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In this paper, we present a framework that integrates three-dimensional (3D) mesh

streaming and compression techniques and algorithms into our EVE-II networked virtual

environments (NVEs) platform, in order to offer support for large-scale environments as well

as highly complex world geometry. This framework allows the partial and progressive

transmission of 3D worlds as well as of separate meshes, achieving reduced waiting times

for the end-user and improved network utilization. We also present a 3D mesh compression

method focused on network communication, which is designed to support progressive mesh

transmission, offering a fast and effective means of reducing the storage and transmission

needs for geometrical data. This method is integrated in the above framework and utilizes

prediction to achieve efficient lossy compression of 3D geometry. Copyright # 2006 John

Wiley & Sons, Ltd.
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Introduction

Networked virtual environments (NVEs) are one of the

most promising uses of the virtual reality technology.

Using NVEs as communication media, we can offer to

members of virtual communities the advantage of creat-

ing proximity and social presence, thereby making parti-

cipants aware of the communication and interaction

processes with others.1 However, three-dimensional

NVEs can be very demanding in computational power

and network communication. A server can host a large

number of NVEs, consisting of virtual worlds that may

be vast, geometrically complex and can be visited by a

large number of users simultaneously. These virtual

worlds can integrate many types of data such as 3D

graphics, animated 3D models, multimedia (audio and

video), text etc., which should all be shared among the

clients. Thus, it is obvious that the size of data trans-

mitted through the network is enormous. The amount of

data increases according to the number of connected

users and also according to the quality of the mesh

representations used.

In the case of a large-scale environment, a user who

connects via a low-bandwidth connection would have

to wait excessively, until all data have been downloaded

from the servers that host the virtual world, in order to

start navigating the environment. Apart from the initial

downloading, in a large-scale NVE, a large number of

users interact with the environment and with each

other. Each movement or interaction causes an event

to be sent via multicast over the network, to all other

users of the same NVE. These events may be large in

size (e.g., when a user inserts a new 3D model in the

world) or small but sent very frequently (such as the

events related to the movement of the users’ avatars). It

is obvious that, unless the proper measures are taken,

the network load could become excessive, resulting in

resource starvation and excessive delays for the end-

user. A number of methods can be employed, not only

to reduce the amount of data sent to the clients, but also

to reduce the delays observed for the same amount of

transmitted data. Our goal is to provide large-scale

environment support for EVE-II NVEs platform2
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[http://ouranos.ceid.upatras.gr/vr/], and improve its

network behavior and user experience. EVE-II is an

integrated platform for NVEs that provides: (a) high

level of presence of the users in 3D multiusers virtual

environments, (b) multimodal user-to-user interaction

via chat, voice communication, and gestures. EVE-II can

support VRML based 3D multiuser environments

offering transparent sharing of objects, text- and voice-

chat communication and a scalable, open architecture.3

The implementation of the platform is mainly based on

Web3D technologies such as VRML, VRML External

Authoring Interface (VRML-EAI, www.web3d.org),

Java, and ITU-T H.323 (www.itu.int). More information

about EVE-II platform is presented at the third section of

this paper.

Main objectives in order to upgrade our platform are:

to reduce the amount of data transmitted over the net-

work; to support large-scale virtual environments

(LSVEs); to support immediate access of the users to

the virtual environment over the network; and to make

graphics quality adapt to the end-user’s personal com-

puter and network connection.

Main improvements in the EVE-II platform in order to

achieve our goals are the following:

* Streaming of virtual worlds and individual objects: Using

streaming, a user has to download only the visible

portion of a world before he can interact with it. Also,

streaming of individual objects allows users to view

and interact with complex geometrical objects before

they are fully downloaded. This dramatically reduces

waiting times when a client enters an NVE.

* Compression of the geometric data: The usage of

compression greatly reduces the amount of data that

have to be transmitted to describe an object, resulting

in the reduction of network traffic and downloading

times. At the same time, compression should be

integrated with streaming, to allow the progressive

downloading of 3D objects.

This article is focused on the exploitation of well-

known techniques in order to achieve streaming of 3D

objects and to reduce the size of the data transferred

over the network, using lossy compression of geometry.

Our work has been based on the work presented in

References [4,5].

