
A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM
Ch. Bouras

Research Academic Computer Technology Institute (CTI), Greece and
Computer Engineering and Informatics Department (CEID), University of Patras, Greece,

bouras@cti.gr
V. Triglianos

Computer Engineering and Informatics Departmet (CEID) University of Patras, Greece
triglian@ceid.upatras.gr

Th. Tsiatsos
Department of Informatics, Aristotle University of Thessaloniki, and Research Academic

Computer Technology Institute (CTI), Greece
tsiatsos@csd.auth.gr

Keywords: Virtual reality, Multimedia Collaboration, SIP, Spatial 3D audio, Networked Virtual Environments, Multimedia
systems, architecture, and applications

Abstract: When it comes to 3D Virtual Environments it is well known that 3D sound is of great importance to the whole
interactive experience. The percept of sound is a major counterpart for the eyesight, since it describes the
location, the momentum and the attitude towards the listener, of each surrounding entity. The sound can offer
precision of spatial perception that cannot be achieved by the eye itself. Thus the support of 3D surround sound
of high fidelity is mandatory for a 3D Virtual platform. The evolution of Internet telephony led to the
introduction of new session establishment and management protocols. The most important of them, the Session
Initiation Protocol (SIP), is a robust, lightweight reliable and fast application-layer control (signaling) protocol
that is highly adopted for creating, modifying and terminating sessions. This protocol can be of extreme
importance in establishing audio sessions for multi-user platforms. This paper presents the work done for
developing a SIP 3D spatial audio server for a multi-user virtual environments platform, called EVE, in order to
support 3D spatial audio

1 INTRODUCTION

The increment of the available network bandwidth has
enabled the development of richer web applications. In
the field of Networked Virtual Environments this is
reflected in the deployment of as realistic as possible
virtual worlds. Virtual 3D environments offer a
realistic abstraction of reality in an optical fashion.
However, 3D sound is of equal importance in order for
an interactive 3d environment to be realistic A key
point to the realism is the sound capabilities it
provides. Plain audio support is an important feature;
however the best results are achieved with the addition
of 3D spatial sound.

Audio support in virtual platforms practically
means the digitalization of speech. Speech, one of the
most effective means of communication that humans
possess, is a time-efficient, emotion-declaring way to
communicate. Thus, the introduction of speech is
virtual platforms is time saving, since no message
writing is required, while at the same time the voice
contributes to more realistic communication and
interaction between the users.

3D spatial audio contributes to a best perception of
the environmental entities, especially when the user
has no eye contact with them. The user by hearing 3D
sound obtains information about the 3D location, and
the direction that the entity that emits the sound
moves. Moreover, depending on the intensity and the

tone of the sound, a user can be aware, to some extent,
of the intensions of the entity towards the user as well
as the psychological composition of the entity. These
psychological effects that arise from the 3D spatial
sound combined with the perception of space, lead to a
very realistic interaction in two fashions: between the
users, and between a use and the virtual space.

Bearing this in mind the authors of this paper aims
to enhance such a platform called EVE
(http://ouranos.ceid.upatras.gr/vr/) which is a
networked virtual environments platform that supports
the following characteristics:
• Flexibility and good rendering quality, since the

large set of all X3D nodes can be used to create
worlds that are visually more appealing, as well as
better defined compared to a VRML world.

• A consistent shared 3d virtual environment for all
users connected to the platform, which is highly
interactive and allows for all possible
functionality of an X3D world to be reliably
shared among all connected clients. In other
words EVE is stable in terms of network and
multi-user behavior.

• An efficient physics system functioning locally on
each client’s machine, which is provided by the
Xj3D library and based on the ODE open-source
physics engine, as well as an efficient sound
system.

• Text chat and audio communication, using H.323
for audio and chat bubbles for text chat.

• User roles and user management.
• Support for avatar gestures and body language
• A flexible, fully customizable and open client-

multiserver architecture.
EVE platform featured spatial H.323 sound since it
was introduced. In order to increase performance, and
stability as well as to emphasize the distributed nature
of the platform a new audio server, utilizing the latest
most popular session protocols and codec technologies
and at the same time featuring a new algorithmic
approach, was introduced. The new server is based on
the SIP session protocol to establish multicast sessions
as well as using RTP for audio data transmission. The
spatial effects are implemented by the X3D Sound
Node interface.
A fair amount of work has be done in on spatial 3D
sound. The majority of today’s 3D games, single or
multi-user, feature spatial 3D sound. However the
sound that is used in this type of applications is pre-

recorded. When it comes to CVE’s where live
streaming sound needs to be converted to spatial 3D
sound, little work has been done. Good examples are
the work in Liesenborgs (1998) and Macedonia et al
(1995).

