
Community Tools for Massively Multiplayer Online Games

Shakeel Ahmad∗, Christos Bouras†, Raouf Hamzaoui∗, Jiayi Liu§, Andreas Papazois†, Erez Perelman‡, Alex Shani ‡,
Gwendal Simon §, George Tsichritzis †

∗Department of Engineering
De Montfort University, Leicester, UK

sahmad@dmu.ac.uk, rhamzaoui@dmu.ac.uk
†Computer Technology Institute & Press “Diophantus”

N. Kazantzaki, GR26500 Patras, Greece
bouras@cti.gr, papazois@ceid.upatras.gr, tsixritzis@cti.gr

§Institut Telecom
Telecom Bretagne, France

jiayi.liu@telecom-bretagne.eu, gwendal.simon@telecom-bretagne.eu
‡Exent Technologies

Bazel 25, 49125 Petach-Tikva, Israel
eperelman@exent.com, ashani@exent.com

Abstract—One of the most attractive features of Massively
Multiplayer Online Games (MMOGs) is the possibility for users
to interact with a large number of other users in a variety
of collaborative and competitive situations. Gamers within
an MMOG typically become members of active communities
with mutual interests, shared adventures, and common objec-
tives. We present the EU funded Community Network Game
(CNG) project. The CNG project provides tools to enhance
collaborative activities between online gamers and offers new
tools for the generation, distribution and insertion of user-
generated content in MMOGs. CNG allows the addition of new
engaging community services without changing the game code
and without adding new processing or network loads to the
MMOG central servers. The user-generated content considered
by the CNG project includes 3D objects and graphics, as well
as screen-captured live video of the game, which is shared using
peer-to-peer technology. We survey the state of the art in all
areas related to the project and present its concept, objectives,
and innovations.

Keywords-Massively Multiplayer Online Games; user gener-
ated content; P2P video streaming; graphics insertion.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs) allow
a large number of online users (in some cases millions)
to inhabit the same virtual world and interact with each
other in a variety of collaborative and competing scenarios.
MMOG gamers can build and become members of active
communities with mutual interests, shared adventures, and
common objectives. Players can play against other players
(player versus player) or build groups (guilds) to com-
pete against other groups (realm versus realm) or against
computer-controlled enemies. MMOGs are rapidly gaining
in popularity. According to IDATE [1], the number of
MMOG players worldwide is expected to grow from 82
million in 2008 to more than 140 million by 2012.

This paper presents the Community Network Game
(CNG) project [2], an EU funded project within the Seventh
Framework Programme. The project, which started in Febru-
ary 2010 and has a duration of 30 months, aims at enhancing
community activities for MMOG gamers. This is achieved
by providing Web collaboration tools and developing new
tools for the generation, distribution and insertion of User-
Generated Content (UGC) into existing MMOGs. This UGC
may include textures and 3D objects to be added to the game,
live video captured from the game screen and streamed to
other players, as well as videos showing walkthroughs, game
tutorials, or changes in the virtual world to be watched on
demand.

The main technologies proposed by the CNG project are
the In-game Graphical Insertion Technology (IGIT) and a
Peer-to-Peer (P2P) system for the distribution of live video.
IGIT is an innovative technology of replacing or inserting
content into a game in real time without the need to change
the game code in the client or server. For example, billboards
can be inserted, tattoos can be added to in-game characters,
an area on the screen can be assigned to display user
information, and any type of window (browser, chat, etc.)
can be inserted floating on or outside the game area. The
technology can be implemented on multiple games, making
it possible to create a community that is not limited to a
specific game or publisher.

Enabling thousands of users to communicate UGC repre-
sents a significant challenge to networks already occupied
with the MMOG client-server data. The CNG project devel-
ops new techniques for UGC distribution that are “friendly”
(supportive and not disruptive) to the MMOG client-server
traffic. The key innovation is a P2P system that allows
MMOG gamers to stream live video of the game without
interrupting the MMOG data flow and without the need to



upload the video data to a central server.
The remainder of the paper is organized as follows.

Section II gives an overview of the state-of-the art in the
areas of UGC, Web collaboration tools, P2P live video
streaming, and game adaptation technologies. Section III
presents the project’s concept, objectives and technologies.
Section IV concludes the paper by discussing the project’s
benefits and expected impact. The paper is an extension of
the conference paper [3].

II. RELATED WORK

In this section, we review the state-of-the art in the areas
of UGC, Web collaboration tools, P2P live video streaming,
and game adaptation technologies.

A. UGC

UGC includes various kinds of media content produced
by end-users. In a game context, for example, this may
be screen-captured video. Another example of UGC is the
various mods created by the users. Sharing and remixing
UGC is a widespread online activity that crosses borders of
age and gender. Avid players go to great lengths in their
efforts to create shared content in which they reveal their
mastery. Additional data layers are always included: nar-
ration, animation and primarily soundtrack. Most MMOG-
based UGC content is confined to dedicated game company
sites as in World of Warcraft [4]. Many MMOG games
also have their own community pages in social networking
sites such as Facebook. In April 2010, Facebook released
significant updates to its API by allowing external websites
to uniformly represent objects in the graph (e.g., people,
photos, events, and community pages) and the connections
between them (e.g., friend relationships, shared content, and
photo tags). As a result, the Facebook API [5] can provide
an unprecedented bridge between gamespaces and the social
web.

Current UGC tools can be classified into three cate-
gories: tools for capturing, for editing, and for upload-
ing/broadcasting.

Capturing: Capturing videos can be done within the
gamespace as in Spore [6]. This is not a common feature in
MMOGs. More commonly, capturing is done with external
video capture software such as Camtasia [7] or Fraps [8].
Fraps is the preferred software for users who want to capture
high quality video. However, its free version has a 30 s
recording limitation.

Editing: UGC sharing and remixing within game plat-
forms is currently not supported. To edit the video and add
effects, narration, soundtrack and text overlays, users tend
to use readily available software such as Windows Movie
Maker for Windows or iMovie for Mac that allow for the
inclusion of additional content: audio, images and other
videos. Annotations can only be added after the capture is
done and cannot include other participants’ comments.