The original contribution of our work is the develop-

ment of a progressive transmission framework for the

transmission of geometrical data over the network,

using streaming and compression in order to support

highly dynamic environments of arbitrary complexity,

and should be able to make NVE applications usable

over low-bandwidth connections and accessible

through clients with low computational power. Another

contribution is the integration of known solutions of

sub-problems into a complete, working system. Further-

more, the experimental results, presented later in this

article, confirm that (a) the progressive encoding allows

the end user to view the models, at a lower image

quality, before the models are completely streamed;

(b) encoding only the error from the prediction yields

a good compression ratio.

We initially (second section ‘Related Work’) present

the previous work on the subject and, in the third

section ‘EVE-II Networked Virtual Environments Plat-

form’, general information about the EVE-II platform,

which is the testbed for our work. In the fourth section

(‘Our Approach’), we present briefly the rationale of our

approach. Afterwards, the algorithms used and the

experimental results for 3D data streaming and spatial

partitioning (fifth section ‘3D Data Streaming and Vir-

tual World Partitioning’), as well as the implementation

of 3D data compression (sixth section ‘3D Data Com-

pression’) are presented. Next, we describe our vision

for the next steps of EVE-II. Finally, we present some

concluding remarks.

RelatedWork

Much research work has been done on 3D data stream-

ing and spatial partitioning as well as on 3D data

compression. A conclusion is presented in the following

paragraphs.

Concerning 3D data streaming and spatial partition-

ing, there is a variety of well-known spatial partitioning

techniques, such as grid (division of the virtual world in

horizontal rectangular areas); quad-tree (division of the

virtual world in x–z level using quaternary trees), octree

(extension of quad-tree in the x–y–z level, division of the

virtual world in cubes); kd-tree; BSP-tree; cells and

portals. In case of a multiuser virtual world each techni-

que is integrated with specific techniques (such as filter-

ing) for better manipulation of the multi-user data and

events transmitted to the user.6 3D data streaming is

generally implemented by producing a progressive re-

presentation of mesh data and then transmitting them

through the network. A significant number of automated

methods for producing progressive representations of

triangular meshes exist, which rely on edge collapses or

on clustering neighboring vertices, which is equivalent to

applying several edge collapses in sequence. Methods

differ in the particular strategy used for collapsing

C. J. BOURAS ET AL.
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edges.7 The most common representation used for the

progressive loading and transmission of 3D objects is

called progressive meshes and was introduced by Hoppe.4

A progressive mesh representation consists of a base

mesh and a sequence of vertex split operations that refine

it. This permits progressive loading and transmission

and view-independent refinement. Other significant

methods (such as vertex clustering for manifold or non-

manifold meshes) are presented in Reference [7]. Further-

more, Isenburg and Lindstrom8 have introduced a

streaming format for polygon meshes that is simple

enough to replace current offline mesh formats and is

suitable for representing large data sets.

Concerning 3D data compression, the increasing po-

pularity of web-based applications, compression and

streaming techniques are today more important than

ever.9 Mesh compression algorithms can be divided in

single-rate and progressive mesh coding. Since single-

rate algorithms allow the display of the mesh only after

all data have been transmitted, only progressive coding

is of interest in our case. Significant work has been done

on compression of both connectivity and geometry.

Regarding geometry compression, quantization,10 pre-

diction and delta coding have been used to achieve high

compression rates. Early work employed delta coding

or linear prediction along a vertex ordering dictated by

connectivity data after quantization,11 while MPEG-4

uses the Parallelogram Rule.5 Lee et al.12 proposed the

usage of prediction and quantization in angle space

after prediction, while Isenburg and Alliez13 general-

ized the methods to polygon meshes. A drawback of the

above methods was that vertex order was dictated by

mesh connectivity, which is not optimal. An attempt to

solve this problem was the usage of prediction trees.14

Furthermore, Isenburg et al.15 have presented a method

for compressing floating-point coordinates with predic-

tive coding in a completely lossless manner. This

method omits the initial quantization step and the

predictions are calculated in floating-point. Also, sev-

eral methods based on wavelet transformations have

been proposed, achieving very good results.

Several algorithms have been proposed to compress

connectivity as well. Hoppe4 introduced the progressive

mesh technique, which could be used to compress

connectivity. Pajarola and Rosignac16 grouped edge

collapses and used a two-coloring of the mesh vertices,

resulting in 3 bits/vertex. Alliez and Desbrun17 and

Karni et al.18 improved the previous approaches further.

