can be used to generate 
recommendations by content-based recommender systems 
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like in [3] or in a hybrid fashion with ratings-based system as 
the ratings come into the system like in [4]. Filterbots [5] are
another approach in which pseudo-users and items are 
algorithmically created in an attempt to provide base ratings 
to the system such that no user or item would be left without 
rating. These agents, as shown in [14], can potentially be 
performing better when working in tandem with CF 
techniques and in particular, the CF engine is what matters 
the most in this combinatory scenario. Other methods that 
utilize demographic data available to the system have also 
been proposed, but gathering such data often conflicts with 
privacy issues.

Recommender systems have also been used to help tackle 
the new user problem. Some approaches, like [16], create 
user categories where new users are quickly assigned by 
using a set of pre-determined questions. These approaches 
jump-start the system by using demographic or model based 
attributes. Even though domain-limited, they can potentially 
produce accurate results.

B. User prompting

Another method for dealing with the new user problem is 
to explicitly ask the users to provide ratings for items (i.e. 
news articles in our case). The scheme is pretty basic: when 
the new user enters the system, she is presented with items to 
rate, which are not really recommendations, but are rather 
selected in order to gather as much information about her 
profile as possible. As she continues providing ratings for the 
selected items, the system decides whether to continue this 
process improving the user’s profile or halt it. Large 
questionnaires come with a cost though: users are easily 
disturbed and might give up the process if it’s taking too 
long or if they feel that the requested data conflict with their 
privacy. When this process ends, the system, having a basic 
knowledge of the user’s appetite, starts recommending items 
and monitors her actions forming a feedback loop for profile 
updates.

This prompting approach was introduced in [6] where the 
ordering of items by the variance and entropy was 
investigated. Methodologies regarding user prompting can be 
divided into non-personalized and personalized [11]. Non-
personalized methodologies for user prompting include: a) 
the popularity method, where items are ordered by the 
number of ratings that they have been given by all users, b) 
the entropy and its variations methods that rely on the fact 
that certain items can yield more information about a user’s 
likes than others, c) the greedy method, where the next item 
is chosen from those that the user is able to rate, such that the 
prediction error for her test set is minimized (clearly this 
method could not be used in practice as it requires knowing 
not only what each person is able to rate but also the actual 
ratings), d) other people’s greedy and variations, where the 
items that will be presented to the user are chosen from the 
top-n lists of other users. Personalized methodologies on the 
other hand take into consideration the responses that the user 
has given to items already presented. Some non-personalized 
methodologies are: a) naïve Bayes, where by knowing 

whether a user is able to rate an item we can work out the 
naïve Bayes probability of a user being able to rate the other 
items, b) perturbed other people’s greedy and variations 
which combine other people’s greedy with naïve Bayes.

In [7] the authors presented more methods for improving 
the order of items attempting also personalized orderings. 
Recently a new method for a non-personalized ordering of 
items was presented in [8] and a personalized one in [9]. In 
[10] the authors, using a prediction method which was a 
variant of matrix factorization, showed that more accurate 
predictions can be made when the user has provided minimal 
ratings than when the system uses the metadata of the items 
in order to generate predictions. There are two important 
aspects for the user prompting approach: a) which items to 
select and b) in which order to present them to the user.

There have been many approaches regarding the process 
of selecting which items to present next to the user during 
the prompting phase. Certain trade-offs should also be 
considered, like the effort the user has to put into and the 
satisfaction she will get by the registration process as a 
whole. Moreover, the recommendation accuracy, i.e. how 
well the recommendations presented to the user really are, is 
of great significance. Taking the above into consideration, 
there have roughly been 5 main strategies for selecting which 
items to present to the user during the prompting phase: 
random, popularity, pure entropy, balanced and personalized
[15]. 