The work described in Macedonia et al (1995), is
based on multicast networks. We want to avoid this
solution due to the fact that multicasting is not
available in every network. Furthermore, our work
differs from Liesenborgs (1998) in terms of
scalability, complexity of the platform that is
embedded into, and technology. Our scope is to utilize
the latest technologies into our platform, while using
Java API’s in order to maintain the well-known and
commonly accepted benefits of Java.

When it comes to spatial distributed sound there
are two key subjects to address. The first is the
protocol the algorithms and the codecs that will be
used to establish sessions and reproduce sound
between users. The second is the algorithms that will
create the illusion of 3D sound.

As far as the protocol is concerned, the popular
Session Initiation Protocol – SIP was used. The
transmission of the audio data utilizes the RTP
protocol while the task of spatializing the sound is
accomplished by the X3D Sound Node.

X3D offers the Sound Node interface. This node
features built-in spatialization and attenuation audio
algorithms. This solution is both fast and simpler to
develop since no external solution is used more.

The paper is structured as follows: The next
section demonstrates the architecture of the proposed
solutions. Following this (in paragraph 3) the
mechanism and the algorithms that form the selected
solution are described. After that (in paragraph 4) the
implementation issues are discussed while on section 5
some performance tests are presented. In Section 6
some concluding remarks and planned next
environment platforms either commercial products or
steps are briefly described.

2 EVE SPATIALIZED AUDIO
ARCHITECTURE

The EVE platform is based on a client-multiserver
architecture, which allows a simple sharing of the
computational load among multiple servers. The main

http://ouranos.ceid.upatras.gr/vr/

servers used by the platform are the connection server,
the VRML server (or data server) and a series of
application servers, which add specific functionality
such as audio and text chat to the platform. The
architecture of the EVE platform is displayed in Figure
1.

Figure 1: Architecture of EVE.

Due to the multi-user and client-server

characteristics of the platform, not spatialization of
audio but also networking and communication are
important parts of the whole process. Moreover, the
real time nature of the process requires bandwidth
saving and fast audio processing to deliver continuous
playback of the sound. In order to provide an
architecture that would balance the bandwidth,
complexity and processing costs many candidate
scenarios were examined. The best two are presented
in this section. The two architectures are different in
the way that the audio is processed in order to become
spatialized. The procedure of connecting to the
platform until the spatial audio is produces consists of
four discrete stages, from the client’s point of view:
• The establishment of the connection to the SIP

Spatial Audio server
• The capture of the audio data
• The transmission of the audio data
• The process of spatializing the audio data
• The reception of the audio

For the common part of establishing a connection
to the SIP Spatial Audio server, capturing the audio
data and transmitting the audio data, follows a
description of the technologies that are implemented.

The Session Initiation Protocol – SIP is ideal for
the session establishment. This lightweight, transport
independent protocol has proven to be very reliable
and robust thus making it the most popular session
protocol nowadays.

Real Time Protocol - RTP a very popular protocol
for real time data, including features like Real-time
Transport Control Protocol - RTCP a protocol that
provides control information for RTP flows, is chosen
for audio data transmission.

As far as the audio capture is concerned, the Java
Media Framework API, which provides convenient
classes and methods for media manipulation is used.

In the following two subsections, the above
mentioned stages are described for each of the
suggested solutions.

2.1 Solution 1: Audio spatialization using
X3D nodes

In this solution the spatialization of the audio is
performed by an X3D Sound node (Figure 2). The
client’s side architecture is examined first. The
establishment of the connection is accomplished via
the SIP protocol. The client’s applet makes a call to
the SIP Spatial Audio Server and a server port is
reserved for the connection with the client. After the
session has initiated, an RTP stream, using the JMF
API, is established with the server, in order for the
audio data to be transmitted. At the same time the
client’s capture device captures audio data, again
utilizing JMF API’s classes, and transmits them
through the RTP stream. The X3D browser of the
applet receives the audio data encapsulated, by the SIP
Spatial Audio Server, in X3D AudioClip nodes. The
playback of the audio is performed by X3D Sound
nodes that use the AudioClip nodes as their sources.

The X3D Sound node features built-in
spatialization and attenuation audio algorithms. This
solution is both fast and simpler to be developed since
no external solution is used.