Uploading/broadcasting: Once a user has captured and
edited the video, a final step is needed to upload it for
viewing. Many MMOG players use sites such as YouTube to
share their game-based UGC. In 2008, Maxis incorporated
YouTube APIs within their game, Spore, enabling players
to upload videos of their creations to their YouTube ac-
count with only two clicks [9]. The collaboration between
YouTube and a game creator (Electronic Arts), including
revenue share from advertisements, is unique to date. Players
of other games need to upload their video creation from their
computer and cannot do it from within the game itself [10].

A user can capture the video of the game and broadcast it
live to other users via a video server. This feature is offered
by Xfire [11], which allows anyone to watch a live feed of
a user’s game screen. When a user begins a stream, a chat
room is opened that anyone watching the live feed can join.

B. Web collaboration tools

Web 2.0 based collaboration applications may include
instant messaging, audio and video chat, file sharing and
online voting and polling. For audio/video capturing and
playback the Flash software platform [12] is commonly
deployed. Other solutions are the Java Applet technology or
standalone applications which run on a Web browser and of-
fer interoperability over different platforms. For instant mes-
saging, online polling/voting and file sharing, Asynchronous
JavaScript and XML (AJAX) [13] are commonly used.
AJAX allows Web applications to retrieve data from the
server asynchronously in the background without interfering
with the display and behavior of the existing page. The use
of AJAX techniques has led to an increase in interactive
interfaces on webpages. Finally, for WWW client-server
communication, most of the Web 2.0 applications are based
on Simple Object Access Protocol (SOAP) [14]. SOAP
relies on XML as its message format, and usually relies on
other Application Layer protocols, most notably the Remote
Procedure Call (RPC) and HTTP.

In the following, we give examples of Web 2.0 collabo-
ration software.

1) Instant messaging: Instant messaging software is
mainly based on AJAX technology. A typical AJAX chat
application uses a database (MySQL) and AJAX to store
and retrieve the users’ messages and pass them between the
client and the server. Examples of instant messaging soft-
ware include AJAX Chat [15], Google Talk [16], ChatZilla
[17], Mibbit [18], and Java/JavaScript Chat [19].

2) File sharing: Examples of popular Web2.0 file sharing
systems include Meebo [20], iGoogle [21], Orkut [22], and
FlashComs Community chat [23].

3) Audio and video chat: Audio and video chat ap-
plications are based on the Flash Platform. Some typical
examples of Web-based audio and video chat tools are
AVChat 3 [24], Red5Chat [25], MeBeam [26], Web Voice
Chat [27], and 123 Live Help Chat Server Software [28].



Table I: POPULAR CHAT TOOLS.

Tools Instant Messaging Audio and video chat File sharing Protocols
CGI:IRC Perl/CGI Not supported Not supported IRC
PJIRC Java Applet Not supported Not supported IRC
qwebirc Ajax Applet Not supported Not supported IRC
Parachat Java Applet Not supported Not supported Jabber/XMPP
Pichat Ajax Not supported Not supported Unknown
Facebookchat Ajax Not supported Not supported Jabber/XMPP
eBuddy Ajax Not supported Not supported Jabber/XMPP
Omegle Ajax Flash Not supported Jabber/XMPP
webcamnow Ajax Flash Not supported Jabber/XMPP
JatChat Java Applet Java Applet Not supported Jabber/XMPP
campfire Ajax Not supported Ajax Unknown
Single Operator Ajax chat Ajax Not supported Ajax Unknown

Table I lists some widely used chat tools together with their
underlying technology.

Table II: POPULAR VOTING AND POLLING APPLICATIONS.

Tools Technology
Poll4Web Flash
Flash Web Poll Flash
ABPollMaster Polling Java Applet
Fly06 Poll Ajax

Table III: POPULAR BLOGWARES.

Tool Technology
Kontain Flash
Blogsmith Ajax
TypePad Ajax
Gawker bespoke software Ajax

4) Online voting and polling: Examples of Web-based
collaborative voting and polling tools are VotingPoll [29],
DPolls [30], and XML Flash Voting Poll [31]. Table II
lists other examples and the technology used for their
implementation.

5) Blogging: Important tools used for the building of on-
line blogging applications are WordPress [32], and Movable
Type [33]. Table III lists popular blogwares.

C. P2P live video systems

Traditional client-server video streaming systems have
critical issues of high cost and low scalability on the server.
P2P networking has been shown to be cost effective and
easy to deploy. The main idea of P2P is to encourage users
(peers) to act as both clients and servers. A peer in a P2P
system not only downloads data, but also uploads it to serve
other peers. The upload bandwidth, computing power and
storage space on the end user are exploited to reduce the
burden on the servers.

Viewers of a live event wish to watch the video as soon
as possible. That is, the time lag between the video source
and end users is expected to be small. In a live streaming

system, the live video content is diffused to all users in real
time and video playback for all users is synchronized. Users
that are watching the same live video can help each other to
alleviate the load on the server. P2P live streaming systems
allow viewers to delete the historic data after the playback,
and hence have no requirement for any data storage and
backup.

Based on the overlay network structure, the current ap-
proaches for P2P live streaming systems can be broadly
classified into two categories: tree-based and mesh-based.
In tree-based systems, peers form an overlay tree, and video
data are pushed from the parent node to its children. How-
ever, a mesh-based system has no static streaming topology.
Peers pull video data from each other for content delivery.
Over the years, many tree-based systems have been proposed
and evaluated, however, never took of commercially. Mesh-
based P2P streaming systems achieve a large-scale deploy-
ment successfully, such as PPLive [34], PPStream [35], etc.

1) Tree-based systems: Many early P2P streaming sys-
tems use a tree-based approach that is typically based
on application-level multicast architectures. Tree-based sys-
tems, such as ESM [36] and P2Cast [37], organize peers
into a tree structure for delivering data. The data are diffused
following this well-defined structure, typically pushed from
a peer to its children. Tree-based solutions are perhaps the
most natural and efficient approach, but they face several
challenges. One major drawback of tree-based systems is
the system fragility due to peer churn. A peer departure will
disrupt data delivery to all its descendants, particularly for
the peers in the higher level of the tree. The high dynamicity
of peers in a P2P network potentially deteriorates transient
performance. Another drawback is the under-utilized upload
bandwidth of the peers. The leaf nodes in the tree cannot
contribute any upload bandwidth resource to the system.
Since a majority of nodes are leaves in the tree structure, this
significantly reduces the overall efficiency. To address the
issues of leaf nodes, multi-tree structures were introduced
[38], [39]. In a multi-tree system, the source encodes the
stream into several sub-streams and diffuses each sub-stream
along one sub-tree. Each peer participates in many or all



Table IV: TRANSPORT PROTOCOLS IN P2P LIVE VIDEO STREAMING SYSTEMS.