In random strategies, the items that are to be presented 
are chosen randomly with a uniform probability over the 
universe of items. If the distribution of ratings is uniform, 
they have the advantage of covering the entire universe of 
items. In the popularity based strategies, the items are sorted 
in descending order based on their number of ratings. Even 
though easy to compute, these strategies overly promote 
items that have been widely rated and may carry little 
information. In pure entropy strategies the users are asked 
about items which give the most information for each rating. 
Generally, an item that has some people that disliked it and 
some other who liked it may tell us more than an item which 
everybody liked. In balanced strategies, a combination of the 
popularity and entropy strategies is used. This can usually be 
in the form of Popularity*entropy or Log 
Popularity*Entropy. This approach, using Bayes theorem, 
silently assumes that popularity and entropy are independent 
which is not always correct. Lastly, in personalized strategies
the suggestions are adapted to the user preferences via a 
feedback loop. Frequently, the item by item strategy is used 
in which, at first, items are presented to the user by any other 
strategy until a rating is picked up. Following that, a
recommender, based on some similarity measure, finds 
similar items for user suggestions based on what the user 
previously rated. 

In our work we are focusing on a personalized 
methodology for user prompting, similar to the item by item 
strategy. Our approach exploits clustering, and in particular 
our W-kmeans clustering algorithm [12], in order to select 
which news articles to pick next for rating by the user. Our 
work explores both item (i.e. article) and user clustering in 
order to effectively select articles for rating and thus quickly 
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and reliably converge to the actual user’s preferences. We
also try to determine how well our approach deals with the 
new user problem compared with the basic 5 strategies that 
were previously described.  

The rest of the paper is structured as follows: Section 2 
presents our system as a whole and the flow of information 
within it. In Section 3 we present our personalized 
algorithmic strategy for dealing with the new user problem. 
In Section 4 we present our experimentation as well as its 
results, while in Section 5 we outline the conclusions of this 
work as well as some areas that are worth considering for 
future research.

II. FLOW OF INFORMATION

Fig. 1 depicts the flow of information that is followed in 
the suggested approach [13]. Initially, at its input stage, our 
system fetches news articles generated by news portals from 
around the Web. This is an offline procedure and once 
articles as well as metadata information are fetched, they are 
stored in the centralized database from where they are picked 
up by the procedures that follow. A key process of the 
system as a whole, probably as important as the clustering 
algorithm that follows it, is text preprocessing on the fetched 
article’s content, that results to the extraction of the 
keywords each article consists of. Analyzed in [13], keyword 
extraction handles the cleaning of articles, the extraction of 
the nouns, the stemming as well as the stopword removal 
process. 

Keyword extraction then applies several heuristics to 
come up with a weighting scheme that appropriately weights 
the keywords of each article based on information about the 
rest of the documents in our database. Pruning of words, 
appearing with low frequency throughout the corpus, which 

are unlikely to appear in more than a small number of 
articles, comes next. Keyword extraction, utilizing the vector 
space model, generates the term-frequency vector, describing 
each article as a ‘bag of words’ (words – frequencies) to the 
key information retrieval techniques that follow: article 
categorization, summarization  and clustering. We are 
enhancing the efficiency of this ‘bag of words’ with the use 
of an external database, WordNet. The above characteristics 
of our system give its content-based nature. This enhanced 
feature list feeds the k-means clustering procedure that 
follows [12]. It is important to note, however, that the 
clustering process is independent from the rest of the steps, 
meaning that it can easily be replaced by any other clustering 
approach.

Following the core IR tasks of our mechanism, the 
personalization algorithm takes place. The personalization 
module can easily adapt to subtle user preference changes. 
Those changes, as expressed by the user’s browsing 
behavior, are detected and continuously adjust her profile. 
The algorithm uses a variety of user-related information in 
order to filter the results presented to the user. Furthermore, 
it takes into account in a weighted manner the information 
originating from the previous levels regarding the 
summarization/categorization and news/user clustering steps.

User profiles from multiple users and timeframes are 
then clustered using the W-kmeans algorithm forming profile 
clusters. W-kmeans is a novel approach that extends the 
standard k-means algorithm by using the external knowledge 
from WordNet hypernyms for enriching the “bag of words” 
used prior to the clustering process. The W-kmeans 
algorithm enhances the user profiles with hypernyms 
deducted from the WordNet database, using a heuristic 
manner.