Regarding the server side, the following procedure
takes place. The server is waiting for new SIP calls on
a dedicated port. After an incoming call from a client
is accepted, a new port is assigned for the
communication between a server thread, dedicated in
servicing the specific client, and the client. This thread
establishes an RTP stream with the client for receiving
audio data. Concurrently, the audio server acquires

information of the user’s avatar location and
orientation in the virtual world through the VRML
Server. This information will be used to reproduce the
sound like it is being emitted from the avatar’s mouth.
For each user an X3D AudioClip node and an X3D
Sound node are instantiated via the xj3d API and are
added in the graph scene of the virtual world. A file is
created to which the audio data are continuously
appended to. The AudioClip node’s url field is given
that file as a value, while the Sound node’s fields
direction, location and source fields are given the
values of the avatar’s mouth direction, avatar’s mouth
location and the AudioClip, respectively. The key
point in this solution is the entrusting of the audio
spatialization to the X3D Sound node. This node can
produce spatialized audio by setting appropriate values
to the specialized fields.

When the two new X3D nodes are added to the
scene the VRML server sends them to the client where
the client’s X3D browser starts immediate playback of
the Sound node.

Figure 2: Audio spatialization using X3D nodes.

2.2 Solution 2: Audio spatialization
exploiting a spatialization algorithm

The second solution (Figure 3) uses a spatialization
algorithm in order to spatialize the audio. The process
of session initiation, audio data capture and audio data
transmission is the same with the one described in the
first solution. What is different in that solution is the
way that the SIP Spatial Audio Server processes the
audio in order to make it spatialized. That, reflects also
to the way that the client receives and playbacks the

processed audio. The next paragraphs illustrate the
differences in both the client and the server’s side.

The major client’s side change is the way that the
audio is received and being produced. The user
receives a mixed RTP stream, that is, all the streams of
client audio data to be heard, have been processed
from the SIP Spatial Audio Server and have been
mixed in to one stream. Then it reproduces the sound
via a JMF Player.

Figure 3: Audio spatialization exploiting a spatialization
algorithm.

The most important changes are in the server’s
side. When the server receives the streams from the
client together with the avatar information mentioned
in solution one, it uses a spatialization algorithm for
each stream. This algorithm is invoked from each
server thread that serves a client. This algorithm given
a stream and an avatar information, produces
spatialized audio that sounds like it is being emitted
from the avatars mouth. The server thread invokes that
algorithm as many times as the online users connected
to the SIP Spatial Audio Server, Each invocation of
the algorithm instantiates a new thread that executes
the algorithm in order to continuously process each
stream. The processed streams are mixed by the server
thread into one stream and are sent back to the client.

2.3 Discussion

In this section the paper presents a comparison
between the two solutions and the selection of the
most appropriate one. The two proposed solutions will
be examined in terms of bandwidth and processing
costs, complexity, as well as EVE depended issues.

The multimedia nature of the platform’s content
disambiguated in high bandwidth consumption. The
addition of an extra multimedia factor (in this case the
audio) must be carefully implemented with as low
bandwidth cost as possible. Regarding the client, the
first solution requires one extra stream for
transmission-only purposes, after the client - server
handshaking has been achieved. The reception of the
audio is accomplished by the already established udp
stream of the VRML Server. As result the network
side of the platform is lightly overloaded. On the other
side, the second solution demands both an inbound
and an outgoing stream from the client’s side, thus
being more costly in bandwidth.

The processing cost, especially for the client is a
very important factor for deciding which solution will
be implemented. The combination of java with X3D
content and the fact that the platform runs via an X3D-
enabled HTML browser lead to a relatively high
processing cost. The addition of spatial audio support
must, therefore, be as light, in processing cost, as
possible. The server processing cost is very important
as well due to the number of clients a server may be
requested to server. The first solution adds very little
processing cost to the client, since no extra modules
are required to playback the audio. The only extra cost
is that of the X3D browser reproducing the audio
which is comparatively small comparing it with the
need for a new module. The second solution is light as
well for the client since only one JMF Player class
instance is required for audio playback.

However, that is not the case for the server’s side.
The invocation of n2 threads, if n is the number of
clients, demands much more processing time than the
n threads required by the first’s solution server. In
addition the spatialization of the audio is performed
exclusively in the server, when the second solution is
used while on the first scenario each client’s applet is
responsible for the process. The cost of spatializing
the audio becomes a vast process cost when the clients
increase greatly in number. Conclusively the first
solution comes with lower processing cost than the
second one.

In terms of complexity the picture remains the
same. The first scenario relies for the spatialization to
the internal operations of the X3D browser, while the
second invokes n2 times the spatialization algorithm,
while at the same time the SIP Spatial Audio Server is

assigned with the complex task to mix n streams for
each user, where n is the number of online clients.