System Protocol
CoolStreaming [41] TCP
PPStream [65] TCP
PPLive [66] Combination of TCP and UDP
TVAnts [65] Combination of TCP and UDP
Joost [67] UDP and TCP with UDP being the dominant traffic
SopCast [66] Combination of TCP and UDP
[49] UDP with FEC
[53] UDP with ARQ
[61], [62], [68] UDP
GridMedia [69] UDP
iGridMedia [70] UDP
PULSE [71] UDP for control messages and TCP for data exchange
R2 [72] UDP or TCP when UDP cannot be used due to firewall blocking

sub-trees to retrieve sub-streams. Hence, a peer might be
deployed on an intermediate position in one sub-tree or a
leaf position in another sub-tree. Compared with the single-
tree approach, the multiple-tree solution has two advantages.
First, the system’s robustness is improved, as the failure
of a high-level node would not completely disrupt all its
descendants. Second, the upload bandwidth of all nodes
could be well utilized, since each node stands a good chance
to be both a leaf and an intermediate node. However, since
the multiple-tree approach is still a tree-based solution, the
drawbacks of tree-based systems remain basically unsolved.
First, the construction and maintenance of the multiple-
tree structure are costly because of frequent peer churn
behaviours. Second, the upload bandwidth contribution of
a node, which depends on the position in each sub-tree, is
deficient. Furthermore, the design involves overhead.

Viewers in P2P live streaming systems only focus on the
live video data that currently are output from the source.
Hence, the video playbacks for all users are synchronized.
In tree-based P2P live systems [36], all users participating in
a video streaming session can form a tree at the application
layer with the root at the video source. Each peer receives the
live video data from its parent and immediately forwards the
data to its children. Usually peers at lower levels receive the
live data after peers at upper levels. The major consideration
is to balance the depth of the tree and the out-degree of the
intermediate nodes. Multi-Tree based approaches for P2P
live systems are described in [38].

2) Mesh-based systems: In a mesh-based P2P streaming
system, peer relationships are built and terminated according
to data availability and bandwidth availability on peers. A
video is typically divided into many chunks. Moreover, a
tracker server maintains the relationship between peers and
video data. Then, a peer can dynamically connect to a peer
list that is chosen randomly from the tracker server according
to which chunk the peer requests. After that, the peer
maintains multiple neighbours and exchanges chunks with
these neighbours simultaneously. A gossip protocol [40]
is typically used for the topology management. Peers also

periodically exchange information of the chunk availability
using a buffer map. Usually, a chunk is pulled by a peer
from its neighbours who have the requested chunk. The pull
policy can avoid redundant chunk transmission.

If a neighbour leaves, the peer can continue retrieving
chunks from other neighbours. The peer also explores some
new neighbours to keep a certain number of neighbours.
Due to the maintenance of multiple neighbours, mesh-based
systems are highly robust against peer churns and fully
utilize users upload bandwidth. However, transmission delay
presents a challenge to mesh-based systems (for example,
long start-up delay and channel switching problems for live
streaming systems).

Many successful P2P live streaming systems [34], [35],
[41] use the mesh-based streaming approach. The design of
mesh-based P2P live streaming systems is relatively simple.
All users are interested in the same live data. All chunks
downloaded at a peer are always useful to other peers that
have not retrieved these chunks. Some studies investigate
the quality of peering connections. Several strategies are
proposed to construct the peer relationship. The first con-
sideration is the workload and resource availability on both
peers, such as the current number of connections, upload and
download bandwidth, and system resources. Other consider-
ations are the network condition, which includes end-to-end
delay and loss rate, and the network proximity, including ge-
ographical position, bandwidth, delay and network distance.

3) Server-assisted P2P systems: Most peer-to-peer sys-
tems rely on a server, either a bootstrapping server or a
tracker server. A bootstrapping server is only used when
a new peer joins an overlay. The bootstrapping server is
expected to give to this newcomer a list of peers that are
currently in the system. In this way, the new peer can
quickly open connections. It has been shown, however, that
a popular P2P streaming system like PPLive fails to provide
accurate information to newcomers, resulting in a too long
start-up delay [42]. Actually, a large proportion of peers
that are given by the bootstrapping server do not answer
the initial request of the newcomer, either because they are



no longer in the system, or because they do not need any
new connections. A tracker server extends the bootstrapping
function. Every peer periodically sends a message to the
tracker, which gives in return a list of peers (peerlist). That
is, the participants to a peer-to-peer system can discover new
peers on a periodic basis. The bit-torrent system has pop-
ularized this hybrid architecture, which guarantees, among
other suitable properties, that new peers can quickly find
matching peers.

In general, implementations of tracker-based peer-to-peer
systems are simple. The tracker sends to a requesting peer a
list of randomly chosen peers among the set of peers that are
expectedly active in the system. Interestingly, the resulting
topology is a random regular graph: every peer is connected
to a given number of randomly chosen other peers. This
random-like underlying topology is interesting on several
aspects, especially random regular graphs are connected with
high probability (so, any information is accessible from any
peer), and the diameter of a random regular graph is small
(therefore any information is close to any peer, if it is able
to find it).

This topology links “acquaintances”. A peer can contact
any subset of peers in the peerlist, but it is free to choose,
among them, some privileged peers with which it will
exchange data. This presents some problems. First, the
peerlist contains peers exhibiting a broad scope of capacities,
although the overlay tends to connect peers having similar
characteristics [43]. The overlay would converge faster if
the peerlist could contain preferentially the peers having the
closest characteristics to the requester. However, it would
require to authorize the tracker to determine as accurately
as possible the capacity of peers, which appears to be
impossible or costly in many cases. Second, the peerlist
topology does not take into account the location of peers.
Therefore the overlay wastes network resources.