However, this paper does not address connectivity

compression, so these results will not be further

examined.

EVE-IINetworkedVirtual
Environments Platform

EVE-II is a NVEs platform, which is used as testbed

for the work presented in this paper. Its architecture

(Figure 1) is based on a client–multiserver platform

model. The current form of EVE-II constitutes an open

and flexible architecture. The servers, on which the plat-

form relies, are the message server and two application

servers, a chat and an audio server. This model offers

scalability and flexibility to the EVE-II architecture, be-

cause we can add more application servers in order to

offer more functionality and furthermore the processing

load is distributed among the above set of servers.

EVE-II is based on open technologies (mainly web 3D

technologies) and international standards. More speci-

fically the implementation of the platform is mainly

based on:

* VRML, for the representation of the 3D worlds and

for describing 3D objects.

* VRML external authoring interface (VRML-EAI), for

implementing an interface between the 3D worlds

and external tools.

* Java, for the development of the client–server model,

and the network communication among the different

components of our platform.

* H.323, for offering audio conferencing services over

the internet.

Concerning the sharing of multiuser events, EVE-II

goes beyond other platforms, offering very simple and

Figure 1. Architecture of EVE-II.
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almost transparent sharing of all types of events, while it

hardly imposes any limitations to the way virtual

worlds should be implemented in terms of VRML code.

OurApproach

This section presents the approach we adopted in order

to implement streaming and use compression to reduce

network traffic in our NVE platform.

As it is mentioned in the introductory part of this

paper, a virtual world consists of a large number of

objects and scripts, which describe the geometry, tex-

tures, special features, and interactivity of the environ-

ment. Virtual environments can be rather large and

complicated, demanding the transmission of an equally

large amount of data. This makes it hard for users to

connect to the virtual environment over low-bandwidth

connections, such as dial-up. Unless further measures

are taken, the user would have to wait several minutes

for the downloading of data to complete, before he/she

can enter a regular 3D environment.

The way to deal with these problems is to reduce the

amount of data that need to be sent to the client using

compression, and to transmit this data progressively.

Using progressive transmission, the user does not have

to wait until the whole 3D environment is transmitted.

As long as the important data that lie in the area the user

perceives have been downloaded, the user can start

navigating the world and interact with objects. As

transmission continues, a larger portion of the world

becomes accessible to the user, while complicated

meshes are displayed with increasing detail.

Primary goal of this paper is to provide a framework

and methods to assist the transmission of geometrical

data over the network, using streaming and compres-

sion. These methods target highly dynamic environ-

ments of arbitrary complexity, and should be able to

make NVE applications usable over low-bandwidth

connections, such as dial-up. Furthermore, the compu-

tational overhead on both the server and the client

should be low, since servers may support a large num-

ber of virtual worlds and users, while clients’ machines

may be low-end. The methods used target virtual en-

vironment applications that:

* consist of both high- and low-complexity 3D meshes,

* should be able to function adequately over low-

bandwidth connections,

* are highly dynamic, and

* Do not demand high processing power neither from

the server nor from the client side

In the following sections, our solutions will be

presented.

3DData Streaming andVirtual
World Partitioning

Using streaming for the transmission of 3D objects, we

can support quick users’ connection in a NVE as well as

immediate interaction with shared virtual objects, with-

out requiring the downloading of the whole 3D scene

and the geometrical data. In order to support large-scale

virtual environments, EVE-II partitions the virtual

world and employs a selective transmission mechanism,

to send to the clients only the data of 3D objects that are

close to them, and defer the transmission of objects lying

far away from the user. Only 3D geometry is subject to

partitioning and deferred transmission. Nodes such as

transformations, scripts etc. must all be transmitted

before the virtual environment is displayed to the

user. The application of both 3D data streaming and

spatial partitioning techniques in multiuser virtual en-

vironments helps the reduction of network traffic and is

crucial in order to offer good scalability, as the size of the

virtual environments grows. In the following sections,

the algorithms applied in EVE-II platform and the

experimental results concerning 3D data streaming

and 3D world partitioning are presented.

Implementation of 3DData Streaming
in EVE-IIPlatform

In order to implement 3D Data streaming, EVE-II: (a)

exploits spatial partitioning by adopting a combination

of octree partitioning with cells and portals, (b) intro-

duces a progressive transmission framework, and (c)

uses progressive mesh representation. These solutions

are presented in the following sections in detail.