To conclude with, the first solution is in all of its
aspects better than the second. However, there is a
platform dependent issue that need careful
examination in order to avoid a very uncomfortable
situation. Due to that fact that the first scenario relies
to the continuous communication between the VRML
Server and the SIP Audio Server, a breakdown of the
SIP Audio Server could lead to a VRML Server
exception and vice versa. Nevertheless given the
necessary attention this issue can be sustained, and as
result, given the overall dominance of the first
solution, the first scenario was chosen.

3 DESCRIPTION OF SIP
SPATIAL AUDIO MECHANISM

In this section the mechanism behind the SIP Audio
Server is described. The mechanism consists of three
main components. The SIP component, the capture
component the RTP component and the spatialization
component The following three paragraphs describe
each one of the above respectively.

Each EVE client applet features an integrated SIP
client (Figure 4). When the EVE Applet connects to
the connection Server of the platform, a unique port is
granted for SIP use. The applet passes this port
parameter to the SIP client, which sends an SIP
INVITE message to the SIP server in the previously
mentioned port. Subsequently, the client waits for the
SIP OK message. As long as the server accepts the
invitation, a server thread is created to serve the client.
The thread establishes an rtp receive stream with the
client while the client establishes an RTP send stream
with the server thread. When the client decides to
disconnect from the platform a SIP BYE message is
sent to the server. When the client receives a SIP OK
message from the server, the session ends.

Once the SIP session is established the client’s
applet invokes the methods for capturing the sound.
Firstly, a list of the available capture devices is
examined until an appropriate for sending audio data,
is found. Next, follow the instantiation of a processor
that receives the capture data and produces a data
source in the specified format that is continuously
filled with captured audio data. This data source is

used by the RTP stream to send the audio data to the
sever.

Figure 4: SIP session.

Simultaneously with the capture setup, the client’s

applet instantiates an RTP manager that will manage
the rtp session (Figure 5).

Figure 5: RTP streaming flowchart.

The RTP manager creates an RTP send stream and
passes to it as argument the data source that is
produced by the processor. Once this is accomplished
the stream starts sending the audio data of the audio
source. On the server side, the server thread that
corresponds to the particular client instantiate an RTP
manager, which, in turn, creates a receive stream that
stores the received data to a buffer file for a constant
amount of time. When this amount time has elapsed a
second buffer is being written for the same amount of
time while the first is flushed. This procedure is
continuously repeated with one buffer being filled
with data and the other being flushed.

The server thread when the RTP stream is
established, constantly, acquires information from the
VRML server about the client’s avatar. Then two X3D
AudioClip nodes and two X3D Sound nodes are
created. The Sound nodes’ fields of location and
direction match those of the avatars mouth.

Figure 6: Spatialization process.

Each Sound node has one, different with one

another, of the AudioClip nodes as its source field,
while each AudioClip node has as URL field one of
the two buffer files (Figure 6). Once the first buffer
file is filled with data the corresponding AudioClip
starts playback and the corresponding Sound node
produces the effect of spatialization. When the first
AudioClip finishes the second set of nodes starts
playback. This procedure is repeated as far as the user
is connected. It must be stated that the actual X3D
nodes are created on the client-side. However since the

AudioClip takes URLs as a source the client has
access to the buffer files that are stored on the SIP
Audio Server.

4 IMPLEMENTATION ISSUES

In this section the implementation issues are discussed.
The main technologies, classes and methods of the SIP
Spatial Audio Server implementation are presented.

4.1 SIP implementation

Because of the fact that the EVE platform is Java –
xj3d based, an java implementation of the protocol
was needed, to maintain its non-commercial, cross
platform characteristics. JAIN – SIP was chosen as an
API, nist-sip 1.2 was used as reference
implementation. These are the main classes used:
• SipStack
• SipFactory
• SipProvider
• ClientTransaction
• MessageFactory

Three are the main methods invoked:

• processRequest (RequestEvent). A custom
method for processing SIP requests such as
INVITE.

• MessageFactory. createRequest. A method for
creating SIP requests such as INVITE

4.2 RTP streaming and audio capture

The RTP streaming and the audio captured
management tasks, is performed by custom code tha
utilizes the Java Media Framework API – JMF.

Five are the main classes used for the audio
capture:
• javax.media.CaptureDeviceInfo
• javax.media.Processor
• javax.media.MediaLocator
• javax.media.Manager
• javax.media.format.AudioFormat
• javax.media.protocol.DataSource

A list of the most important methods for the audio
capture:
• Vector CaptureDeviceManager.getDeviceList
• DataSource

Manager.createDataSource(MediaLocator ml)
• Processor Manager.createProcessor(DataSource

ds);
• Javax.media.control.FormatControl.setFormat(Au

dioFormat af).
• DataSource Processor.getDataOutput()

The capture format that is used in this

implementation is in linear encoding, has 8000 Hz
sample rate, 8 bits of sample size and is monophonic.
The streaming format was of the same characteristics.
We used this relatively low quality settings in order to
save bandwidth and processing resources.