4) Hybrid CDN-P2P systems: Peer-assisted (PAS) Con-
tent Delivery Networks (CDNs) have attracted a lot of
attention in recent years. In this section, we present the
architecture of a real-world CDN-P2P live video streaming
system called LiveSky [44], which has been deployed in
China. The system is designed to solve a set of problems in
current CDN and P2P live video streaming systems such as
scaling, fast startup and upload fairness.

Server side organization: The CDN overlay is constructed
according to a tree-based structure, where leaves are edge
servers, whose role is to serve end users. All other in-
termediate nodes are core servers, which are responsible
for delivering content to edge servers. Because of their
work load, edge servers are not allowed to transfer content
between each other. To realize a P2P organization at the
client side, an edge server has several roles: 1) a regular
server for legacy clients; 2) a tracker for the P2P operation;
3) a seed in the P2P system.

Client side organization: There are two types of clients:

legacy clients and P2P clients. Legacy clients are served in
the traditional CDN manner and receive low quality streams.
P2P clients are organized in a hybrid scheme proposed in
[45], [46] that combines the multi-tree and mesh topologies.
As usual a video is divided into several substreams. Each
substream contains nonconsecutive frames. The peers that
host the same substream compose a tree-based overlay. This
ensures upload fairness of each peer. On the other hand,
peers also use a mesh-style pull mechanism to retrieve
missing frames for continuous playback. This enhances the
robustness of the network. Moreover, P2P clients are allowed
to access high quality videos.

Adaptive scaling and improvements: In the system, each
edge server decides whether a new arrival client should be
treated as a legacy client or a P2P client independently. A
threshold is pre-configured in every edge server. When the
number of clients is below the threshold, all clients retrieve
the content directly from the edge server. If the number
of clients exceeds the threshold, new arrival clients will
be redirected to other clients to form a P2P organization.
Both the threshold and the capacity of an edge server are
calculated by some parameters, including the level of the
P2P tree overlay, peer arrival rate, peer leaving rate and peer
contribution rate. When an edge server reaches its capacity
limitation, new clients will be redirected to a less loaded
edge server.

Fast startup: Startup time is optimized in LiveSky in two
ways. First, the buffer size is reduced to 15 seconds. Second,
the first request of a client is always replied directly by an
edge server, thus it is very quick to retrieve startup streams.

5) Video transmission protocols: In private, well-
managed IP networks, the quality of service (QoS) is
maintained by calibrating the end-to-end infrastructure. This
is not possible in P2P overlays since they are built on
open IP networks, which are best-effort in nature. Real-
time video communication over P2P overlays on the public
Internet mainly relies on the transmission control protocol
(TCP). TCP guarantees reliable transmission of the data
by automatic retransmission of lost packets. However, as
TCP requires in order delivery of the data and keeps on re-
transmitting a packet until an acknowledgement is received,
significant delays may be introduced. Further delays are
caused by the congestion control algorithm used by TCP,
which reacts to packet loss by reducing the transmission rate,
leading occasionally to service interruption. This presents a
serious drawback for real-time video communication where
the data must be available to the receiver at its playback time.
Lost and delayed packets that miss their playback deadline
not only are useless, they also consume the available band-
width unnecessarily.

An alternative to TCP is to use UDP as the transport pro-
tocol and apply application-layer error control. For example,
the Darwin Streaming Server, which is the open-source ver-
sion of Apple’s QuickTime Streaming Server, uses a simple



timeout-based ARQ scheme [47]. The Helix DNA streaming
system, which is the open-source version of RealNetworks
Helix streaming suite, also uses timeout based ARQ [47].
Windows Media uses a selective retransmission scheme. If
the client detects gaps in the packet sequence numbers,
it sends a retransmission request to the server, which re-
transmits the missing packets. Packet retransmissions are
limited to a certain percentage of the available bandwidth
and packets to be retransmitted are prioritized according to
their content. Audio packets are given the highest priority.
Video packets close to their playout deadlines are given the
lowest priority, on the presumption that retransmissions are
most likely to miss the playout deadline [48]. VideoLAN, a
popular open-source streaming system, uses either TCP or
UDP without packet loss mechanisms [47]. These streaming
techniques are suitable for well-managed networks. How-
ever, they face considerable problems in open IP networks
where the packet loss rate may be significant, and the
available bandwidth may be variable. In P2P overlays, in
particular, packet loss is not only due to congestion at routers
but also to the heterogeneity in node stay-time duration.

Most P2P streaming systems use TCP (CoolStreaming,
PPStream), a combination of UDP without error control and
TCP (PPLive, TVAnts), UDP with Forward Error Correction
(FEC) [38], [49], [50], [51], [52], and ARQ [53]. Another
approach is Multiple Description Coding (MDC) [54], [55].
However, MDC schemes are rarely used in practice because
they rely on non-standard video coders.

Thomos and Frossard [56] use network coding with
rateless codes [57] for P2P video streaming. The technique
exploits path diversity and lessens the burden of re-encoding
on an intermediate forwarding peer.

Wu and Li [58] also use network coding based on rateless
codes for P2P live video streaming. A peer can recover the
original video source block by receiving enough encoded
symbols from multiple receivers. As soon as a receiving
peer successfully decodes the source block, it becomes a
source and applies rateless coding on the decoded source
block to generate encoded symbols for other peers. To avoid
receiving redundant symbols, each peer uses a different seed
for rateless encoding. The authors propose a distributed
algorithm for best peer selection and optimize rate allocation
to guarantee minimum delay.

Grangetto, Gaeta, and Sereno [59] propose an improve-
ment to the method of Wu and Li [58]. In their method,
called ’Relay and Encode’ (RE), a receiving peer relays
the received encoded symbols immediately. Once it decodes
the source block, a rateless code is applied on the source
block and newly produced encoded symbols are sent to its
children. The authors show that RE has a lower delay than
the method of [58]. However, the paper does not consider
the effects of varying channel conditions and does not
exploit feedback to minimize bandwidth usage. Moreover,
the protocol is not robust against failures. For example, if

one peer cannot decode the source block, all its descendent
peers are affected. A similar system is proposed by the same
authors in [60]. Here, receiver feedback is used to ask the
sender to stop sending more symbols when the source block
is decoded.