Space Partitioning. EVE-II is intended to support

every kind of virtual world, including both indoor and

outdoor environments. These environments could be of

a very large size, so space partitioning is necessary to

handle them. The solution, we adopted is a combination

of octree partitioning with cells and portals.

Every closed room in a virtual environment is con-

sidered as a cell. The openings that connect a cell to its

adjacent cells are called portals. The outdoor environ-

ment is considered as a single cell with some special

properties. This partitioning of virtual space into cells is

extremely suitable for indoor environments, and that is

C. J. BOURAS ET AL.
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the reason why it is very common in games and other

real-time 3D applications. The user lies in exactly one

cell. The space that is visible for him/her consists of the

cells that are connected to the cell the user is in with

‘open’ and visible portals. That way, it is quite straight-

forward to determine the data that are necessary to be

sent to a user at a given time, and also the data that

might probably be needed in the near future.

The cells and the portals have to be defined by the

creator of the virtual world, and their use is optional. A

cell is defined only by the nodes it contains. A portal is

defined by a bounding box covering the area of the

corresponding ‘opening,’ the cells it connects and a

boolean property indicating whether it is open or

closed. When a user opens, for example, a door, the

corresponding portal becomes open, and the cell on the

other side of the door visible. So, if the data have not yet

been sent to the client, they are sent urgently.

A cell may cover a large portion of virtual space,

containing a lot of objects. The special cell that is used

for the whole outdoor environment (and all nodes

which do not belong to a particular cell) covers the

whole extent of the virtual world, and consists of a

vast number of objects in a large-scale environment. It

is obvious that large cells have to be further subdivided.

This space subdivision is implemented via a simple

octree structure. The octree provides a tree structure

that partitions space, and allows for efficient spatial

queries. This way, it is fast to determine which nodes

are close to the user, and which are not.

An octree structure is based on the recursive parti-

tioning of box-shaped areas. The root of the tree in-

cludes the whole virtual world. Each node is subdivided

to eight child nodes, each one covering a box-shaped

area with one-eighth of the volume of the parent. Node

subdivision stops when a node is encountered, which

includes fewer objects than a certain threshold. Spatial

queries can be answered by traversing this tree, which is

very efficient.

We define an area of interest for each user. This area

of interest is a simple sphere around the user, with a

fixed radius. All nodes of the octree that lie into this area

are considered important for the user’s perception of the

world, and have to be sent to the client as soon as

possible.

Progressive Transmission Framework. We have

implemented a progressive transmission framework,

which includes:

* One or more data pools for deferred data.

* Priority calculation for each node, depending on its

position, size, and internal attributes.

* Different classes for deferred data, relative to their

importance.

* Support for streaming of individual node data.

* Automatic updates, when the user moves, rotates, or

when new objects are added or removed from the

world.

* Transmission of deferred data parallel to the normal

event traffic.

Progressive transmission is used (for the time being)

only for VRML nodes of type IndexedFaceSet. These

nodes are the ones that contain the geometry of 3D

meshes, and generally account for the 80–90% of the

total data of a virtual world. Furthermore, these nodes

do not include any functionality. So, as soon as the rest

of the world is available to the user, the latter has access

to the full functionality of the virtual environment. Mesh

data are transmitted progressively only for those nodes

that lie inside the area of interest. The rest of the mesh

data is transferred only when the client’s connection is

idle, since these data do not correspond to areas visible

to the user.

This framework is able to accommodate all transmis-

sion needs of the platform. A deferred data pool is

created for each virtual world. When the world is sent

over the network, all mesh data whose transmission can

be delayed are put into the deferred data pool, instead of

being transferred immediately. The rest of the data is

sent to the client, and the normal operation of the

platform begins, before any of the meshes has been sent.