Figure 1 Flow of Information
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Those profile clusters are used at the recommendation 
stage in order to enhance the system's usage experience by 
providing more adapted results to users revisiting the site. 
When a user comes back her clustered profile is recalled. 
Articles matching her profile are extracted and are 
considered for user recommendations.

The dashed component of Fig. 1 captures the high level 
approach that is proposed in this work for dealing with the 
new user problem. When a new user enters the system, she 
enters a priming phase (user-prompting) in which a series of 
articles are suggested to her as rating candidates. Our goal is 
twofold: we want the total number of presented articles to be 
minimized, while also allowing the system to gain as much 
information as possible from the rated articles. Determining 
which articles to select for the user prompting phase and in 
which order are the main aspects that the current work 
focuses on.  

Initially, we suggest articles for user rating based on a 
given strategy: even though one would expect that this 
strategy would be of significance, this is not really the case 
as shown in [15]. Thus, we simply select articles coming 
from the most rated list that resides in the database. While 
the suggested articles are not rated by the user, we continue 
the suggestions based on this list. Once the user has rated one 
article, we utilize our clustering data in order to find out and 
suggest for subsequent rating, articles that a) belong to the 
same article cluster as the rated one or b) are chosen by users 
that have rated the selected article(s) likewise before. The 
above procedure continues until enough user ratings are 
gathered. Once this phase is complete, the user profile is 
boot-strapped and the system goes into its normal 
recommendation state.

III. ALGORITHMIC APPROACH

In this section we will be describing the various 
algorithmic steps that are followed in our approach. 
Algorithm 1 presents the procedure that is used for gathering 
ratings from a new user who is visiting and registering to the 
system for the first time. Algorithm 2 outlines the steps used 
to recover articles based on either article or user clustering 
information. We don’t get into much detail on how each 
function works, but the names should be self-explanatory.

Algorithm harvest_user_ratings 
Input: NULL 
Output: user_ratings[] //rated articles by the user 
    rated_article = NULL // first rated article A1 
    article_cluster = NULL 
    articles_next [] = NULL 
    rated_articles[] = NULL 
    while (!rated_article) 
         rated_article = rate(present_next_most_rated_article()) 
         //continue presenting from the L1 list until user has rated 1 article 
    user_ratings[] += rated_article // Article A1 is rated with score S1 
    article_cluster = find_article_cluster(rated_article) 
    articles_next[] = find_most_rated_articles(article_cluster, M)  
    // articles_next[] is now list L2 containing M items 
    while (has_next(articles_next)) 

         rated_articles[] = rate(present_next_article(articles_next)) 
    if (!rated_articles[]) // user hasn’t rated any of the M articles from L1 
         articles_next[]=find_most_rated_articles_from_user_clusters (rated_article,M)  
         // articles_next[] is now list L3 
         rated_articles[] = rate(articles_next[]) 
         user_ratings [] += rated_articles[] 
        GOTO: T // Continue possible suggestions from user clustering 
   else //user has rated some of the M articles 
         user_ratings [] += rated_articles[] 
T:       while (user_ratings.size() < Rmin) // do we have enough ratings? 
               articles_next[]=find_most_rated_articles_from_user_clusters (rated_articles,M) 

               // articles_next[] is now list L4 
               rated_articles[] = rate(articles_next[]) 
               user_ratings [] += rated_articles[] 
   return user_ratings[] 
 
Function rate 
Input: articles[] 
// Presents for rating the selected article(s) and returns the rating scores  
// or null if the article wasn’t rated 
   rated_articles[]=NULL 
Output: rated_articles[] 
 
Function find_article_cluster 
Input: rated_article 
// Recovers the cluster that the article belongs to 
Output: article_cluster 