In [52], rateless coding is used to make a P2P VoD system
resilient to peer churn. The source partitions the video into
source blocks and applies rateless coding on these blocks.
During a push phase, for each source block, distinct groups
of encoded symbols are distributed among a number of
volunteering peers, which may not be interested to watch
the video. This pushing can be done during low network
utilization time. In a pull phase, a peer who wants to watch
the video needs to collect a minimum number of distinct
encoded symbols from any subset of volunteering peers.

Setton, Noh, and Girod [61] propose a system for live
video streaming over P2P networks aimed at low latencies
and congestion avoidance. Video packets are sent using
UDP/IP, and a scheduling algorithm is used to maximize
the received video quality, while minimizing network con-
gestion.

In [62], a P2P live video streaming system aimed at low
delays is presented. The system uses the Stanford Peer to
Peer Multicast Protocol to build multiple complementary
multicast trees, all originating at the source. The source
exploits path diversity and sends different packets over
different multicast trees. The video is compressed with
the Scalable Video Coding (SVC) and packets are sent
over UDP/IP. Depending on the available bandwidth and
packet loss rates, intermediate nodes decide how many layers
should be sent to their children. A simple ARQ mechanism
is used to deal with packet loss.

One limitation of the UDP protocol is the lack of a
congestion control mechanism. Congestion control with
UDP can be realized with the Datagram Congestion Control
Protocol (DCCP) [63]. DCCP uses an Explicit Congestion
Notification (ECN) bit, which is set on by a congested router.
When a receiver receives a packet with an ECN bit set on,
it asks the sender to react to the congestion accordingly.
However, most routers disable ECN [64].

Table IV gives an overview of the transport protocols used
in P2P systems.

D. Game adaptation technologies

In-game technologies have been used in the gaming mar-
ket for several years. The gaming industry has adopted these
technologies to increase its revenue by finding more financial
sources and by attracting more users. In-game overlay allows
to view and interact with windows outside the game, but
without “Alt-Tabbing”. It does so by rendering the window
inside the game. Texture replacement enables to replace an
original game texture with a different texture. In this way,
the newly placed textures are seen as part of the original
game content. This method is commonly used for dynamic



Table V: IN-GAME TOOLS. AN X INDICATES THAT THE TOOL IS OFFERED BY THE PRODUCT.

Product XFIRE PLAYXPERT Massive FreeRideGames Double Fusion Steam Overwolf Raptr
Texture replacement x x
Game resize x
In-game overlay x x x x x x
Video capture x x x
Video edit
Video upload x x
Live video x
Instant messaging x x x x x
Audio chat x x x
File sharing
Online blogging
Need for SDK No No Yes No Yes Yes No No

in-game advertisement. Game size modification technology
adapts the original game by decreasing its original size and
surrounding it with an external content.

Some of these technologies are distributed as an external
utility that can overlay a pack of games while others are part
of MMOG service features which are provided to the users.

The main available in-game adaptation products on the
market are Xfire [11], PLAYXPERT [73], FreeRidesGames
[74], Massive [75], Double Fusion [76], Steam [77], Over-
wolf [78], and Raptr [79]. Some of the products require
for the game developer to integrate the product’s Software
Development Kit (SDK) (for each game to be developed
the game developer must use the products SDK). The use
of those in-game adaptation products is not available for the
existing games catalogue. Table V lists the in-game tools
surveyed in this paper, showing those offered by existing
products.

III. TECHNOLOGIES AND INNOVATIONS

Fig. 1 shows the CNG architecture. While the MMOG
architecture is not modified (the game content and the game
data are still transferred through the MMOG servers), the
following components are added: (i) Sandbox on the client
side that is responsible for modifying the game environment;
(ii) CNG Server for monitoring the P2P UGC communica-
tion. The CNG server acts as a tracker for the system in
the sense that it is in charge of introducing peers to other
peers. It has persistent communication with the clients and
manages the organization of the P2P exchanges.

A. IGIT

IGIT enables the user to resize the game and surround
it with external content, overlay the game, and replace an
existing game texture with an external content. This is done
in a way that does not harm the game experience and
without the need for SDK integration. Fig. 2 and Fig. 3
illustrate some of these features. Fig. 2 is a screenshot from
the MMOG game “Roma Victor” [80] by RedBedlam. Fig.
3 shows the same game scene with a mock-up of CNG
features. The modifications, which are numbered in Fig. 3,
are as follows:

Figure 1. CNG architecture.

• (1) The original resolution of the game was modified
to enable an additional frame around the game to hold
the in-frame objects. IGIT uses the GPU of the user’s
machine for changing the resolution of the game to
avoid reduction in the image quality;

• (2) Instant messaging window as an example of active
Web 2.0 application;

• (3) Web browser that presents online passive informa-
tion (in this example, a leader board);

• (4) Another Web browser window that presents an
updated advertisement;

• (5) MMOG specific chat to enable the users in a specific
scene to cooperate;

• (6) In-game 3D UGC. In this example, a user added a
note on a tree to publish an eBay auction;

• (7) Two windows of a video chat with casual friends
or cooperative players.

The choice of application and the application’s screen
location are under the control of the user (player). The
Web 2.0 applications are browser-based applications that
are downloaded from the CNG Server and run in the web-
browser instances within the CNG Client. The purpose of
Web 2.0 Applications is to offer online collaboration services
to the user. They are browser-based and downloaded from
the CNG Server and run in the web-browser instances within
the CNG Client.



Since they are web-based the CNG client retrieves all the
necessary information from the CNG Server

In addition, the CNG toolbox includes video recording
and editing tools that allow users to capture the video of the
game and

1) trim the captured game video
2) split, duplicate and sequence the recorded video cuts
3) remix trimmed cuts of the recorded video
4) upload the edited video to YouTube

Figure 2. Original MMOG screenshot.

Figure 3. IGIT-modified MMOG screenshot.