For each node put into the deferred data pool, the

server calculates a priority value and an importance

class. Priority is based on the node’s position and size, as

well as on internal node data. For example, internal

node data taken into account when a progressive mesh

is streamed through the network are the portion of data

already sent, and the error value associated with the

next vertex split. Along with the position, some of

the data are marked as ‘urgent’. These data lie inside

the area of interest for a specific user, and have to be sent

as soon as possible, because they are considered im-

portant for the user’s experience. Priorities are recalcu-

lated often, so as to adopt when the user moves or new

objects are added or removed. When an object in the

deferred data pool is to be transmitted, it is asked to

send the next block of its data. Objects that cannot be

streamed will, at this point, send all of their data and be

removed from the deferred data pool. Streamable ob-

jects will send only a small block of data, as asked, alter
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their priority and then wait for their turn to send data

again. This way, fairness is guaranteed among the

different nodes that rival for transmission. When all

data of a node have been sent, this node is removed

from the data pool. The transmission of deferred data is

carried out in parallel with regular event traffic, gener-

ated by the interaction between users and the virtual

environment. Events are given higher priority than

deferred data. However, data that are considered as

‘urgent’ will never wait more than a fixed, small amount

of time. Data that are outside the area of interest, on the

other hand, will only be transmitted when the client’s

connection remains idle. This strategy balances the

traffic generated by user interactions and the one gen-

erated by deferred data transmissions, and achieves

optimal usage of the client’s connection.

As already mentioned, the only nodes that are subject

to delayed transmission are, for the time being, the

IndexedFaceSet nodes, which contain 3D mesh data.

Mesh data, which are sent in parts, include vertex

positions, normals, vertex colors, texture coordinates,

and indices. All of these data are streamed, if a pro-

gressive mesh is used to represent the IndexedFaceSet, or

sent as a whole otherwise.

The pseudo-code, which shows the program logic is

the following:

MeshRepresentation. For the representation of the

3D data, we use the progressive mesh4 representation,

a mesh format that allows the generation of different

levels-of-detail, the progressive transmission of the 3D

data, and will also provide the base to develop a

compression scheme for the meshes. In progressive

mesh form, an arbitrary mesh M is represented by a

coarse base mesh M0 and a sequence of n refinement

operations. Each of these refinement operations

encodes the data associated with a vertex split opera-

tion, an elementary transformation that adds one

vertex to the mesh. The sequence of these refinement

operations indicates how to refine the coarse mesh M0

into a mesh Mn¼M. Applying each refinement opera-

tion sequentially, we obtain on each step a new

approximation of the original mesh M. The sequence

of approximations M0 . . .Mn represents n different

levels-of-detail of the original mesh, with the last

approximation Mn being exactly the same as the

original mesh M.

Streaming transmission of this mesh representation is

quite straightforward. Only the coarse base mesh M0

has to be sent as a whole, before the mesh can be

rendered. Afterwards, refinement operations are sent

sequentially, with each one adding a new vertex to the

mesh shown to the user. The transition between the

sequential levels of detail is smooth enough, and can

become smoother with the introduction of geomorphs.4

Only the transmission of the base mesh is considered

urgent, if the object lies in the user’s area of interest.

repeat_forever

{

for_each node in the deferred data pool

{

node.updatePriority();

}

sortNodes(data_pool);

Node node = data_pool.getTopNode();

if (node.priorityClass = = URGENT ||

event_pool.getPendingEventsNum() = = 0 ||

getCurrentTime() - node.lastTransmissionTime > TIMEOUT)

{

node.transmitNextDataBlock();

}

else if (event_pool.getPendingEventsNum() > 0)

{

Event event = event_pool.getNext Event();

transmitEvent(event);

}

}
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Experimental Results

In Figure 2, some steps in the transmission of a complex

mesh can be seen. The user can see a coarse version of

the mesh only a few seconds after the transmission of

the world has started. The user-waiting time for an

average virtual world (using a local area network con-

nection) is 32 s without using progressive transmission

and only 2 s when progressive transmission is used. The

total download time though is approximately the same

in both cases.

Download times for the pieta mesh (Figure 2) are

listed in Table 1.

3DDataCompression

EVE-II targets to NVEs of high complexity, in order

to provide a good experience to the users. Such

environments typically take up several Mbytes to be

stored. However, since the platform should be usable

even over low-bandwidth dial-up connections, the

transmission of such a large amount of data is not

acceptable, and data size should be reduced as much

as possible.

On the other hand, many of the objects that consti-

tute a virtual environment usually have a low number

of faces, since world creators are aware of the band-

width limitations. Triangulation and accuracy are

more important on these meshes. The compression

used should keep the original triangulation of the

objects, and respect mesh attributes. Furthermore,

the compression should seamlessly integrate with the

progressive transmission of meshes. Finally, it would

be desired to be able to adjust the compression ratios

according to the characteristics of the client’s connec-

tion. Mesh data can be divided into two main groups:

the vertex data and the index (connectivity) data.