Algorithm 1. Determining which articles to present to the user

Algorithm find_most_rated_articles 
Input: cluster, M 
// Recovers the M most rated articles that belong to this cluster 
// Uses article clustering results from the database 
// cluster can be either an article or a user cluster 
Output: articles[M] 
 
Algorithm find_most_rated_articles_from_user_clusters 
Input: article / articles[], size M 
// Recovers articles from the user clusters which contain users who have 
// previously rated the specified article(s). Uses user clustering results 
Output: rated_articles[] 
     rated_articles[]=NULL 
     clusters[]= find_user_clusters(article)  
     //find clusters of users who have rated article(s) 
     for each cluster in clusters[] 
          rated_articles[]+=find_most_rated_articles (cluster, M) 
     return rated_articles[] 

Algorithm 2. Recovering articles based on article or user clusters

In our work, we use an item by item personalized 
strategy, as the one described in [15], in order to select
articles as rating candidates for the new user. Initially, when 
a user enters the prompting phase, we present her with 
articles one by one from the most rated (popular) list of 
articles that reside in the system’s database. Let’s call this 
initial list: L1. The presentation of articles continues until an 
article, say A1, is rated by the user with score S1. We use 
this information in order to determine the cluster to which 
this article belongs. Then, we can suggest for user rating M 
of the most rated articles from this cluster, which are forming
article list L2. Note that L2 contains articles based on article 
clustering information originating from the system’s 
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database. Choosing the correct value for M is a matter of 
experimentation since there is a specific trade-off for it, 
which we will try to briefly describe. Large M values give
many similar articles, i.e. from the specific article’s cluster, 
so that a hit there, regarding the user’s preferences, will 
probably harvest many user ratings. However if the rated 
article A1 does not convey entirely the user’s appeals, many 
articles that with high probability won’t get rated will be 
presented without an easy way for her to backtrack. This can 
have a negative effect on the system’s performance and will 
probably also cause user frustration. On the other hand, small 
values of M might lead to a similar negative impact via a 
different path: a user would expect from the recommendation 
system to catch up her preferences quickly and not backtrack 
to articles she has no interest about. In a nutshell, we don’t 
want to overload the user with articles from a single cluster, 
but still, we want to determine relatively fast if articles 
belonging to that cluster are really interesting to the user.
Additionally, we want to cover as broadly as we can the 
related clusters that might capture user ratings, thus a small 
to medium value for M should be more reasonable.

As our algorithm proceeds, if no rating is given on any of
those M articles of L2, we seek for the user clusters which 
contain users who have previously rated the item Ai with 
score Si. Using these user clusters we can form an article list, 
say L3, which consists of M * number of clusters of the most 
rated articles. Again we choose to keep M articles from each 
of these user clusters and as before the same tradeoffs apply
on the value of M. The L3 list, containing user clustering 
information is subsequently suggested to the user and any 
possible article ratings that are gathered from the user are 
used to recreate the L3 list in a similar fashion. This process 
forms a loop until the total number of ratings reaches our 
defined threshold, say Rmin. 

On the contrary, if the user has rated at least one of the M 
articles of the L2 list, we seek for the user cluster(s) that 
contain most of the previously rated articles and again, we 
select the (M * number of clusters) of the most rated articles 
(list L4). Although resembling each other, the L3 and L4 
lists are not the same: the difference is that L3 is based 
entirely on user clustering while L4 is instantiated via article 
clustering first and enhanced later on via user clustering
using collaborative knowledge that resides in the system’s 
database. We have selected this article/user clustering 
combination based on our previous experimental results [12]. 
The aforementioned approach continues until at least Rmim
user ratings are gathered. 

Once the needed user ratings are harvested, the 
registration process ends and the user can now browse 
through the personalized recommendations that the system 
provides. As explained in Section 2, the personalization 
improves the quality of the user-suggested articles based on 
the continuous feedback that the user provides via his 
choices.