B. P2P live video system

In existing MMOGs, a player can capture the video of
the game and send it to a central server which broadcasts
it live to other users [11]. However, this solution, which
heavily relies on central servers, has many drawbacks such
as high costs for bandwidth, storage, and maintenance.
Moreover, this solution is not easily scalable to increasing

Figure 4. P2P topology.

number of users. The CNG project proposes a P2P live video
streaming system to address the limitations of server-based
solutions. The CNG P2P live video system allows every
peer to become a source of a user-generated video stream
for a potentially large set of receivers. While many P2P
live video systems have been proposed, none of them has
been specifically designed for the unique environment of
MMOGs. In particular, none of the existing P2P live video
systems addresses the following challenges:

• Any MMOG player should be able to multicast live
video. The video can potentially be received by any
other player in the P2P network.

• Live video streaming should not consume the upload
and download bandwidth that is necessary for the
smooth operation of the MMOG (MMOG client-server
traffic).

• Live video should be delivered at about the same
time to all peers at the same “level”. For example, a
level can be a priority class in a multi-tiered premium
service. Peers in a higher priority class should be able
to watch the video before those in a lower priority
class. Alternatively, a level can be defined as the set
of MMOG players that are in the same region of the
virtual world.

The CNG P2P live video system is designed as follows.
Peers are organized in levels with the source peer placed at
level 0 (Fig. 4).

The video is captured in real time from the source screen,
compressed, and partitioned into source blocks. Each source
block corresponds to one GOP (Group of Pictures) and
is an independent unit of fixed playback duration (e.g., 1
s). The source peer applies rateless coding on each source
block and sends the resulting encoded symbols in successive
UDP packets to level-1 peers. Packets are sent according to
a scheduling strategy. The strategy specifies the maximum



number n of encoded packets that can be sent by the source
for this block, the time ti at which packet i is sent, and
a hierarchical forwarding scheme Fi, i = 1, 2, . . . , n. An
example of a scheduling strategy for n = 4 and the four
level-1 peers of Fig. 4 is as follows.

• 1 : t1 : A→ B + D(→ C),
• 2 : t2 : B → A + C(→ D),
• 3: t3 : C → B(→ A) + D,
• 4: t4 : D → C(→ B) + A

The strategy says that packet 1 should be transmitted at
time t1 to A. A forwards the packet to B and D. D forwards
it to C. Packet 2 should be transmitted at time t2 to B. B
forwards it to A and C. C forwards it to D. Packet 3 should
be transmitted at time t3 to C. C forwards it to B and D.
B forwards it to A. Packet 4 should be transmitted at time
t4 to D. D forwards it to C and A. C forwards it to B.

A level-1 peer uses its own scheduling strategy to immedi-
ately forward any packet received from the source to level-2
peers. Moreover, as soon as it successfully decodes a source
block, it sends an acknowledgment to the source, so that it
stops sending it packets. Then it applies rateless coding on
the source block and creates new packets. These new packets
are sent to level-2 peers according to the scheduling strategy.
Since a level-2 peer may receive packets from different level-
1 peers, level-1 peers use randomly chosen rateless code
seeds to minimize the probability that a level-2 peer receives
duplicate packets. The value of the seed is sent as part of
the header, so that the receiving peer can generate the same
graph as the encoding peer. The procedure described above
for two levels is repeated for the next levels.

Note that with the exception of peers situated at the last
level, a peer will usually have two phases: a forwarding
one (before the decoding is successful) and an encoding one
(after decoding the block).

One of the main challenges consists of optimizing the
scheduling strategy. The details of this optimization will be
presented in a future paper.

Our system extends previous ideas proposed in [58], [59].
However there are many important differences between these
works and our scheme. For example, the systems of [58],
[59] do not have the notion of scheduling strategy. Also in
[58], [59], there is no notion of levels.

As UDP does not have a built-in congestion control
mechanism, a pure UDP-based application may overwhelm
the network, leading to packet loss and degraded video
quality. Therefore, the CNG project proposes an application-
layer congestion control mechanism for the P2P system.
The source adapts the video bit rate according to feedback
received periodically from all peers. This feedback consists
of the outage rate, i.e., the percentage of source blocks that
were not decoded in time.

IV. CONCLUSION

We presented the EU funded CNG project. CNG supports
and enhances community activities between MMOG gamers
by enabling them to create, share, and insert UGC. The
UGC considered by the CNG project includes 3D objects,
graphics, and video. CNG develops in-game community
activities using an in-game graphical insertion technology
that replaces or inserts content in real time without the need
to change the game’s code in the client or server. CNG
uses an architecture that efficiently combines the client-
server infrastructure for the MMOG activities with a P2P
overlay for the delivery of live video. The video traffic
represents a real challenge to the network already occupied
by the MMOG client-server data. The project proposes new
techniques for P2P live video streaming that are “friendly to
the MMOG client-server traffic. Since video can be resource
heavy, the network indirectly benefits from the increased
locality of communication. CNG also provides Web 2.0
tools for audio and video chat, instant messaging, in-game
voting, reviewing, and polling. This will reduce the need for
visiting forums outside the game and diluting the MMOG
experience.

CNG has the potential to provide huge benefits to MMOG
developers and operators. New community building tools
will be offered cost-effectively and efficiently, without the
need to redesign or recode the existing game offerings.
The user experience will be enriched, and the needs of the
end-users will be better addressed. The community will be
brought into the content, and the game communities will
become more engaged, reducing churn to other MMOGs.
New income streams will be delivered with the help of in-
game and around game advertising. Yet, MMOG developers
and operators will be able to maintain control over how
various commercial and UGC content is displayed, thus
keeping editorial control of the look and feel of their
MMOG.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Commission’s Seventh Framework Pro-
gramme (FP7, 2007-2013) under the grant agreement no.
ICT-248175 (CNG project).

REFERENCES

[1] [Online]. Available at: http://www.slideshare.net/ICOPartners/
free-to-play-games-in-europe-2009. Last accessed: 7/2/2012.

[2] [Online]. Available at: http://www.cng-project.eu/. Last ac-
cessed: 7/2/2012.

[3] S. Ahmad, C. Bouras, R. Hamzaoui, A. Papazois, E. Perelman,
A. Shani, G. Simon, and G. Tsichritzis, “The Community
Network Game project: Enriching online gamers experience
with user generated content,” in Proc. 2nd Int. Conf. Creative
Content Technologies (CONTENT 2010), Lisbon, Nov. 2010.