Vertex data include all vertex attributes, such as

position, color, texture coordinates, normal vector

etc. The indices, on the other hand, define the faces

that constitute the mesh. Vertex data take up the 60–

70% of the overall mesh size. For the time being, EVE-

II supports the compression of only the vertex data

and not of the indices. Compression of connectivity

data (indices) will be added in the near future, follow-

ing well-known methods (triangle strip techniques,

topological surgery,19 Cut Border,20 method by Tauma

and Gotsman5).

The method, we implemented utilizes the progressive

mesh format, and tries to reduce the size of transmitted

data by using prediction filters and quantization.

Some of the advantages of this solution are:

* It is inherently progressive.

* It works with arbitrary meshes.

* Its implementation is simple and flexible.

* It can be applied to all vertex attributes.

* There is no need for preprocessing (apart from the

creation of the progressive mesh structure).

In the following sections, the algorithms applied in EVE-

II platform and the experimental results regarding 3D

data compression are presented.

Figure 2. Downloading of pieta mesh.

Basemesh LoD10% 25% 50% 100%

2 s 4 s 8 s 14 s 32 s

Table1. Downloadtimes for thepietamesh
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Implementationof 3DData Compression
in EVE-IIPlatform

The compression method used to reduce the size of

transmitted geometry in the EVE platform builds on the

existing progressive mesh framework, keeping data

streaming in mind.

For each vertex sent to refine a progressive mesh, a

prediction algorithm is used to predict the expected value

of each attribute (position, color, or texture coordinate) of

this vertex. This prediction algorithm is based only on

data already transmitted, so that it can be executed both

on the server and the client, yielding the exact same

results. The only data sent is a correction vector, repre-

senting the difference between the predicted and the

actual value. This value is quantized and encoded. The

magnitude of the correction vector is very small, which

means that it can be highly quantized without significant

loss of precision. When the difference between the pre-

dicted and the actual value is below a certain threshold,

its transmission can be skipped. In this case, the client

uses only the predicted value.

The tactics of using a prediction filter, quantizing and

encoding the correction vectors, and omitting some of

them can be used not only on vertex positions, but also

on all other vertex attributes. In fact, the prediction is

easier when applied on vertex colors or texture coordi-

nates, and a larger portion of these data can be skipped

when transmitting the mesh. Vertex normals can be

wholly skipped, since they can be recalculated by the

vertex data.

The data is sent progressively. We can treat each

sequence of values of each vertex attribute as a separate

data sequence. For each of these data sequences, we

apply the appropriate prediction filter, omit values that

are near zero and quantize and transmit the rest of them.

Next we will examine the prediction filters used for each

vertex attribute sequence, and the results we got.

We should note that the method used offers the

advantage that it does not pre-calculate a compressed

mesh representation at a given compression ratio. In-

stead, it reduces the amount of data when transmitting

the mesh to the client, so that the compression ratio can

be altered to adapt to the needs of each client.

Furthermore, the complexity added to the initial

progressive mesh representation is minimal, and the

additional computational cost for both the server and

the client is almost negligible.

The whole 3D data compression scheme is depicted in

Figure 3. The high-level pseudo-code describing how

the program logic in the case of vertex coordinates is the

following:

Figure 3. 3D data compression in EVE-II platform.
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In the following sections, the compression algorithm

we used will be discussed in more detail.

Prediction. When a vertex split k is performed, avail-

able on the client side is only the topology of the Mk

approximation of the original mesh M. We have to

determine which will be the new edge that will be

added to the mesh, which triangles shall be added,

and which indices must be changed, in order to convert

Mk to Mkþ 1. These data must be sent to the client, along

with the values of all vertex attributes.

The new edge (v1, v2) to be created is determined by

the id of the edge vertex that is already in Mk, v2. So, the

prediction algorithm will work on data that consists of

the topology of Mk, the id of v2, the indices of the

triangles to be added and the indices to be changed on

the existing index list.

To predict the new vertex’s position, we need to know

the indices that will change. The vertices that are re-

ferred by these indices are depicted in Figure 4(a) as

bold (i.e., A1, A2, and A3). Let A be the set of these

vertices. Let also v2 be the vertex of the edge to be added,

which is already in the transmitted mesh.