IV. EXPERIMENTS AND RESULTS

For our experimental procedure we built a dataset using a 
snapshot of our system’s database, PeRSSonal [13]. The 

reason that we didn’t select to work with other datasets (like 
NetFlix or MovieLens), is due to the clustering capabilities 
of our system: W-kmeans is enabled and already applied on 
our dataset. During our evaluation, we firstly eliminated
users who had fewer than 50 recorded ratings. This left us 
with 60 users who had rated 2,055 articles with over 10,000 
ratings. Using a cutoff of 50 ratings is significant: we want to 
prevent users who haven’t used extensively our system from 
affecting the evaluation process. In general, we need many 
ratings for each user in order to have a good sample of 
articles that they were able to rate which effectively 
constitutes their preferences. Since a “new” user in the 
experimentation that follows is practically each one of the 60 
users we previously mentioned, for each run we withheld all 
of the user’s ratings from the system. As we presented 
articles based on each of the strategies that we are 
evaluating, users “rated” the articles they have “viewed”, i.e. 
the ones for which we had ratings in the database. This
means that if an article that is presented to the user was 
found as rated or viewed in our database we consider it as a 
successful proposal for user rating. Regarding the particular 
scores, the rating score found in the database is used as the 
rating score she would give during the prompting phase. If 
the article was found in the viewed list, we consider this with 
the highest rating score, i.e. 5. For our first and second 
experimentation set, we stopped presenting articles once we 
got the required number of ratings, which for our 
experimentation was set to be Rmin = 20.

For our first experiment, we tried to determine the best 
value of the parameter M described in Section 3. That is: the 
best amount of articles we should present to the user, which 
belong to a certain cluster (either article or user cluster) after 
one or more article ratings are harvested from the user. In 
order to perform this evaluation, we deployed one of the 
most widely used evaluation metrics for predicting
performance of recommender systems, which is the Mean 
Absolute Error (MAE). We use the MAE, for expressing the
average absolute deviation between the predicted and the 
actual user ratings. MAE can be computed using formula (1). 

|'|
|),('),(|'),('

R
iuriurRiur

MAE
��

� � (1)

where ]5,1[ i) r(u, �   is the actual rating (recorded in the 
database) of user u for article i and ]5,1[ i) (u,r' � the 
predicted / recommended preference for user u of articles 
belonging to the space of proposed articles, R’. For this 
experiment we used an increasing number of values for M on 
each run, starting at M=1 and ending at M=50. The results 
are presented in Fig. 2.
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Figure 2 MAE scores for various numbers of M

From the graph of Fig. 2 we can pinpoint that the best 
value of the parameter M in terms of MAE is M=5. From a 
natural point of view this means that selecting 5 articles from 
the articles or user clusters is best for forming the M2, M3 or 
M4 lists. Executions with lower M values suffered from few 
article suggestions coming from article and user clusters, 
something that was leading to low performance and longer 
user prompting times. We expect that on an online 
experiment with many users, the performance would have 
been even worse, counting in also the user frustration which 
is to be expected when the prompting phase takes too long.

Evidently, values for M > 10 also suffered from poor 
performance. This can be explained by the fact that when we 
are using too many articles from article and user clusters, the 
users have a hard time backtracking out of a cluster if they 
need to when going through the prompting phase. For our 
subsequent experiments, we are using M=5. 