[4] [Online]. Available at:: http://eu.battle.net/wow/en/. Last ac-
cessed: 7/2/2012.



[5] Facebook API. [Online]. Available at: http://developers.
facebook.com/docs/. Last accessed: 7/2/2012.

[6] [Online]. Available at: http://eu.spore.com/home.cfm?lang=en.
Last accessed: 7/2/2012.

[7] [Online]. Available at: http://www.techsmith.com/camtasia/.
Last accessed: 7/2/2012.

[8] [Online]. Available at: http://www.fraps.com. Last accessed:
7/2/2012.

[9] Youtube API. [Online]. Available at: http://code.google.com/
apis/youtube/casestudies/ea.html. Last accessed: 7/2/2012.

[10] D. Takahashi, “YouTube game videos become a big
channel for game marketers,” Dec. 2008. [Online].
Available at: http://games.venturebeat.com/2008/12/18/
youtube-game-videos-become-a-big-channel-for-game-marketers/.
Last accessed: 7/2/2012.

[11] [Online]. Available at: http://xfire.com. Last accessed
7/2/2012.

[12] Adobe Flash. [Online]. Available at: http://www.adobe.com/
support/flash/downloads.html. Last accessed: 7/2/2012.

[13] XMLHttpRequest, W3C Working Draft, 2009.
[Online]. Available at: http://www.w3.org/TR/2009/
WD-XMLHttpRequest-20091119/. Last accessed: 7/2/2012.

[14] SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition), W3C Recommendation, 2007. [Online]. Available at:
http://www.w3.org/TR/soap12-part1. Last accessed: 7/2/2012.

[15] [Online] Available at: http://blueimp.net/ajax. Last accessed:
7/2/2012.

[16] [Online] Available at: http://www.gmail.com. Last accessed:
7/2/2012.

[17] [Online] Available at: https://addons.mozilla.org/en-US/
firefox/addon/chatzilla/. Last accessed: 7/2/2012.

[18] [Online] Available at: http://www.mibbit.com. Last accessed:
7/2/2012.

[19] [Online] Available at: http://www.php-development.ru/
software/chat-java.php. Last accessed: 7/2/2012.

[20] [Online] Available at: http://www.meebo.com/. Last accessed:
7/2/2012.

[21] [Online] Available at: http://www.google.com/ig. Last ac-
cessed: 7/2/2012.

[22] [Online] Available at: http://www.orkut.com/. Last accessed:
7/2/2012.

[23] [Online] Available at: http://www.flashcoms.com/products/
community video chat/. Last accessed: 7/2/2012.

[24] [Online] Available at: http://avchat.net/. Last accessed:
7/2/2012.

[25] [Online] Available at: http://www.red5chat.com/. Last ac-
cessed: 7/2/2012.

[26] [Online] Available at: http://www.mebeam.com/. Last ac-
cessed: 7/2/2012.

[27] [Online] Available at: http://www.fileguru.com/
Web-Voice-Chat/info. Last accessed: 7/2/2012.

[28] [Online] Available at: http://www.123flashchat.com. Last ac-
cessed: 7/2/2012.

[29] [Online] Available at: http://acidjs.wemakesites.net/
voting-poll.html. Last accessed: 7/2/2012.

[30] [Online] Available at: http://ajaxian.com/archives/
dpolls-an-ajax-pollster. Last accessed: 7/2/2012.

[31] [Online] Available at: http://www.flabell.com/flash/
XML-Flash-Voting-Poll-39. Last accessed: 7/2/2012.

[32] [Online] Available at: http://wordpress.org/. Last accessed:
7/2/2012.

[33] [Online] Available at: http://www.movabletype.org/. Last ac-
cessed: 7/2/2012.

[34] [Online]. Available at: http://www.pptv.com/. Last accessed:
7/2/2012.

[35] [Online]. Available at: http://www.PPstream.com. Last ac-
cessed: 7/2/2012.

[36] Y.-H. C. Sanjay, S. G. Rao, S. Seshan, and H. Zhang, “A case
for end system multicast,” in Proc. ACM Sigmetrics, pp. 1–12,
2002.

[37] G. Yang, S. Kyoungwon, K. Jim, and T. Don, “P2cast: peer-
to-peer patching scheme for VoD service,” in Proc. 12th Int.
Conf. World Wide Web, pp. 301–309, 2003.

[38] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh, “SplitStream: High-bandwidth multicast
in a cooperative environment,” in Proc. ACM SOSP, 2003.

[39] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K.
Sripanidkulchai, “Distributing streaming media content using
cooperative networking,” in Proc. NOSSDAV ’02, pp. 177–
186, 2002.

[40] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. V.
Steen, “The peer sampling service: experimental evalua-
tion of unstructured gossip-based implementations,” in Proc.
ACM/IFIP/USENIX Int. Conf on Middleware, pp. 79–98,
2004.

[41] B. Li, G. Y. Keung, C. Lin, J. Liu, and X. Zhang, “Inside the
new coolstreaming: Principles, measurements and performance
implications,” in Proc. INFOCOM’08, 2008.

[42] A.-M. Kermarrec, E. Le Merrer, Y. Liu, and G. Simon, “Surf-
ing peer-to-peer IPTV system: distributed channel switching,”
in Proc. EuroPar, 2009.

[43] A.-T. Gai, F. Mathieu, F. de Montgolfier, and J. Reynier,
“Stratification in P2P networks: application to BitTorrent,”
in Proc. 27th IEEE International Conference on Distributed
Computing Systems (ICDCS), 2007.

[44] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang,
and B. Li, “Design and deployment of a hybrid CDN-P2P
system for live video streaming: Experiences with livesky,” in
Proc. ACM Multimedia, 2009.

[45] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A.
Silberschatz, “P4p: Provider portal for applications,” ACM
SIGCOMM Computer Communication Review, Vol. 38, No.
4, Oct. 2008.

[46] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang, “A peer-
to-peer network for live media streaming using a push-pull
approach,” in Proc. 13th ACM International Conference on
Multimedia, 2005.

[47] M. Röder, Efficient Rate-Distortion Optimized Media Stream-
ing, PhD Thesis, University of Konstanz, 2007.