The average of the positions of these vertices, vbase, is

used as a base for the prediction of the new vertex

position. vbase is actually the predicted position pro-

jected onto the plane of the nearest triangle.

vbase ¼ 1

n

Xn

i¼0

vA;i þ v2

2
ð1Þ

In order to predict the vertex position, we need to take

one more factor into account, which is surface curva-

ture. We used the normal of the existing edge vertex, n2,

and the average of the normal vectors of vertices in A,

nbase. These two normal vectors are used to ‘project’ vbase

away from the mesh surface according to the following

equation (k is a constant selected so that the prediction is

accurate on spherical surfaces):

p ¼ vbase þ k nbase þ n2ð Þ 1 � nbase � n2ð Þ vbase � v2j j ð2Þ

The final predicted position p is the sum of vbase and a

vector in the direction of the average of nbase and n2, and

length proportional to the distance between vbase and

vsplit_transmit() // server-side

{

Vector3 pred_pos = predict(sent_mesh, cur_vertex);

error = predictionErrorMetric(pred_pos, actual_pos);

if (error > ERROR_THRESHOLD)

{

Vector3 pos_error = actual_pos - pred_pos;

byte[] binData = quantizeAndEncodeVector(quant_pos_error);

transmit_data(binData);

}

else

markSkippedVertex(cur_vertex);

}

vsplit_receive() // client-side

{

Vector3 pred_pos = predict(received_mesh, cur_vertex);

bool skip_flag = receiveSkipFlag();

if (skip_flag = = true)

return pred_pos;

else

{

byte[] binData = receive_data();

Vector3 pos_error = decodeVector(binData);

return pred_pos + pos_error;

}

}
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v2 and the angle formed between nbase and n2. The

predicted position p is shown in Figure 4(b). The pre-

diction is usually close to the original vertex (Figure 4(c)

depicts the predicted shape whereas Figure 4(d) depicts

the original shape). In fact, the prediction equation is

tailored to give optimal results on spherical surfaces—

that is to give almost exact predictions of the actual

positions. However, this proved to work satisfactory on

most curved surfaces.

Each vertex has a number of attributes other than

position, which should also be predicted. The most

common of these attributes are texture coordinates,

normal, and color. Vertex colors and texture coordinates

are predicted using a simple interpolation between their

respective values for v1 and v2. Since the values of these

attributes do not usually exhibit large changes among

neighboring vertices, this simple method proved to be

quite successful. Vertex normals are not transmitted at

all, since they can easily be recalculated by the vertex

positions.

Quantization. The values predicted for the various

vertex attributes may not be accurate, but are always

near the original values. That way, the correction vec-

tors have small magnitude, and can be highly quan-

tized. We used 24 bits for the correction vector of vertex

positions, 16 bits for texture coordinates, and 4 bits for

each color component.

Encoding. After quantization, the numerical values

are encoded, using simple Huffman encoding. Most of

the numerical values are near zero, since the difference

between the predicted and the actual values is usually

small. This fact makes the application of Huffman

encoding effective, further reducing the size of the

data to be transmitted.

Skipping vertices. When the prediction is very close

to the actual values, the transmission of the correction

vector can be skipped, as already mentioned. For the

decision of whether to transmit or skip a given vertex,

we used an error metric, which takes into account the

difference between the predicted and actual values,

the area of the neighboring faces and the curvature of

the surface at that point. As seen in the experimental

results, the number of skipped vertices is usually

large.

Experimental Results

We tested the compression algorithms described above

with a variety of real-world models, with both high- and

low-polygon counts. Our algorithm displayed good

behavior, and very good results for all models. As

shown in Table 2, a compression of 5–10 bits/vertex is

always possible.

Figure 4. Prediction of a vsplit.

Mesh No. Data size Maximumvisually Compresseddata
of Vertices (KBytes) acceptable compression size (KBytes)

Head (low-detail) 3322 318 7.5 bits/vertex 25
Head (mid-detail) 24 662 2367 5.3 bits/vertex 132
Head (high-detail) 42 660 4095 4.6 bits/vertex 196
Unicycle 6973 669 9.1bits/vertex 63

Table 2. Experimentalresults
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The first model we used to test our algorithm was a

high-polygon-count model of a human head, shown in

Figure 5.

As shown in Figure 6(d), when compressed at about

5.7 bits/vertex, the model seems almost identical to the

prototype. Even at 4.2 bits/vertex (Figure 6(b)), the

quality of the model is good, except from some high-

frequency noise. At even higher compression rates,

however, this noise becomes very obvious and disturb-

ing. This can be seen at Figure 6(a), where the model is

compressed at 3 bits/vertex.