For our second experiment, we used each of the user 
prompting strategies described in Section 1: entropy,
random, popularity, balanced, personalized item by item, as 
well as our proposed clustering-based strategy, in order to 
select which articles to present to the new user. Once the 
prompting phase completed for each strategy, we counted the 
number of articles that the user had to view until the Rmin =
20 ratings were harvested. We need to stress out that the 
fewer the articles that we had to present to the user, the 
better, given the fact that we are saving user effort. Also note 
that for the personalized item by item strategy, we used the 
popularity based approach for presenting the initial articles 
until a rating is accomplished by the user. This is similar to 
the proposed clustering-based methodology that we follow, 
except of course that we are also exploiting the clustering 
information. After that, we found out which articles are close 
to the rated one by utilizing the cosine similarity as a 
measure. The articles’ similarity is calculated by using each 
article’s keywords as explained in [13]. The similar articles 
are next used as suggestions for users to rate.
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From the graphs depicted in Fig. 3, we can observe that our 
clustering-based article selection approach clearly outperforms 
all other strategies. We see that the random strategy required an 
average of 135 articles to be presented to the user before 20 
ratings were harvested. This result is expected due to the 
random nature of this strategy and the fact that the user ratings 
cannot be considered as uniform throughout the dataset: each 
user is expected to have rated articles that only appealed to her
and only for particular domains. The same number (for the 
amount of articles) was 115 in the case of the entropy-based 
strategy and 70 for the popularity-based strategy. The results 
for the entropy strategy, though surprising, have a plausible 
explanation: this strategy promotes less popular articles. 
However, there is a straight correlation between popular 
articles and the chance that a new user would like a popular 
article. Thus by choosing less popular articles at most of the 
times, this strategy suffers from bad performance. The results 
were better for the balanced popularity*entropy strategy with 
55 articles on average. The personalized item by item strategy, 
even though very promising with an average of 41 articles,
couldn’t match the average of 37.5 articles that our approach 
scored.

For our third experiment, we tried to determine the 
prediction accuracy of the proposed approach compared to the 
previously mentioned strategies. Again, we made use of the 
MAE metric. For determining the MAE scores of each strategy, 
we presented for user rating a total of 30, 50, 70 and 90 articles 
in 4 subsequent runs for each of the 6 strategies. The results, 
presented in Fig. 4, show the MAE variations of the different 
strategies as a function of the presented articles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

30

50

70

90

MAE

Ar
tic

le
s P

re
se

nt
ed Clustering

Item-Item
Pop*Entr
Popular
Random
Entropy

Figure 4 MAE scores for each of the prompting strategies for various number 
of presented articles

We can observe a MAE improvement as the number of 
presented articles increases, something that has a significant 
effect especially for the proposed clustering-based article 
selection strategy: as more and more articles are rated by the 
user, our approach can pick up better candidates for user rating 
by utilizing article and user clustering data from the database. 
Indeed the proposed approach gives the lowest MAE scores for 
each of the experiment’s executions. Another result we can 
pick up from Fig. 3 is that the random strategy has the worst 
prediction accuracy, validating our observations on the first 
experimentation. We can also observe that the personalized 

item by item strategy is again, as in the second experiment, 
close to our proposed strategy.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a personalized strategy for 
dealing with the new user problem via prompting, in the 
domain of news articles. We implemented and evaluated an 
algorithmic approach that makes use of article and user 
clustering information in order to decide upon which articles to 
present next for rating during the process of user registration. 
Our approach has similarities to the personalized one by one 
strategy, but the results have shown that it performs better than 
any of the most commonly proposed strategies for the problem 
of user prompting.

Our experimentation, based on offline system user ratings, 
showed that by using M=5 articles from each article or user 
cluster we get the lowest MAE scores. Using this result, we 
later determined that our approach requires, on average, 37.5 
articles to be suggested for user rating in order to acquire 20 
ratings; an amount of articles that was considerably less than
any other techniques that similar systems use. Finally, we 
compared the MAE scores of the proposed technique with each 
of the entropy, random, popularity, balanced and personalized 
item by item strategies. Each experiment, executed over 
various amounts of articles has also shown that our 
methodology outperforms all of the afore-mentioned strategies.

Even though the above results are encouraging, they cannot 
be considered as conclusive, since they were done over an 
offline snapshot of the system’s database based on already 
recorder user ratings. Thus, for the future we are considering a
more large scale experimentation that will also include online 
data by more users registering through our system. We would 
also like to evaluate our approach with other databases too, 
such as the NetFlix and MovieLens datasets. Furthermore, we 
are working on enhancing our user prompting algorithm so that 
it includes more personalized information that can be harvested 
from the system. In particular, we are looking for an extension 
that will include the categorization as well as the 
summarization information which will enhance the 
personalization factor of our algorithm.