[48] P.A. Chou, “Streaming media on demand,” in M. van der
Schaar, P.A. Chou (editors), Multimedia over IP and Wireless
Networks: Compression, Networking, and Systems, Academic
Press, 2007.

[49] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient
peer-to-peer streaming,” in Proc. IEEE ICNP, pp. 16–27, At-
lanta, GA, Nov. 2003.



[50] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava,
“PROMISE: peer-to-peer media streaming using CollectCast,”
in Proc. ACM Multimedia (MM’03), Berkeley, CA, Nov. 2003.

[51] X. Xu, Y. Wang, S.§. Panwar, and K. W. Ross, “A peer-to-peer
video-on-demand system using multiple description coding and
server diversity,” in Proc. IEEE Int. Conf. Image Processing,
Singapore, Oct. 2004.

[52] K. Suh, C. Diot, J. Kurosey, L. Massoulie, C. Neumann,
D. Towsley, and M. Varvello, “Push-to-Peer video-on-demand
system: design and evaluation,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 9, pp. 1706–1716, Dec.
2007.

[53] E. Setton, J. Noh, and B. Girod, “Rate-distortion optimized
video peer-to-peer multicast streaming,” in Proc. P2PMMS’05,
pp. 39–48, Singapore, Nov. 2005.

[54] E. Akyol, A. M. Tekalp, and M. R. Civanlar, “A flexible
multiple description coding framework for adaptive peer-to-
peer video streaming,” IEEE Journal of Selected Topics in
Signal Processing, vol. 1, no. 2, pp. 231–245, Aug. 2007.

[55] M.-T. Lu, J.-C. Wu, K.-J. Peng, P. Huang, J. J. Yao, and H.
H. Chen, “Design and evaluation of a P2P IPTV system for
heterogeneous networks,” IEEE Transactions on Multimedia,
vol. 9, pp. 1568–1579, Dec. 2007.

[56] N. Thomos and P. Frossard, “Raptor network video coding,”
in Proc. 1st ACM International Workshop on Mobile video
(in conjunction with ACM Multimedia 2007), Augsburg, Ger-
many, Sep. 2007.

[57] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol.
52, pp. 2551–2567, June 2006.

[58] C. Wu and B. Li, “rStream: resilient and optimal peer-to-peer
streaming with rateless codes,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, pp. 77–92, Jan. 2008.

[59] M. Grangetto, R. Gaeta, and M. Sereno, “Rateless codes
network coding for simple and efficient P2P video streaming,”
in Proc. IEEE ICME 2009, Cancun, Mexico, 2009.

[60] M. Grangetto, R. Gaeta, and M. Sereno, “Reducing content
distribution time in P2P based multicast using rateless codes,”
in Proc. Italian Networking Workshop, pp. 1–12, Cortina, 2009.

[61] E. Setton, J. Noh, and B. Girod, “Congestion-distortion opti-
mized peer-to-peer video streaming,” in Proc. IEEE ICIP-2006,
Atlanta, GA, Oct. 2006.

[62] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod, “Low-
delay peer-to-peer streaming using scalable video coding,” in
Proc. International Packet Video Workshop, PV2007, Lau-
sanne, Switzerland, Nov. 2007.

[63] [Online]. Available at: http://tools.ietf.org/html/rfc4340. Last
accessed 7/2/2012.

[64] R. Diana and E. Lochin, “ECN verbose mode: A statistical
method for network path congestion estimation,” in Proc.
INFOCOM, San Diego, CA, 2010.

[65] T. Silverston and O. Fourmaux, “Measuring P2P IPTV sys-
tems,” in Proc. ACM NOSSDAV’07, June 2007.

[66] S. Ali, A. Mathur, and H. Zhang, “Measurement of com-
mercial peer-to-peer live video streaming,” in Proc. ICST
Workshop Recent Adv. Peer-To-Peer Streaming, Waterloo,
Aug. 2006.

[67] M. Alhaisoni and A. Liotta, “Characterization of signalling
and traffic in Joost,” Journal of Peer-to-Peer Networking and
Applications, Vol. 2, issue 1, pp. 75–83, 2009.

[68] P. Baccichet, J. Noh, E. Setton, and B. Girod, “Content-
aware P2P video streaming with low latency,” in Proc. IEEE
International Conference on Multimedia and Expo, ICME
2007, Beijing, China, Jul. 2007.

[69] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the
power of pull-based streaming protocol: Can we do better?,”
IEEE Journal on Selected Areas in Communications, Vol. 25,
pp. 1678–1694, Dec. 2007.

[70] M. Zhang, L. Sun, and S. Yang, “iGridMedia: Providing
delay-guaranteed peer-to-peer streaming service on Internet,”
in Proc. IEEE GLOBECOM 2008, New Orleans, LO, Dec.
2008.

[71] F. Pianese, D. Perino, J. Keller, and E.W. Biersack, “PULSE:
An adaptive, incentive-based, unstructured P2P Live streaming
system,” IEEE Transactions on Multimedia, Vol. 9, Number 8,
pp. 1645–1660, Dec. 2007.

[72] M. Wang and B. Li, “R2: Random push with random net-
work coding in live peer-to-peer streaming,” IEEE Journal on
Selected Areas in Communications, Vol. 25, Number 9, pp.
1655–1666, Dec. 2007.

[73] [Online]. Available at: http://www.playxpert.com/. Last ac-
cessed 7/2/2012.

[74] [Online]. Available at: http://www.freeridegames.com/. Last
accessed 7/2/2012.

[75] [Online]. Available at: http://en.wikipedia.org/wiki/Massive
Incorporated. Last accessed 7/2/2012.

[76] [Online]. Available at: http://www.doublefusion.com/. Last
accessed 7/2/2012.

[77] [Online]. Available at: http://store.steampowered.com/. Last
accessed 7/2/2012.

[78] [Online]. Available at: http://www.overwolf.com/. Last ac-
cessed 7/2/2012.

[79] [Online]. Available at: http://raptr.com/. Last accessed
7/2/2012.

[80] [Online]. Available at: http://www.roma-victor.com. Last ac-
cessed 7/2/2012.