The model of Figure 5 was a typical example of a

high-polygon-count organic model, full of curved sur-

faces. This is a good case for most compression algo-

rithms. In order to test our implementation against a bad

read-world case, we used the model of a unicycle shown

in Figure 7.

It can be seen from Figure 8 that our algorithm

behaves very well even in this bad case. When com-

pressed at 11 bits/vertex (Figure 8(b)), the unicycle

model has very small distortions, and at 7.4 bits/vertex

(Figure 8(a)) it is still visually acceptable. It can be

noticed there are no specific features of the model that

were excessively distorted or destroyed.

It should be noted that, when attempting to compress

a mesh with a very low number of faces, no real

compression could be done, since almost all vertex

information is important. In this case, our algorithm

reduces to a simple quantization of coordinates.

Further Improvements:Future
Work

Generally speaking, the performance of EVE-II platform

has been significantly improved. However, further

work should be done in order to improve the network-

ing behavior of the platform. The main improvements in

order to reduce network traffic will be the following:

* Exploitation of spatial partitioning for selective transmis-

sion of events: We propose a better manipulation of the

shared events in order to send to a specific user

events that are referred only in nodes concerning

objects inside his/her viewpoint. An area of influence

will be defined for each node and checked versus the

user’s area of interest, as well as the area of interest of

other nodes that receive events, in order to filter and

reduce event traffic on the network.

* Implementation of a caching mechanism, which will cache

objects and resources that are frequently downloaded

by the user. This caching mechanism will reside on the

client side, and will apply on geometry data as well as

textures and other media content.

Furthermore, the mesh compression algorithm could

be significantly improved. These improvements will not

only affect the compression rates, but also the way

compression is used to provide a better experience to

the user. Some of our next steps towards this direction

are the following:

* Compression of mesh connectivity, in the same way

as vertices are compressed now. This is a necessary

step, so that geometry compression in EVE-II can be

considered complete. The existing framework and

way of thinking will be used in this case as well,

while we will exploit well-known methods based on

triangle strips.

* Improvement of the prediction methods used for

vertex positions, and, if necessary, addition of a post-

processing step to remove the noise introduced by

the compression.

* Categorization of clients in different classes, depend-

ing on their machine and connection speed: then,

higher compression can be used for those clients that

connect via a dial-up connection, and the progressive

transmission of meshes can be stopped before the

full-resolution mesh has been transmitted, when the

Figure 5. Original head model.
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client’s machine is not fast enough to display the

world at acceptable frame rates. The introduction of

such techniques will allow users who do not have

access to fast equipment to use the platform, while

privileged users will still be able to enjoy very good

graphics quality.

Conclusions

This paper describes the techniques used in EVE-II in

order to reduce the bandwidth requirements of the

platform and the waiting times for users. A framework

was described, which supports the streaming transmis-

sion of 3D objects, and the partial, progressive down-

loading of the virtual world. Also, a method used to

compress 3D meshes was presented. The combination of

the above methods significantly enhanced the usability

and efficiency of EVE-II.

In particular, the framework for streaming and pro-

gressive downloading of the world enables the partial

transmission of a virtual world, so that only objects that

are inside the user’s area of interest are sent to the client

at first. That way, the initial download time is indepen-

dent of the size of the environment, so that LSVEs are

possible.

Furthermore, the streaming of 3D meshes allows a

coarse representation of the mesh to be displayed to the

user very fast, while downloading continues in the

background. The meshes are refined, as download

progresses, until the full-detail mesh is reached. That

way, the user does not have to wait until the full-detail

mesh has been received.

Also, an effective mesh compression method was

presented, which highly compresses the vertex data

and integrates seamlessly with the streaming frame-

work. As shown, compression ratios of 10–30 to 1 are

achievable.

Figure 6. Head model, at various compression rates.
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The above additions to the platform substantially

improved the network behavior of EVE-II, as well as

the experience perceived by the final user. The times the

latter has to wait in order to access a virtual world were

dramatically decreased, while the reduction in the

amount of transmitted data made possible the use of

the platform even by users that connect via low-band-

width lines. At the same time, the use of large-scale

worlds is now feasible, expanding the possible applica-

tions of our platform.
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