ACKNOWLEDGMENT

This research has been co-financed by the European 
Union (European Social Fund – ESF) and Greek national 
funds through the Operational Program "Education and 
Lifelong Learning" of the National Strategic Reference 
Framework (NSRF) - Research Funding Program: 
Heracleitus II. Investing in knowledge society through 
the European Social Fund.

64



REFERENCES

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative 
filtering to weave an information tapestry,” Communications of the 
ACM, v.35 n.12, Dec. 1992,  pp. 61-70. 

[2] P Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, 
“GroupLens: an open architecture for collaborative filtering of netnews,” 
In Proceedings of the 1994 ACM conference on Computer supported 
cooperative work, October 22-26, 1994, Chapel Hill, North Carolina, 
United States, pp. 175-186. 

[3] M. Balabanovie and Y. Shoham. “Fab: Content-based collaborative 
recommendation,” Communications of the ACM, 40, 1997, pp. 66-72.

[4] K. – Y. Jung, D. Park, and J. Lee, “Hybrid collaborative filtering and 
content-based filtering for improved recommender system,”
Computational Science- ICCS 2004, pp. 295 – 302. 

[5] S. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste, “Naïve 
filterbots dor robust cold-start recommendations,” In Proceedings of the 
12th ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, ACM, 2006, pp. 699 – 705.

[6] A. Kohrs, and B. Merialdo, “Improving Collaborative Filtering for new-
users by Smart Object Selection,” In proceedings of International 
Conference on Media Features, 2001.

[7] A. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new users 
in recommender systems: an information theoretic approach,” ACM 
SIGKDD Explorations Newsletter, 10(2), 2008,  pp. 90-100.

[8] N. Golbandi, Y. Koren, and R. Lempel, “On bootstrapping recommender 
systems,” In Proceedings of the 19th ACM International Conference of 
Information and Knowledge Management, ACM, 2010, pp. 1805-1808.

[9] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive bootstrapping of 
recommender systems using decision trees,” In Proceedings of the Forth 

ACM International Conference on Web Search and Data Mining, 2011, 
pp. 595-604.

[10] I. Pilaszy, and D.  Tikk, “Recommending new movies: even a few 
ratings are more valuable than metadata,” In Proceedings of the Third 
ACM Conference on Recommender Systems, 2009, pp. 93-100.

[11] M. Crane, “The New User Problem in Collaborative Filtering,” Thesis 
for the degree of Master of Science, Department of Computer Science, 
University of Otago, 2011.

[12] C. Bouras, and V. Tsogkas, “Clustering User Preferences Using W-
kmeans,” In Seventh International Conference on Signal-Image 
Technology and Internet-Based Systems (SITIS), 2011, pp. 75-82.

[13] C. Bouras, V. Poulopoulos, and V. Tsogkas, “PeRSSonal's core 
functionality evaluation: Enhancing text labeling through personalized 
summaries,” Data and Knowledge Engineering Journal, Elsevier 
Science, Vol. 64, Issue 1, 2008, pp. 330 – 345.

[14] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. 
Herlocker, and J. Riedl, “Combining collaborative filtering with 
personal agents for better recommendations,” In Proccedings of the 16th 
international conference on Artificial intelligence and the 11th 
Innovative applications of artificial intelligence conference innovative 
applications of artificial intelligence, July 18-22, 1999, Orlando, Florida, 
United States, pp.439-446.

[15] A. M. Rashid, A. Istvan, D. Cosley, S. K. Lam, S. M. McNee, J. A. 
Konstan, and J. Riedl, “Getting to know you: learning new user 
preferences in recommender systems,” In Proceedings of the 7th 
international conference on Intelligent user interfaces, January 13-16, 
2002, San Francisco, California, USA, pp. 127-134. 

[16] H. Nguyen, and P. Haddawy, “The decision-theoretic video advisor,” In 
AAAI-98. Workshop on Recommender Systems, Madison, WI, 1998, 
pp. 77–80. 

65