Main classes used for the RTP streaming are the
following:
• javax.media.rtp.RTPManager
• javax.media.rtp.SendStream
• javax.media.rtp.ReceiveStream
• javax.media.protocol.PushBufferDataSource
• lavax.media.protocol.PushBufferStream
• javax.media.rtp.event.NewReceiveStreamEvent

A list of the most important methods for the RTP
streaming is the following:
• RTPManager.NewInstance()
• RTPManager.createSendStream

(DataSource dataSource, int streamIndex)
• NewReceiveStreamEvent.getReceiveEvent()

4.3 Audio Spatialization

The spatialization of audio is performed by the X3D
Sound Node. The Sound node specifies fields that
affect the spatialization of the sound. The sound is
located at a point in the local coordinate system and it
is emitted in an elliptical pattern. The location is
specified by the location field, while the direction
vector of the ellipsoids is specified by the direction
field. There are fields that specify the maximum and
minimum values to where the sound is audible, that is
the maximum and minimum lengths of the two
ellipsoids along the direction vector.

A very crucial field is the spatialize field. If set to
TRUE the sound is perceived as being directionally

http://java.sun.com/products/java-media/jmf/2.1.1/apidocs/javax/media/protocol/DataSource.html

located relative to the viewer. If the viewer is located
between the transformed inner and outer ellipsoids, the
viewer's direction and the relative location of the
Sound node is taken into account during playback. In
our implementation this field is set to TRUE, resulting
in a very realistic spatialized audio playback.

The sound source specified by the field source is
an AudioClip node. The AudioClip node specifies an
url field, that in our implementation is the url of the
buffer file, which is used as source. In order to change
between the two sets of nodes, we used an ecma script
which sets the startime field of one AudioClip that
waits to start, equal to the stoptime field of the
currently playing AudioClip.

5 CONCLUSIONS - FUTURE
WORK

This paper presents the addition of an SIP Spatial
Audio Server to the EVE platform. This new server
enhances to a great extend the realism of the virtual
world and expands the interaction capabilities of the
platform. In addition it utilizes the latest technologies
in this field which makes EVE an equivalent
alternative to commercial solutions.

Our next step is to simulate the two proposed
solutions in order to conclude to experimental results
of each solution’s efficiency and stability.

REFERENCES

Liesenborgs, J., 1998. Voice over IP in networked virtual
environments, Computer Society Press.

Macedonia, M., Brutzmann, D., Zyda, M., Pratt, D.,
Barham, P., Falby, J., Locke, J., 1995. NPSNET: A
multi-player 3D virtual environment over the internet. In
Pat Hanrahan and Jim Winget, editors, 1995 Symposium
on Interactive 3D Graphics, pages 93-94. ACM
SIGGRAPH, April 1995. ISBN 0-89791-736-7.

Bouras, C., Panagopoulos, A., Tsiatsos, T., “Advances in
X3D multi - user virtual environments”, IEEE
International Symposium on Multimedia (ISM 2005),
Irvine, California, USA,, 12 - 14 December 2005, pp.
136 – 142

Bouras, C., Giannaka, E., Panagopoulos, A., Tsiatsos, T., “A
Platform for Virtual Collaboration Spaces and
Educational Communities: The case of EVE.”
Multimedia Systems Journal, Special Issue on

Multimedia System Technologies for Educational Tools,
Springer Verlang, Vol. 11, No. 3, pp. 290 – 303, 2006.

Bouras, C.,. Tegos, C., Triglianos, V., Tsiatsos, T., “X3D
multi-user virtual environment platform for collaborative
spatial design”. The 9th International Workshop on
Multimedia Network Systems and Applications (MNSA-
2007), Toronto, Canada,, 25 - 29 June 2007, (to appear)

	1 INTRODUCTION
	2 EVE SPATIALIZED AUDIO ARCHITECTURE
	2.1 Solution 1: Audio spatialization using X3D nodes
	2.2 Solution 2: Audio spatialization exploiting a spatialization algorithm
	2.3 Discussion
	3 DESCRIPTION OF SIP SPATIAL AUDIO MECHANISM
	4 IMPLEMENTATION ISSUES
	4.1 SIP implementation
	4.2 RTP streaming and audio capture
	4.3 Audio Spatialization

	5 CONCLUSIONS - FUTURE WORK
	REFERENCES

